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Reconstruction results
Usual reconstruction results allow to get the syntactic category of the
theory T, possibly up to some form of completion, by identifying some
structure in the category of models Mod(T) and considering the category
of functors Mod(T)→ Set preserving that structure.

For finitary theories the following results are known:
(Lawvere) Algebraic theories: Determined up to Cauchy completion
by the functors Mod(T)→ Set preserving limits, filtered colimits and
regular epimorphisms.
(Gabriel-Ulmer) Cartesian theories: Determined up to equivalence by
functors Mod(T)→ Set preserving limits and filtered colimits.
(Makkai) Regular theories: Determined up to exact completion by
functors Mod(T)→ Set preserving products and filtered colimits.
(Makkai) Coherent theories: Determined up to pretopos completion
by functors Mod(T)→ Set preserving ultraproducts and
ultramorphisms (ultrafunctors) with certain natural transformations
that are compatible with the ultraproducts (ultratransformations).
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Reconstruction results

For infinitary theories in Lκ,κ for regular κ we have the following
generalizations:

(Adamek-Koubek-Velebil) κ-algebraic theories: Determined up to
Cauchy completion by the functors Mod(T)→ Set preserving limits,
κ-filtered colimits and regular epimorphisms.
(Makkai-Pitts) κ-cartesian theories: Determined up to equivalence by
functors Mod(T)→ Set preserving limits and κ-filtered colimits.
(Makkai) κ-regular theories: Determined up to κ-exact completion by
functors Mod(T)→ Set preserving products and κ-filtered colimits.

What we would like to do now is to find the generalization for the
coherent case working with κ-coherent theories. These are the basic
theories in Lκ,κ (Adámek-Rosický).
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Reconstruction results
Two large cardinal assumptions are needed:

κ needs to be strongly compact (every κ-complete filter can be
extended to a κ-complete ultrafilter). This is needed since such a
reconstruction result contains implicitely a completeness theorem.
The class of ordinals Ord is weakly compact: every tree whose height
is a proper class and whose levels are set-sized has a cofinal branch
(of a proper class size). This will allow to work with the proper class
of models of the theory.

One way to get the latter is to simply work with a Grothendieck universe
Vλ for a weakly compact λ. But its exact strength over ZFC is equivalent
to:

{∃λ(λ is n-Mahlo and Vλ 4Σn V ) : n ∈ ω}
in the sense that the theory of classes NBG + Ord is weakly compact
proves ψ if and only if ZFC plus the above schema proves the
relativization ψV .
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Reconstruction results

The reconstruction result we propose looks as follows (the terminology will
be explained later):

Theorem
Assume that Ord is weakly compact and let κ be a strongly compact
cardinal. Then κ-coherent theories can be recovered up to κ-pretopos
completion as the accessible functors Mod(T)→ Set preserving
κ-ultraproducts and κ-ultramorphisms with natural transformations that
are compatible with κ-ultraproducts.

Notation: categories with κ-ultraproducts and κ-ultramorphisms are called
κ-ultracategories. The chief example is Set, but also categories of models
are κ-ultracategories.
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Christian Esṕındola (PSSL 101) Stone duality for infinitary first-order logic September 16th, 2017 5 / 18



κ-pretopos

Consider a κ-chain in a category C with κ-limits, i.e., a diagram
Γ : γop → C specified by morphisms (hβ,α : Cβ → Cα)α≤β<γ with the
following condition:

the restriction Γ|β is a limit diagram for every limit ordinal β.

We say that the morphisms hβ,α compose transfinitely, and take the limit
projection fβ,0 to be the transfinite composite of hα+1,α for α < β.
There is an exactness condition on C that we call transfinite transitivity: if
we have a κ-tree of morphisms of C where the immediate successors of
every node form a jointly covering family, then the transfinite composites
of the morphisms along all possible cofinal branches of the tree forms itself
a jointly covering family.
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κ-pretopos
We have now:

Definition
A κ-pretopos is a pretopos with κ-small limits, stable disjoint κ-small
coproducts and that satisfies the transfinite transitivity property, i.e., the
transfinite composites up to κ of jointly covering families of morphisms is
itself jointly covering.

The κ-pretopos satisfies a conceptual completeness theorem:

Theorem
If κ is strongly compact, there exists a universal κ-coherent solution to the
problem of extending a category with κ-coproducts and quotients of
equivalence relations, that we call the κ-pretopos completion. Moreover, if
a κ-coherent functor I : P → S between κ-pretoposes induces an
equivalence between their categories of models I∗ : Mod(S)→ Mod(P),
then I is itself an equivalence.
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κ-ultraproducts

Given a set I and a κ-complete ultrafilter U on I (existing when κ is
strongly compact), we have the following functor [U] associated with U:

Set I −→ Set

(Ai : i ∈ I) 7→ Πi∈IAi
U

Then we have a categorical version of  Loś theorem:

Theorem
If κ is strongly compact and U is any κ-complete ultrafilter on I, the
functor [U] preserves the κ-pretopos structure.
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κ-ultramorphisms

A κ-ultragraph Γ is given by:

Two disjoint sets of nodes Γf (free nodes) and Γb (bound nodes)
Edges E (γ, γ′) for pair of nodes γ, γ′

An assignment of a triple (Iβ,Uβ, gβ) for each bound node β where
Uβ is a κ-complete ultrafilter on Iβ and gβ : Iβ → Γf

A κ-ultradiagram is a diagram A : Γ→ Set satisfying A(β) =
Πi∈IβA(gβ(i))

Uβ

A κ-ultramorphism (Γ, k, l) is a natural transformation between the
evaluation functors evk , evl : Hom(Γ,Set)→ Set for given nodes k, l .
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Reconstruction theorem

Facts:

Given a small κ-pretopos T , the category of κ-pretopos morphisms to
Set is an accessible κ-ultracategory, denoted Hom(T ,Set).
The category of accessible κ-ultrafunctors from Hom(T ,Set) to Set
with κ-ultratransformations is a κ-pretopos, denoted
Hom(Hom(T ,Set),Set).
There is an evaluation functor evT : T → Hom(Hom(T ,Set),Set)
which preserves the κ-pretopos structure.

