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The very basics

Cryptography

The art and science of
ensuring information can
only be understood by
certain people.

Cryptanalysis

The art and science of
ensuring you are
one of those people.

“It is clear that the cryptographers are winning the
information war . . .

. . . experience tells us that every unbreakable cipher
eventually succumbs to cryptanalysis.”

– The Code Book, Simon Singh
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Protocols as diagrams

Aims and Objectives:

1 Express entire protocols as categorical diagrams.

2 Use a single diagram to model

Underlying Algebra
Commuting diagrams

Knowledge of Participants
Partial order enrichment

Information flow
2-categorical structure

3 Use these to attack study protocols.
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Public key cryptography

The aim ...

For participants to come to share a secret, using only public
communication.

“Secure communication over insecure channels” – R. Merkel

Is it possible for Alice and Bob to share a secret

without ever having to meet?
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Public Key Distribution

Alice and Bob can come to share a secret, even when all their
communications are being monitored.

Diffie – Hellman ( – Merkel) key exchange (1976)

Relies on the difficulty of computing discrete logarithms.

Very heavily used online.

Highly vunerable to quantum computers.

Security through obscurity?

Previously discovered by Ellis, Cocks, Williamson of GCHQ.
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A motivating thought-experiment

Prior to D.-H (or E-C-W), it was believed that such
secret-sharing should be possible.

The ‘untrusted courier’ scenario

Alice wishes to send Bob some physical object.
Alice padlocks it into a box & sends the locked box to Bob.
Bob is unable to open it; he secures the box with his own
padlock & returns it to Alice.
Alice is unable to open it; she removes her padlock &
sends it back to Bob.
Bob receives a box that is secured with his padlock only.
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Commutativity & the untrusted courier

Algebraic requirements ...

Locking operations have left inverses.

l

Idl

��

Alice Locks

~~

Bob Locks

  
l

Alice Unlocks   

l

Bob Unlocks~~
l

Locking operations commute with each other.

l
Alice Locks //

Bob Locks
��

l

Bob Locks
��

l
Alice Locks

// l

peter.hines@york.ac.uk Category Theory in Cryptography



Order theory & the untrusted courier

Epistemic requirements ...

Only Alice can perform:

Alice locks : l Ñ l

Alice Unlocks : l Ñ l

Only Bob can perform:

Bob Locks : l Ñ l

Bob Unlocks : l Ñ l
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A family of key exchange protocols

For obvious (quantum) reasons, we seek secret-sharing
protocols that are not based on prime fields / factorization /
discrete logarithms / etc.

Recent work (January 2017) suggests that graph isomorphism
is also not a good place to start:

“Graph isomorphism in quasi-polynomial time” –
Lásló Babai, Univ. Chicago

We will look at some proposed algebraic protocols instead.
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An algebraic approach to secret sharing

Commuting Action Key Exchange (CAKE)

A general family of key exchange (secret sharing) protocols.

Introduced in 2004 by V. Shpilrain & G. Zapata

Includes many interesting protocols as special cases

(Ko-Lee key exchange, Braid group protocols, Shpilrain –
Ushakov protocol, &c..).

We will look at the semigroup (monoid) version:

Example 3, Section 3 of Combinatorial Group Theory and

Public Key Cryptography S.-Z. (2004).
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The CAKE – sharing protocol
Alice and Bob will come to share a secret element of a monoidM.

1 Alice and Bob both have large key pools A,B ĎM that satisfy

ab “ ba @ a P A, b P B.

2 A fixed public root element γ PM is chosen.

3 Alice chooses her private key, pα1, α2q P Aˆ A, and publicly
broadcasts α1γα2 PM

4 Bob chooses his private key,pβ1, β2q P B ˆ B, and publicly
broadcasts β1γβ2 PM.

5 Alice computes α1β1γβ2α2 and Bob computes β1α1γα2β2.

By the point-wise commutativity of A,B ĎM, these are equal, giving
Alice and Bob’s shared secret σ as

σ “ α1β1γβ2α2 “ β1α1γα2β2
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An important point ...

This is a general prescription for building protocols.

It says nothing about security ... this depends on the properties
of the monoid category M.

Desirable properties for M were described by Shpilrain et al in
2004.
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In a clearer form!

