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Quick summary

By employing the internal language of toposes in various ways,
you can pretend that:

1 Sheaves of modules are plain modules.
2 Schemes are sets:

P2
S = {[x0 : x1 : x2] | x0 6= 0 ∨ x1 6= 0 ∨ x2 6= 0}.

3 Reduced rings are Noetherian and in fact �elds.
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What is a topos?

Formal de�nition
A topos is a category which has �nite limits, is cartesian closed
and has a subobject classi�er.

Motto
A topos is a category which is su�ciently rich to support an
internal language.

Examples
Set: the category of sets
Sh(X): the category of set-valued sheaves on a space X
Zar(S): the big Zariski topos of a base scheme S
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Universal localisation

Recall
A ring is local i� it has precisely one maximal ideal.
A homomorphism is local i� it re�ects invertibility.

Let A be a ring. Is there a free local ring A→ A′ over A?

A

��

// local
R

A′
local

local

99

No, if we restrict to Set. Yes, if we allow a change of topos:
Then A→ A∼ is the universal localisation.
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The internal language of a topos

The internal language of a topos E allows to

1 construct objects and morphisms of the topos,
2 formulate statements about them and
3 prove such statements

in a naive element-based language:

externally internally to E

object of E set
morphism in E map of sets
monomorphism injective map
epimorphism surjective map
group object group
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The internal language of Sh(X)

Let X be a topological space. Then we recursively de�ne

U |= ϕ (“ϕ holds on U ”)

for open subsets U ⊆ X and formulas ϕ.

U |= f = g :F :⇐⇒ f |U = g|U ∈ F(U )

U |= ϕ ∧ ψ :⇐⇒ U |= ϕ and U |= ψ

U |= ϕ ∨ ψ :⇐⇒ U |= ϕ or U |= ψ

there exists a covering U =
⋃

i Ui s. th. for all i:
Ui |= ϕ or Ui |= ψ

U |= ϕ⇒ ψ :⇐⇒ for all open V ⊆ U : V |= ϕ implies V |= ψ

U |= ∀f :F . ϕ(f ) :⇐⇒ for all sections f ∈ F(V ),V ⊆ U : V |= ϕ(f )

U |= ∃f :F . ϕ(f ) :⇐⇒ there exists a covering U =
⋃

i Ui s. th. for all i:
there exists fi ∈ F(Ui) s. th. Ui |= ϕ(fi)
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The internal language of Sh(X)

Locality
If U =

⋃
i Ui, then U |= ϕ i� Ui |= ϕ for all i.

Soundness
If U |= ϕ and if ϕ implies ψ constructively, then U |= ψ.

A �rst glance at the constructive nature
U |= f = 0 i� f |U = 0 ∈ F(U ).
U |= ¬¬(f = 0) i� f = 0 on a dense open subset of U .
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Praise for Mike Shulman
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The little Zariski topos

Let A be a ring. Its spectrum Spec(A) is

generated by opens D(f ) for f ∈ A
subject to Spec(A) =

⋃
i D(fi) i� 1 =

∑
i gifi for some gi.

The little Zariski topos of A is the category Sh(Spec(A)) of
set-valued sheaves on its spectrum. It contains a ring object A∼
with A∼(D(f )) = A[f −1], called the structure sheaf.

Motto (to be amended)
The structure sheaf A∼ is a rei�cation of all of the stalks Ap.

For instance, all stalks Ap are integral domains if and only if

Spec(A) |= pA∼ is an integral domainq.
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Transfer principles

Theorem
The structure sheaf A∼ inherits all �rst-order properties of A
which are stable under localisation.

Proof. The structure sheaf A∼ is the localisation

A[F−1]

of the constant sheaf A at the generic �lter F , a sheaf with

Fp = A \ p.

The rings A and A share all �rst-order properties.

Remark. The analogous statement holds for A-modules M and
their mirror image M∼ = M[F−1].
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Unique features of the internal world

Internally to Sh(Spec(A)),
any non-invertible element of A∼ is nilpotent.

Miles Tierney. On the spectrum of a ringed topos. 1976.

A sheaf E of A∼-modules is quasicoherent if and only if, internally to Sh(Spec(A)), the set
E[f−1] is a∇f -sheaf for any f : A∼, where∇f ϕ :≡ (f invertible⇒ ϕ).
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Unique features of the internal world

Internally to Sh(Spec(A)),
any non-invertible element of A∼ is nilpotent.

If A is reduced, then furthermore A∼ is

reduced,
a �eld in that non-invertible elements are zero,
anonymously Noetherian in that any ideal is not not
�nitely generated,
and has ¬¬-stable equality: ¬¬(f = 0) =⇒ f = 0
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Generic freeness

Let A be a reduced ring and B,M as follows:

M
�nitely

generated

A
of �nite type

// B

Theorem. If 1 6= 0 in A, there exists f 6= 0 in A such that
1 B[f −1] and M[f −1] are free modules over A[f −1],
2 A[f −1]→ B[f −1] is of �nite presentation, and
3 M[f −1] is �nitely presented as a module over B[f −1].

Constructive version. If zero is the only element f ∈ A such
that 1 , 2 , and 3 , then 1 = 0 ∈ A.
Proof. The claim is the translation of the fact that, internally
in Sh(Spec(A)), it is not not the case that

1 B∼ and M∼ are free over A∼,
2 A∼ → B∼ is of �nite presentation, and
3 M∼ is �nitely presented as a module over B∼.
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Assume that B∼ is generated by (x iyj)i,j≥0 as an A∼-module. It’s
not not the case that either some generator can be expressed as
a linear combination of others with smaller index, or not.

1 2 3

4 5 6
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Outlook

Are there general guidelines for when using the internal
perspective pays o�?
What about �ner topologies (constructible, étale, fppf, . . . )?
How should synthetic algebraic geometry be extended?
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