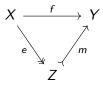
Definition (Grothendieck et al., SGA1)

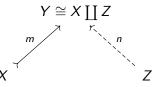
A Galois category consists of a pair (\mathfrak{C}, F), where \mathfrak{C} is an essentially small category

- (GAL1) which is finitely complete,
- (GAL2) has an initial object, finite coproducts, and quotients by finite groups of automorphisms,
- (GAL3) every morphism $f : X \to Y$ factorizes as



where m is a monomorphism and e a strict epimorphism,

(GAL4) for every monomorphism $m: X \to Y$, there exists a morphism $n: Z \to Y$

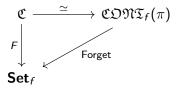


such that (Y, m, n) becomes the coproduct of X and Z,

together with a *fundamental functor* $F : \mathfrak{C} \to \mathbf{Set}_f$ to the category \mathbf{Set}_f of finite sets, which

- (GAL5) preserves the structures of (GAL1) and (GAL2), sends strict epimorphisms to surjections, and
- (GAL6) is conservative (i.e. reflects isomorphisms: if f is a morphism in \mathfrak{C} such that F(f) is an isomorphism, then f is an isomorphism.)

Grothendieck's reconstruction theorem of SGA1 proves that a Galois category (\mathfrak{C}, F) can be recovered by its fundamental functor under the equivalence



where $\pi = \operatorname{Aut}(F)$, topologized as a closed subgroup of $\prod_{A \in \mathfrak{C}} \operatorname{Aut}(F(A))$, is a Stone topological group.

Theorem (Grothendieck et al.)

The assignment $(\mathfrak{C}, F) \mapsto \operatorname{Aut}(F)$, induces an equivalence of categories \mathfrak{AUT} : GrothGal $\xrightarrow{\simeq_1}$ StoneGrp.

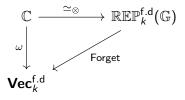
Definition (Saavedra-Rivano, Deligne)

A (neutral) Tannakian category over a field k consists of a pair (\mathbb{C}, ω) , where \mathbb{C} is a small category

- (TAN1) which is symmetric monoidal category with tensor product \otimes and tensor unit ${\bf 1},$
- (TAN2) rigid (i.e. every object has a dual),
- (TAN3) the endomorphism ring of the tensor unit satisfies $End(1) \cong k$,
- (TAN4) and \mathbb{C} is *k*-linear abelian (as a symmetric monoidal category), together with a monoidal fiber functor $\omega : \mathbb{C} \to \mathbf{Vec}_k^{\mathrm{f.d}}$ to the category of finite-dimensional *k*-vector spaces (endowed with the usual monoidal structure),

- (TAN5) which is exact,
- (TAN6) and faithful.

Deligne and Saavedra-Rivano's reconstruction theorem proves that (\mathbb{C}, ω) can be recovered by the (tensor) equivalence



Theorem (Deligne and Saavedra-Rivano) The assignment (on 0-cells)

$$(\mathbb{C},\omega)\mapsto \operatorname{Aut}^{\otimes}(\omega),$$

which associates to ω the affine k-group $\operatorname{Aut}^{\otimes}(\omega)$: $\operatorname{CAlg}_k \to \operatorname{Grp}$ that sends A to the group of A-linear \otimes -automorphisms $\omega(-) \otimes A$, induces a biequivalence of 2-categories $\operatorname{NTan}_k \xrightarrow{\simeq_2} \operatorname{AffGrpSch}_k$.