The algebraic data:

Alice Public Bob
Public root γ

Selects private Selects private
α1, α2 P A β1, β2 P B

Sends α1γα2
PA //

PBoo Sends β1γβ2

Computes: α1PBα2 Computes: β1PAβ2
By commutativity,
these are equal.
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Knowns and unknowns in CAKE

The participants: t Alice, Bob, Eve u.

The epistemic data:

Everybody
γ,PA,PB

Alice & Bob
σ

Alice
α1 , α2

Bob
β1 , β2

Nobody
α1β1 , α2β2
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CAKE as a commuting diagram

The required arrows are:
1 The root γ
2 Alice & Bob’s private keys, pα1, α2q and pβ1, β2q

3 Alice & Bob’s public announcements, PA and PB

4 Their shared secret σ

‚

α2

ww

σ //

β2

‚

‚

β2

��

PB
//

��

‚

α1

77

‚

α2

ww

PA
// ‚

β1

^^

‚ γ // ‚

α1

77

β1

^^
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Combining algebraic & epistemic data

Introducing epistemic data to diagrams

Form the powerset-lattice of participants.

Label each edge in the diagram by an element of this
lattice:

‚
f ,X // ‚

X P 2tAlice,Bob,Eveu consists of participants who

know the value of f , or (more accurately)

are able to perform the operation f .
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CAKE, in summary

The Algebraic-Epistemic diagram for semigroup-CAKE:

‚

α2,tAu

ww

σ,tA,Bu //

β2,tBu

‚

‚

β2,tBu

��

PB ,J //

��

‚

α1,tAu

77

‚

α2,tAu

ww

PA,J // ‚

β1,tBu

^^

‚ γ,J // ‚

α1,tAu

77

β1,tBu

^^
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Commuting diagrams??

Treating 2tA,B,Eu as a ^-monoid:

Question: Is this diagram for CAKE a commuting diagram

over the product category Mˆ 2tA,B,Eu ?

Answer: No!

Turning a bug into a feature: The reasons why / points at
which it fails to commute are highly significant.
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Failure of commutativity & public announcements

Diagram 1 commutes, Diagram 2 is a slice of CAKE.

‚

β2,tBu
��

β1γβ2,tBu //

Diagram D1

‚ ‚

β2,tBu
��

β1γβ2,J //

Diagram D2

‚

‚
γ,tA,B,Eu

// ‚

β1,tBu

OO

‚
γ,tA,B,Eu

// ‚

β1,tBu

OO

1 In diagram 1, Bob computes β2γβ1, and keeps quiet.
2 In diagram 2, Bob computes β2γβ1, and tells the whole

world the result.
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Public announcements as 2-categorical data

Announcements are (non-identity) 2-cells:

‚

β2,tBu

��

β1γβ2,J // ‚

p“,ďq

KS

‚
γ,tA,B,Eu

// ‚

β1,tBu

OO

but not all such 2-cells are announcements!
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Non-trivial two-cells without public announcements

Another slice of CAKE :

‚

α2,tAu

ww

σ,tA,Bu //

β2,tBu

‚

‚ PB ,J //

��

‚

α1,tAu

77

‚ PA,J // ‚

β1,tBu

^^

We have non-identity 2-cells, but no announcements.

Here, non-trivial 2-cells correspond to Alice and Bob’s distinct routes
to calculating the shared secret.
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A simple definition ...

A diagram D over a Poset enriched category satisfies the edge-path
condition (EPC) when:

Given an edge and a path between the nodes X and Y , we
have the following 2-cell:

. . .

óďX,Y
gn

''X
f

//

g1

77

Y
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Interpreting the edge-path condition

Motivation: We claim this as a generic ‘correctness criterion’
for protocols:

In existing protocols ...

We always find this to be the case.

If it fails, then either:

1 We have failed to account for the results of some
announcement,

2 We have missed some alternative route to calculating a
secret value,

3 There is the possibility of deadlock.
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The Edge-Path condition & protocols

The E-P condition is defined for arbitrary Poset-enriched categories.

We use diagrams over a product category C ˆ L.

C models the algebraic structure, and is enriched over the
discrete partial order.

