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.
Quick summary

By employing the internal language of toposes in various ways,
you can pretend that:

Sheaves of modules are plain modules.

Schemes are sets:
P = {[x0:x:%]|x%#0Vx #0Vx #0}.

Reduced rings are Noetherian and in fact fields.
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What is a topos?

Formal definition

A topos is a category which has finite limits, is cartesian closed
and has a subobject classifier.

Motto
A topos is a category which is sufficiently rich to support an
internal language.

Examples
m Set:  the category of sets
m Sh(X): the category of set-valued sheaves on a space X
m Zar(S): the big Zariski topos of a base scheme S
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Universal localisation

Recall
A ring is local iff it has precisely one maximal ideal.
A homomorphism is local iff it reflects invertibility.

Let A be aring. Is there a free local ring A — A’ over A?

local

A

local

No, if we restrict to Set. Yes, if we allow a change of topos:
Then A — A™ is the universal localisation.
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The internal language of a topos

The internal language of a topos £ allows to

construct objects and morphisms of the topos,
formulate statements about them and
prove such statements

in a naive element-based language:

externally internally to £

object of £ set

morphism in &  map of sets
monomorphism injective map
epimorphism surjective map
group object group
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The internal language of Sh(X)

Let X be a topological space. Then we recursively define
Ul ¢ (“pholdson U”)
for open subsets U C X and formulas .
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The internal language of Sh(X)

Let X be a topological space. Then we recursively define

Ul ¢ (“pholdson U”)
for open subsets U C X and formulas .

Ukf=g:F == fluv=glveFU)

UEpAY = UEyandU =9

UkepVvy = LLpeort =7

there exists a covering U = | J; U; s. th. for all i:

U gor Ui =4

UEep=1 <= forallopen V C U: V |= ¢ implies V |= ¢

UEVf:F.o(f) <= forall sections f € F(V),V C U: V = ¢(f)

U = 3f : F. p(f) <= there exists a covering U = | J; U; s. th. for all i:
there exists f; € F(U;) s.th. U; = ¢(f})
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The internal language of Sh(X)

IfU=J,U,thenU = ¢iftf U |= ¢ forall i.

Soundness

If U = ¢ and if ¢ implies 1) constructively, then U = 1.
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The internal language of Sh(X)

IfU=J,U,thenU = ¢iftf U |= ¢ forall i.

Soundness

If U = ¢ and if ¢ implies 1) constructively, then U = 1.

no ¢ V ¢y, no -~y = ¢, no axiom of choice
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The internal language of Sh(X)

Locality
IfU=J,U,thenU = ¢iftf U |= ¢ forall i.

Soundness
If U = ¢ and if ¢ implies 1) constructively, then U = 1.

no ¢ V ¢y, no -~y = ¢, no axiom of choice

A first glance at the constructive nature
mUEf=0 iff fly =0 € F(U).
m U =~ (f =0) iff f = 0 on a dense open subset of U.
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The little Zariski topos

Let A be a ring. Its spectrum Spec(A) is
m generated by opens D(f) for f € A
m subject to Spec(A) = |J,D(f}) iff 1 = ), gf; for some g;.

The little Zariski topos of A is the category Sh(Spec(A)) of
set-valued sheaves on its spectrum. It contains a ring object A™
with A~(D(f)) = A[f '], called the structure sheaf.

Motto (to be amended)
The structure sheaf A~ is a reification of all of the stalks A,.

For instance, all stalks A, are integral domains if and only if
Spec(A) = "A™ is an integral domain™.

Using the internal language of toposes in commutative algebra 8/13



Internal language of toposes The little Zariski topos Outlook Transfer principles Unique features Generic freeness

Transfer principles

Theorem

The structure sheaf A™ inherits all first-order properties of A
which are stable under localisation.

Proof. The structure sheaf A™ is the localisation

AlF]

of the constant sheaf A at the generic filter F, a sheaf with
F, =A\p.

The rings A and A share all first-order properties.

Remark. The analogous statement holds for A-modules M and
their mirror image M~ = M[F'].
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Unique features of the internal world

Internally to Sh(Spec(A)),

any non-invertible element of A™ is nilpotent.

ON THE SPECTRUM OF A RINGED TOPOS 209

For completeness, two further remarks should be added to this treatment
of the spectrum. One is that in E the canonical map A4 —T,(LA) is an
isomorphism—i.e., the representation of A in the ring of “global sections”
of LA is complete. The second, due to Mulvey in the case E =S, is that
in Spec(E, A) the formula

A(x € U(LA))= In(x" = 0)

is valid. This is surely important, though its precise significance is still
somewhat obscure—as is the case with many such nongeometric formulas.
In any case, calculations such as these are easier from the point of view of
the Heyting algebra of radical ideals of A, and hence will be omitted here.

Miles Tierney. On the spectrum of a ringed topos. 1976.

A sheaf £ of A~-modules is quasicoherent if and only if, internally to Sh(Spec(A)), the set
E[f~"]is a V-sheaf for any f : A™, where V¢ := (f invertible = ¢).
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Unique features of the internal world

Internally to Sh(Spec(A)),

any non-invertible element of A™ is nilpotent.

If A is reduced, then furthermore A™ is

m reduced,
m a field in that non-invertible elements are zero,

m anonymously Noetherian in that any ideal is not not
finitely generated,

m and has —~—-stable equality: =—(f =0) = f =0
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M

finitely
generated

Generic freeness

Let A be a reduced ring and B, M as follows: T
of finite type

Theorem. If 1 # 0 in A, there exists f # 0 in A such that

B[f~'] and M[f '] are free modules over A[f 1],
A[f~'] — B[f ] is of finite presentation, and
M([f '] is finitely presented as a module over B[f '].
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M

finitely
generated

Generic freeness

Let A be a reduced ring and B, M as follows: T
of finite type

Theorem. If 1 # 0 in A, there exists f # 0 in A such that

B[f~'] and M[f '] are free modules over A[f 1],
A[f~'] — B[f ] is of finite presentation, and
M([f '] is finitely presented as a module over B[f '].

Constructive version. If zero is the only element f € A such
that i, |, and B, then1 =0 € A.
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M

finitely
generated

Generic freeness

Let A be a reduced ring and B, M as follows: T
of finite type

Theorem. If 1 # 0 in A, there exists f # 0 in A such that

B[f~'] and M[f '] are free modules over A[f 1],
A[f~'] — B[f ] is of finite presentation, and
M([f '] is finitely presented as a module over B[f '].

Constructive version. If zero is the only element f € A such
that i, |, and B, then1 =0 € A.

Proof. The claim is the translation of the fact that, internally
in Sh(Spec(A)), it is not not the case that

B~ and M™ are free over A™,
A~ — B is of finite presentation, and
M~ is finitely presented as a module over B™.
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Assume that B~ is generated by (x'y/); ;o as an A~-module. It’s
not not the case that either some generator can be expressed as
a linear combination of others with smaller index, or not.

1N () (3)
L/ \&/ 3/
a) (=) (&)
% \y/ N
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Outlook

m Are there general guidelines for when using the internal
perspective pays off?
m What about finer topologies (constructible, étale, fppf, ...)?

m How should synthetic algebraic geometry be extended?
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