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Aim

“May I remind you that the participants at Logic Colloquium
cover most areas of logic, and we expect to achieve the goal of
increasing the overall level of understanding across logic. ”

Paola D’Aquino, LC 2023 Programme Chair
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Outline of the talk

Part I: Two-dimensional Categorical Logic

▶ Review of Categorical Logic

▶ Categorification

Part II: The differential λ-calculus

▶ Syntax

▶ A 1-dimensional model

Part III: A 2-dimensional model

Based on collaborations with Fiore, Hyland, Winskel.



4

Part I: Categorical Logic
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Key ideas of Categorical Logic (Lawvere)

1. A theory T can have models in categories E , where E ̸= Set, e.g.

M ×M
m // M 1

e // M

M ×M ×M
m×1M //

1M×m
��

M ×M

m
��

M ×M m
// M

M
1M×e

//

1M ..

M ×M

m
��

M
e×1Moo

1MppM

2. A theory T can be seen as a category Syn(T ), cf. Lindenbaum algebra

3. Models can be seen as (structure-preserving) functors M : Syn(T ) → E
4. Model homomorphisms / elementary embeddings can be seen as natural

transformations

Note: (3) + (4) ⇒ Mod[T , E ] ≃ [Syn(T ), E ]
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Fundamental theorems

▶ Completeness Theorems (Gödel, Deligne, Joyal)

▶ Duality theorems (Lawvere, Gabriel & Ulmer, Makkai, Awodey & Forssell, Frey,
. . . )

Syn(T ) ≃ mod(T )op

▶ Conceptual Completeness (Makkai, . . . ): for F :T → T ′

Mod(T ′,Set)
≃
F∗
// Mod(T ,Set) ⇒ T

≃
F
// T ′

▶ Characterisations of categories of models

See: Lurie, Categorical Logic, 2018.
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Points of contact

1. Set Theory
▶ Forcing and Boolean-valued models as sheaves, Algebraic Set Theory

2. Model Theory
▶ Imaginaries & groupoids, AEC, model theory of modules

3. Proof Theory
▶ Type theory, identity of proofs

4. Computability Theory
▶ Realizability toposes

5. Theoretical Computer Science
▶ Denotational semantics

6. Philosophical Logic
▶ Constructivism, structuralism

Note: Applications both ways, cf. Kelly & Mac Lane’s coherence theorems (1971)
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Categorification

The art of replacing set-based structures with category-based structures.

Example

▶ commutative monoid (M, · , 1)
▶ symmetric monoidal category (E ,⊗, I ).

Why?

▶ To obtain more powerful invariants (e.g. Khovanov homology)

▶ Applications in algebra (e.g. Kazhdan-Lusztig conjecture)

▶ Stacks
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2-categories

We can apply categorification to the notion of a category itself.

Definition. A 2-category K consists of:

▶ A class of objects Ob(K )

▶ For each A,B ∈ Ob(K ), a category K(A,B)

▶ For each A,B,C ∈ Ob(K ), composition functors K(B,C )×K(A,B) → K(A,C )

▶ For each A ∈ Ob(K ), an object 1A of K(A,A)

▶ . . .

Idea:

▶ write f ∈ K(A,B) as f :A → B

▶ write ϕ : f ⇒ g as a 2-cell A

f

''

g

77⇓ϕ B
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Examples

Basic examples

▶ Cat: categories, functors, natural transformations

▶ Gpd: groupoids, functors, natural isomorphisms

2-categories of categories with structure

▶ FinProd: categories with finite products, product-preserving functors, natural
transformations

▶ MonCat: monoidal categories, lax monoidal functors, monoidal transformations

Standard constructions of new categories from old extend.
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Two-dimensional category theory (I)

Theorem. (Kelly, Street, Power, Hyland, Lack, Weber, Garner, Gurski, Shulman,
Bourke, . . . )

▶ All of ordinary category theory carries over to 2-categories

Issues

▶ More subtle: strict vs weak

▶ Coherence pervades the subject

▶ New concepts emerge

▶ Unavoidable

See: Lack, A 2-categories companion, 2007.
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Two-dimensional categorical logic (II)

0-dimensional categorical logic

JΓ ⊢ AK given by JΓK ≤ JAK

1-dimensional categorical logic

JΓ ⊢ a :AK given by JaK : JΓK → JAK

2-dimensional categorical logic

JΓ ⊢ ϕ : a ⇒ bK given by JΓK

JaK

%%

JbK

99
⇓ JϕK JAK



13

Two-dimensional categorical logic (III)

▶ Regularity and exactness (Bourke & Garner, Lack and Tendas)

▶ 2-toposes (Street, Weber, Shulman)

▶ 2-fibrations (Hermida)

▶ Coherence and rewriting (Gurski & Osorno, . . . )

▶ Computer-assisted formalisation of proofs (Bar & Kissinger & Vicary)

Challenge: What are the key notions?

▶ Some guidance from HoTT / Univalent Foundations / ∞-category theory
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Part II: The differential λ-calculus
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Differential λ-calculus (I)

Extension of simply-typed λ-calculus with a differential operator [Ehrhard & Regnier].