Theorem
evT is an equivalence of categories.
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Christian Esṕındola (PSSL 101) Stone duality for infinitary first-order logic September 16th, 2017 10 / 18



Reconstruction theorem

The proof has three steps:

evT is conservative
evT is full on subobjects
Every object of Hom(Hom(T ,Set),Set) is κ-covered via evT
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Step 1: evT is conservative

That

evT : T → Hom(Hom(T ,Set),Set)

is conservative is essentially a completeness theorem. It implies Karp’s
completeness theorem for infinitary classical logic, but is stronger, as it is a
completeness theorem for κ-coherent theories.

This is related to an infinitary version of Deligne’s completeness theorem:
a κ-coherent topos (i.e., a topos where the coverage is generated by
κ-small families and has the transfinite transitivity property) has enough
κ-points (i.e., points whose inverse image preserve all κ-small limits).
Such a topos occurs as the κ-classifying topos of a κ-coherent theory, the
universal property being that models of the theory in a topos with the
transfinite transitivity property correspond to geometric morphisms from
the topos whose inverse image preserve κ-small limits.
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Step 2: evT is full on subobjects

This is the easiest step, and is the straightforward generalization of the
same proof for the finitary case.

It is related to Beth’s definability theorem, and in fact one can derive from
it a version of definability for κ-coherent logic .
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Step 3: κ-covering via evT

One needs a reformulation of the notion of subobject in the category
Hom(Hom(T ,Set),Set) in terms of a transfinite construction involving
κ-ultragraphs.

The crucial lemma needs Vopěnka’s principle because we restricted
ourselves to the accessible functors. In view of Step 2, it can be avoided
for the final result.
In the finitary case, one approximates the (reformulated) subobject taking
a small subcategory of Hom(T ,Set) and patches up the approximations
using Keisler-Shelah isomorphism theorem (two elementarily equivalent
models have isomorphic ultrapowers).
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Step 3: κ-covering via evT

Unfortunately Keisler-Shelah version for infinitary theories, using
κ-complete ultrafilters, is false.

Counterexample (JDH): Pick α < β ordinals such that as linear orders
they are elementarily equivalent. Then for any κ-complete ultrafilter U on
I there is an elementary embedding:

j : V → V U

and we have:

αU ∼= (j(α), <) 6= (j(β), <) = βU

In place of Keisler-Shelah, we use instead that Ord is weakly compact.

Christian Esṕındola (PSSL 101) Stone duality for infinitary first-order logic September 16th, 2017 15 / 18



Step 3: κ-covering via evT

Unfortunately Keisler-Shelah version for infinitary theories, using
κ-complete ultrafilters, is false.
Counterexample (JDH): Pick α < β ordinals such that as linear orders
they are elementarily equivalent. Then for any κ-complete ultrafilter U on
I there is an elementary embedding:

j : V → V U

and we have:

αU ∼= (j(α), <) 6= (j(β), <) = βU

In place of Keisler-Shelah, we use instead that Ord is weakly compact.
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Stone duality

Let AccUltκ be the 2-category of accessible κ-ultracategories with
accessible κ-ultrafunctors and κ-ultratransformations.

Theorem
Let κ be strongly compact, and assume that Ord is weakly compact.
There is an equivalence (given by homming into Set) between the
category of small κ-pretoposes and a full subcategory of AccUltκ whose
objects are themselves equivalent to categories of models of first-order
theories in Lκ,κ.

Corollary
The category of κ-pretopos morphisms between two small κ-pretoposes T
and S is equivalent to the category of accessible κ-ultrafunctors between
Mod(T ) and Mod(S).
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Future work

As further lines of work to pursue, we have:

Generalize to the infinitary case the duality theorem of
Awodey-Forssell by working with κ-pretoposes. This will provide a
reconstruction result of a topological flavour that does not need Ord
to be weakly compact. It does require, however, the compactness of
κ.
Extend Makkai’s duality theory for Boolean pretoposes setup to the
infinitary case, when possible.
Use Zawadowski’s argument for proving descent, based on this duality.
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Christian Esṕındola (PSSL 101) Stone duality for infinitary first-order logic September 16th, 2017 17 / 18



Future work

As further lines of work to pursue, we have:

Generalize to the infinitary case the duality theorem of
Awodey-Forssell by working with κ-pretoposes. This will provide a
reconstruction result of a topological flavour that does not need Ord
to be weakly compact. It does require, however, the compactness of
κ.
Extend Makkai’s duality theory for Boolean pretoposes setup to the
infinitary case, when possible.
Use Zawadowski’s argument for proving descent, based on this duality.
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Thank you!
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