L models the participants / epistemic data, and has ‘more
interesting’ poset-enrichment.

For this talk, we simply need L to be a lattice
(usually the powerset-lattice of participants).

Even for current protocols, we need C to be a category,
not just a monoid.
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The edge-path condition: who knows what?

Consider a fragment of the A-E diagram for some protocol:

‚
a2,R2 // . . .

an´1,Rn´1 // ‚

an,Rn
��

H

a1,R1

OO

b,Q
// K

The edge-path condition states that

b “ an . . . a1 and
n
ľ

j“1

Rj ď Q

In terms of powerset-lattices

Any participant x P
Źn

j“1 Rj who knows (is able to perform)
each operation tajuj“1..n certainly knows (is able to perform)
the composite rn . . . r1.
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No participant left behind
Consider a fragment of an A-E diagram for some protocol with a
single edge and multiple paths from node H to node K .

H b,Q //

a1,R1

��

a2,R2

!!an,Rn ++ K

...

The edge-path condition states that

b “ a1 “ . . . “ an and Rj ď Q @ j “ 1..n

In terms of powerset-lattices

The members of R1,R2, . . . ,Rn are all able to calculate (perform) b,
albeit in different ways. Therefore, the subset of participants who can
perform b contains each Rj .
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A worked example:

Two different approaches to

Diffie-Hellman key exchange

between three participants
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The usual story ...

Three participants tAlice,Bob,Carolu will come to share a
secret.

Start with a (public) prime p and root g P Zp.

Alice, Bob, and Carol have private keys a,b, c P Zp.

They will construct the shared secret gabc “ gbca “ gcab.

All three of them are required, to construct this.

The usual evesdropper Eve can see all communication.
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Tripartite Diffie-Hellman, Round I

Based on the public root g, and their private keys a,b, c,

1 Alice computes ga and announces the result to Bob.

2 Bob computes gb and announces the result to Carol.

3 Carol computes gc and announces the result to Alice.
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Tripartite Diffie-Hellman, Round II

Based on the messages they receive,

1 Alice computes pgcq
a
“ gca and announces the result to

Bob.

2 Bob computes pgaq
b
“ gab and announces the result to

Carol.

3 Carol computes
`

gb
˘c
“ gbc and announces the result to

Alice.

peter.hines@york.ac.uk Category Theory in Cryptography



Tripartite Diffie-Hellman, Round III

They are now able to compute the shared secret.

1 Alice computes
`

gbc
˘a
“ gabc .

2 Bob computes pgcaq
b
“ gabc

3 Carol computes
`

gab
˘c
“ gabc .
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The underlying category

The action takes place in a small subcategory of Set:

Objects: Zp and t˚u

Arrows:

1 modular exponentiation p qx : Zp Ñ Zp, for all x “ 0 . . . p ´ 1

2 selecting an element rxs : t‹u Ñ Zp, where rxsp‹q “ x P Zp

A deliberate choice

We have not to included discrete logarithms as arrows of this
category.
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The core identity

The basic identity is ppp qaqbqc “ ppp qbqcqa “ ppp qcqaqb

Zp

p qc

��

Zp

p qb

��

Zp

p qb

>>

p qc

''

p qaoo

Zp

p qa

~~

Zp

p qa

��

Zp p qc // Zp

Zp

p qb

gg
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Adding in the root element
We require these equalities applied to the root g P Z.

Zp

p q
c

��

Zp

p q
b

��

Zp

p q
b

EE

p q
c

''

p q
a

oo

Zp

p q
a

��

t˚u

rgabcs

��

rgs

OO

Zp

p q
a

~~
Zp p q

c // Zp

Zp

p q
b

gg
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What announcements are made?

