Weak saturation and weak amalgamation property

Ivan Di Liberti PSSL, Leeds 2017

Let ${\mathcal K}$ be a class of finite structures in a signature Σ such that:

• is closed under isomorphism;

- is closed under isomorphism;
- is closed under substructures;

- is closed under isomorphism;
- is closed under substructures;
- has only countably many members up to isomorphism;

- is closed under isomorphism;
- is closed under substructures;
- has only countably many members up to isomorphism;
- has the amalgamation property;

- is closed under isomorphism;
- is closed under substructures;
- has only countably many members up to isomorphism;
- has the amalgamation property;
- has the joint embedding property;

Let ${\mathcal K}$ be a class of finite structures in a signature Σ such that:

- is closed under isomorphism;
- is closed under substructures;
- has only countably many members up to isomorphism;
- has the amalgamation property;
- has the joint embedding property;

Let ${\mathcal K}$ be a class of finite structures in a signature Σ such that:

- is closed under isomorphism;
- is closed under substructures;
- has only countably many members up to isomorphism;
- has the amalgamation property;
- has the joint embedding property;

then there is a structure M which is:

• finitely saturated;

Let ${\mathcal K}$ be a class of finite structures in a signature Σ such that:

- is closed under isomorphism;
- is closed under substructures;
- has only countably many members up to isomorphism;
- has the amalgamation property;
- has the joint embedding property;

- finitely saturated;
- finitely homogeneous;

Let ${\mathcal K}$ be a class of finite structures in a signature Σ such that:

- is closed under isomorphism;
- is closed under substructures;
- has only countably many members up to isomorphism;
- has the amalgamation property;
- has the joint embedding property;

- finitely saturated;
- finitely homogeneous;
- countable;

Let ${\mathcal K}$ be a class of finite structures in a signature Σ such that:

- is closed under isomorphism;
- is closed under substructures;
- has only countably many members up to isomorphism;
- has the amalgamation property;
- has the joint embedding property;

- finitely saturated;
- finitely homogeneous;
- countable;
- unique up to isomorphism between structures having these properties above.

Theorem (Rosický '97)

Theorem (Rosický '97)

Let \mathcal{K} be a λ -accessible category such that:

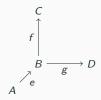
- has directed colimits;
- has the amalgamation property;
- has the joint embedding property;

then there is an object K which is:

- λ -saturated;
- λ -homogeneous;
- if it is λ^+ presentable, then it is unique up to isomorphism.

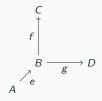
Definition

A category \mathcal{K} has the weak amalgamation property if, for any object A there is an arrow $A \stackrel{e}{\to} B$ such that any span like the following



Definition

A category \mathcal{K} has the weak amalgamation property if, for any object A there is an arrow $A \stackrel{e}{\to} B$ such that any span like the following



can be completed to a square such that the diagram below is commutative.

$$\begin{array}{c} C \longrightarrow E \\ \uparrow & \uparrow \\ A \longrightarrow D \end{array}$$

We call such an arrow $A \xrightarrow{e} B$ amalgamable.

To each Fraïssé class \mathcal{K} one can associate the class \mathcal{K}_p of all systems, $S = (A, \psi : B \to C)$ where A, B, C are structures in \mathcal{K} , B and C are substructures of A. Moreover, ψ is an isomorphism.

Theorem (Kechris-Rosendal)

The following are equivalent:

- \mathcal{K}_p has the weak amalgamation property and the joint embedding property;
- the Fraïssé limit of ${\mathcal K}$ has a generic automorphism.

To each Fraïssé class \mathcal{K} one can associate the class \mathcal{K}_p of all systems, $S = (A, \psi : B \to C)$ where A, B, C are structures in \mathcal{K} , B and C are substructures of A. Moreover, ψ is an isomorphism.

Theorem (Kechris-Rosendal)

The following are equivalent:

- \mathcal{K}_p has the weak amalgamation property and the joint embedding property;
- $\bullet\,$ the Fraïssé limit of ${\cal K}$ has a generic automorphism.

Examples

Many class of graphs.

To each Fraïssé class \mathcal{K} one can associate the class \mathcal{K}_p of all systems, $S = (A, \psi : B \to C)$ where A, B, C are structures in \mathcal{K} , B and C are substructures of A. Moreover, ψ is an isomorphism.

Theorem (Kechris-Rosendal)

The following are equivalent:

- \mathcal{K}_p has the weak amalgamation property and the joint embedding property;
- the Fraïssé limit of \mathcal{K} has a generic automorphism.

Examples

Many class of graphs.

A concrete example

The class of all finite cycle-free graphs in which no two vertices of degree > 2 are adjacent.