The elements ga,gb,gc ,gab,gbc ,gca are all announced:

Zp

p qc

��

Zp

p qb

��

Zp

p qb
>>

p qc

))

p qaoo

Zp

p qa

��

t˚u

rgabcs

��

rgs

OO

rgas

bb

rgabs

||

rgbs

GG

rgbcs

&&

rgcs

55

rgcas

��

Zp

p qa
xx

Zp p qc // Zp

Zp

p qb

ii
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Who knows what?
Adding in the epistemic data:

Zp

p q
c ,tCu

��

Zp

p q
b,tBu

��

Zp

p q
b,tBu

>>

p q
c ,tCu
))

p q
a,tAuoo

Zp

p q
a,tAu

��

t˚u

rgabcs,tA,B,Cu

��

rgs,J

OO

rgas,tA,B,Eu

^^

rgabs,tB,C,Eu

��

rgbs,tB,C,Eu

II

rgbcs,tC,A,Eu

&&

rgcs,tC,A,Eu

99

rgcas,tA,B,Eu

��

Zp

p q
a,tAu~~

Zp
p q

c ,tCu
// Zp

Zp

p q
b,tBu

ii
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Subdiagrams of Algebraic-Epistemic diagrams

An obvious step

Consider subdiagrams consisting of:

All edges whose lattice label is ě some element X P 2P .

These subdiagrams also satisfy the Edge-Path condition.

They correspond to different participants views of the protocol.
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Alice’s perspective on the protocol:

All edges with label ě tAu

Zp

Zp Zp
p qa,tAuoo

Zp

p qa,tAu

��

t˚u

rgabcs,tA,B,Cu

��

rgs,J

OO

rgas,tA,B,Eu

^^

rgbcs,tC,A,Eu

&&

rgcs,tC,A,Eu

99

rgcas,tA,B,Eu

��

Zp

p q
a,tAu~~

Zp Zp

Zp
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What Alice and Bob both see:

All edges with label ě tA,Bu

Zp

Zp Zp

Zp

t˚u

rgabcs,tA,B,Cu

��

rgs,J

OO

rgas,tA,B,Eu

^^

rgcas,tA,B,Eu

��

Zp

Zp Zp

Zp
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What the evesdropper knows!

All edges with label ě tEu.

Zp

Zp Zp

Zp

t˚u

rgs,J

OO

rgas,tA,B,Eu

^^

rgabs,tB,C,Eu

��

rgbs,tB,C,Eu

II

rgbcs,tC,A,Eu

&&

rgcs,tC,A,Eu

99

rgcas,tA,B,Eu

��

Zp

Zp Zp
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Does this help??

Simple diagram-chasing makes it easy to answer some questions:

Question Can we vary the order of computations /
announcements?

Answer Yes, quite a bit!

Question Does it matter if any of the participants (apart from
Eve) are evesdropping?

Answer No, not at all!

Question What does Eve need to know, to find the shared
secret?

Answer Any of the private keys will do!

We can also compare approaches to the same problem.
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Another approach ...

How else may Alice, Bob, and Carol communicate privately?

As before, assume:

Prime p,

Public Root g P Zp

Private keys a,b, c P Zp

Every pair will compute a distinct shared secret.

Alice ´´Bob Bob ´´Carol Carol ´´Alice
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Pairwise three-party Diffie-Hellman

Alice, Bob, and Carol compute

ga and gb and gc

respectively. They publicly announce their results.
They each compute a pair of shared secrets:

Alice computes gba and gca

Bob computes gcb and gab

Carol computes gac and gbc
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A-E diagram for 3-way secret sharing

The (commuting) algebraic labelling:

Zp Zp

p qc

��

p qaoo

Zp

p qc

��

p qb
88

Zp

p qb
88

p qc

��

p qaoo

t˚u

rgabs

OO

rgcas

xx

rgbcs //

g

CC

rgas

[[

rgcs

&&

rgbs

??

Zp

Zp Zp
p qa

oo
p qb

88
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A-E diagram for 3-way secret sharing

The (EPC satisfying) lattice labelling:

Zp Zp

tCu

��

tAuoo

Zp

tCu

��

tBu
88

Zp

tBu
88

tCu

��

tAuoo

t˚u

tA,Bu

OO

tA,Cu

xx

tB,Cu //

J

CC

J

[[

J

&&

J

??

Zp

Zp Zp
tAu

oo
tBu

88
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Comparing this approach ...

Again, by simple diagram-chasing:

Question Can any additional information be announced?

Answer No, not without compromising the protocol!

Question What happens if Eve discovers (say) Bob’s secret key?

Answer She can discover two out of the three shared secrets.

Question Is this the same as tripartite Diffie-Hellman?

Answer No, definitely not!
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Can we go further??

Drawing diagrams gives a visual representation of

algebraic relationships, epistemic knowledge,

and information flow.

1 The category theory used hase been very basic.

2 The difficulty of solving algebraic problems has been
treated as a ‘black box’.

Is it too much to hope these points are related ??
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Back to CAKE

Recall the CAKE protocol

This is a general recipe for producing public key protocols.

The key ingredient for security is the choice of monoid.

What structures have been proposed, and why?
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An interesting first choice ...

CAKE was first proposed in:

Combinatorial group theory and public key cryptography (2004)

General proposals for cryptosystems based on algebraic
structures.

The first concrete protocol was given in:

Thompson’s group F and Public Key Cryptography (2004)

“This group has several properties that make it particularly fit
for cryptographic purposes.”
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This is an ex-protocol.

F. Matucci (2006)

The Shpilrain-Ushakov Protocol for Thompson’s Group F is
always breakable

Ruinskiy, Shamir, Tsaban (2007)

Length-Based Cryptanalysis: the case of Thompson’s group

Conjecture: “ no public key cryptosystem based
on the difficulty of solving an equation in this group
can be secure.”

Hines (2013)

Modular arithmetic identities from categorical coherence

(Implicitly) A large collection of representations of
Thompson’s F as modular arithmetic functions.
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Thompson’s group F and associativity

R. McKenzie, R. Thompson (1971): Close connection between
Thompson’s group F , and associativity laws

K. Brown (2004) A group homomorphism ‹ : F ˆ F Ñ F that
is associative up to isomorphism.

M. V. Lawson (2004) The canonical associativity isomorphisms
for a class of single-object tensors is precisely F .

P. Dehornoy (2005) ‘The only [non-trivial] relations in this
presentation of F correspond to the well-known
MacLane-Stasheff pentagon.’

M. Brinn (2005) ‘the resemblance of the usual coherence
theorems with Thompson’s group F ’.

M. Fiore, T. Leinster (2010) Thompson’s group F is the
symmetry group of an idempotent U in the free strict monoidal
category generated by U.
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A relevant cohence theorem:

Coherence and Strictification for Self-Similarity
Journal of Homotopy & Related Structures (Hines 2016)

A semi-monoidal equivalence of monogenic categories
Self-similarity S – S b S Strict self-similarity S “ S ‹ S

up to isomorphism

(a.k.a. idempotency) (a.k.a. being a monoid)

As a consequence:

1 No monoid can have a strictly associative tensor.

2 For any monoid with a (semi-) monoidal tensor, either:

1 The group of associativity isomorphisms is precisely F .
2 The unique object is the unit object.
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Cryptographic protocols as canonical diagrams

Based on these: Thompson’s group F is the group of
canonical associativity isomorphisms for a tensor.

Diagrams for the Shpilrain-Ushakov protocol
are commuting canonical diagrams

in the sense of MacLane’s coherence theorem.
‚

α2

xx

σ //

β2

‚

‚

β2

��

PB //

β2α2

��

��

‚

α1

88

‚

α2

xx

PA // ‚

β1

^^

‚ γ // ‚

α1

88

β1

^^

β1α1

OO
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Simple exercises!!

Within a (semi-) monoidal category:

1 Given a canonical diagram, how easy is it to decide
whether it commutes?

2 Given a commuting canonical diagram, how easy is it to fill
in missing edges?

– can this be done uniquely?

3 How can we find sets A,B of canonical isomorphisms that
point-wise commute?
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The mother of all coincidences?

A personal viewpoint ...

Shpilrain & Ushakov (2004) gave motivation for choosing
Thompson’s group F .

These properties seem inseparable from the categorical
interpretation.

Do we see similar elsewhere?
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Some other places to look ...

Proposed use of Thompson’s group V

– the coherence isomorphisms for a symmetric tensor on a
monoid.

M. Fiore, M. Campos (2013)

Proposed use of poylcyclic monoids / groups.

– related to coherence isomorphisms for tensors
on monoids with projections / injections.

Hines, Lawson (1998,1999)

Shor’s quantum algorithm for factoring.

– related to Laplaza’s theory of coherence for distributivity
Hines (2013)

Other proposed algebraic structures (!)

–T.B.C.
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