Definition

An object K is weakly λ -saturated when for any arrow $A \to K$ where A is λ -presentable there exists $A \to B$, with $B \lambda$ -presentable such that for any prolongation $A \to B \to C$ where C is λ -presentable there is an arrow $C \to K$ making the obvious diagram commutative.

Let $\mathcal{K} \subset \mathcal{L}$ be two categories such that:

• *K* has the joint embedding property, the weak amalgamation property, is weakly dominated by a countable subcategory;

- *K* has the joint embedding property, the weak amalgamation property, is weakly dominated by a countable subcategory;
- every arrow in \mathcal{L} is monic;

- K has the joint embedding property, the weak amalgamation property, is weakly dominated by a countable subcategory;
- every arrow in \mathcal{L} is monic;
- every directed diagram in K has a colimit in L and every object in L is the directed colimit of a diagram in K;

- K has the joint embedding property, the weak amalgamation property, is weakly dominated by a countable subcategory;
- every arrow in \mathcal{L} is monic;
- every directed diagram in K has a colimit in L and every object in L is the directed colimit of a diagram in K;
- every object in \mathcal{K} is ω -presentable in \mathcal{L} .

Let $\mathcal{K} \subset \mathcal{L}$ be two categories such that:

- K has the joint embedding property, the weak amalgamation property, is weakly dominated by a countable subcategory;
- every arrow in \mathcal{L} is monic;
- every directed diagram in K has a colimit in L and every object in L is the directed colimit of a diagram in K;
- every object in \mathcal{K} is ω -presentable in \mathcal{L} .

then there is a weakly finitely saturated object which is also weakly finitely homogeneous and unique up to isomorphism.

Definition

We say that a category \mathcal{K} with the weak amalgamation property satisfies the smallness condition if, given a λ -presentable object A and an amalgamable arrow $A \to M$, there exists a λ -presentable object B and arrows $A \to B, B \to M$ such that $A \to B$ is amalgamable and the diagram below commutes.

Let \mathcal{K} be a λ -accessible category with the weak amalgamation property and directed colimits, satisfying the smallness condition, then any object \mathcal{K} has a map $\mathcal{K} \to \mathcal{M}$ where \mathcal{M} is weakly λ -saturated.

Let \mathcal{K} be a λ -accessible category with the weak amalgamation property and directed colimits, satisfying the smallness condition, then any object \mathcal{K} has a map $\mathcal{K} \to \mathcal{M}$ where \mathcal{M} is weakly λ -saturated.

In this result Rosický uses the characterization of saturated objects as closed ones. Unfortunately we did not find a notion of weakly closed object.

Let \mathcal{K} be a λ -accessible category with the weak amalgamation property and directed colimits, satisfying the smallness condition, then any object \mathcal{K} has a map $\mathcal{K} \to \mathcal{M}$ where \mathcal{M} is weakly λ -saturated.

In this result Rosický uses the characterization of saturated objects as closed ones. Unfortunately we did not find a notion of weakly closed object.

Theorem

Let \mathcal{K} be a λ -accessible category having directed colimits and the joint embedding property. Then any two weakly λ -saturated, λ^+ -presentable objects are isomorphic.

Let \mathcal{K} be a λ -accessible category with the weak amalgamation property and directed colimits, satisfying the smallness condition, then any object \mathcal{K} has a map $\mathcal{K} \to \mathcal{M}$ where \mathcal{M} is weakly λ -saturated.

In this result Rosický uses the characterization of saturated objects as closed ones. Unfortunately we did not find a notion of weakly closed object.

Theorem

Let \mathcal{K} be a λ -accessible category having directed colimits and the joint embedding property. Then any two weakly λ -saturated, λ^+ -presentable objects are isomorphic.

In this result Kubiś uses generic sequences, a tool that he has since there is a countable dominating subcategory.

Let \mathcal{K} be a λ -accessible category with the weak amalgamation property and directed colimits, satisfying the smallness condition, then any object \mathcal{K} has a map $\mathcal{K} \to \mathcal{M}$ where \mathcal{M} is weakly λ -saturated.

In this result Rosický uses the characterization of saturated objects as closed ones. Unfortunately we did not find a notion of weakly closed object.

Theorem

Let \mathcal{K} be a λ -accessible category having directed colimits and the joint embedding property. Then any two weakly λ -saturated, λ^+ -presentable objects are isomorphic.

In this result Kubiś uses generic sequences, a tool that he has since there is a countable dominating subcategory.

Theorem

Let \mathcal{K} be a λ -accessible category having directed colimits and the joint embedding property. A weakly λ -saturated, λ^+ -presentable is weakly λ -homogeneous.