Product types

a :A b :B

pair(a, b) :A× B

c :A× B

π1(c) :A

c :A× B

π2(c) :B

Function types
x :A ⊢ b :B

(λx :A)b :BA

f :BA a :A

app(f , a) :B
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Differential λ-calculus (II)

Differentiation rule

Γ ⊢ f :BA ∆ ⊢ a :A

Γ,∆ ⊢ Df · a :BA
(∗)

Idea: Let f :A → B be differentiable. For x ∈ A, we have a linear map (the Jacobian)

f ′(x) : A −→ B
a 7−→ f ′(x) · a

Transposing, for a ∈ A, we have a (generally) non-linear map

f ′(−) · a : A −→ B
x 7−→ f ′(x) · a

Rule in (∗) corresponds to this.
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Differential λ-calculus (III)

β-rule
app((λx :A)b, a) = b[a/x ] :B

Differential β-rule

D
(
(λx :A)b

)
· a = λx

(
∂b

∂x
· a
)
,

Here ∂b
∂x · a is defined by structural induction on b, to express chain rule, product rule,

etc..

(Need to fix a commutative rig R and allow linear combinations of λ-terms)

Applications. New tool to study λ-terms: Taylor series expansion!
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Differential λ-calculus (IV)

Concrete models

▶ Köthe spaces (some topological vector spaces) [Ehrhard]

▶ Finiteness spaces [Ehrhard]

▶ Relational model [Blute, Cockett, Seely], [Ehrhard], [Hyland]

Categorical axiomatisations. Differential categories and variants

▶ [Blute, Cockett, Seely]

▶ [Fiore]

▶ [Blute, Cockett, Seely and Lemay]

▶ [Manzonetto]
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The category of relations

Define the category Rel as follows.

▶ Objects: sets

▶ Morphisms: relations
F :A → B is F ⊆ B × A

▶ Composition: for A
F // B

G // C we define

(G ◦ F )(c , a) = (∃b ∈ B) G (c , b) ∧ F (b, a)

▶ Identity: define 1A :A → A by

1A(b, a) =

{
⊤ if a = b ,
⊥ otherwise.
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Structure of Rel

▶ Symmetric monoidal structure: A× B

▶ Closed structure (internal hom): A⊸ B = B × A, since

Rel[X × A,B] = P(B × X × A)
∼= P(B × A× X )
= Rel[X ,A⊸ B]

▶ Products: A+ B, since

Rel[X ,A]× Rel[X ,B] = P(A× X )× P(B × X )
∼= P((A+ B)× X )
= Rel[X ,A+ B]

▶ Terminal object: 0, since Rel[X , 0] ∼= 1.
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The exponential modality

For A ∈ Rel, define

!A = free commutative monoid on A

= set of multisets α = [a1, . . . , an] of elements of A

This is a comonad on Rel, with

▶ dA : !A → A, defined by dA(a, α) ⇔ [a] = α

▶ pA : !A →!!A, defined by pA([α1, . . . , αn], α) ⇔ α1 + . . .+ αn = α

Seely equivalences

▶ !(A+ B) ∼= !A×!B and !0 = 1

The category Rel is a (degenerate) model of classical linear logic.
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The Kleisli category

Define the category Rel! as follows:

▶ Objects: sets

▶ Morphisms: relations F : !A → B

▶ Composition: given F : !A → B and G : !B → C , consider

!A
pA // !!A

!F // !B
G // C

▶ Identity: dA : !A → A.

Idea:

▶ Rel = sets and linear maps,

▶ Rel! = sets and non-linear maps
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Structure of Rel!

▶ Products: A+ B, since

Rel! [X ,A]× Rel! [X ,B] = Rel [!X ,A]× Rel [!X ,B]

∼= Rel[!X ,A+ B]

▶ Exponentials: BA =!A⊸ B, since

Rel! [X + A,B] = Rel [!(X + A),B]

∼= Rel [!X×!A,B]

∼= Rel [!X , !A⊸ B]

∼= Rel [!X , !A⊸ B]
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Differential structure (I)

Want:
F : !A → B

dF : !A× A → B

Idea: Differential categories [Blute, Cockett, Seely]

▶ it suffices to have ∂A : !A× A →!A. Then dF is obtained as

!A× A
∂A // !A

F // B

▶ it suffices to have d̄A :A →!A. Then dF is obtained as

!A× A
1×d̄A // !A×!A

c̄A // !A
F // B

Axioms corresponding to constant rule, product rule, chain rule, . . .
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Differential structure (II)

For F : !A → B, define dF : !A× A → B by

dF (b, (α, a)) ⇔ F (b, α+ [a]) .

Note: Shift of one from α to α+ [a]. This is from d̄A :A →!A given by

dA(α, a) ⇔ α = [a]

Theorem. [BCS], [Ehrhard], [Hyland]

▶ Rel! is a model of the simply-typed differential λ-calculus.
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Example

Say F : !A → B is constant if there is Y ⊆ B such that

!A
F //

wA
��

B

1
Y

??

in Rel. This means

F (b, α) ⇔ wA(∗, α) and Y (b, ∗) ⇔ α = [ ] and b ∈ Y

Proposition. If F constant, then dF : !A× A → B is ∅.
Proof. dF (b, (α, a)) ⇔ F (b, α+ [a]) ⇔ α+ [a] = [ ] and b ∈ Y ⇔ ⊥
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Part III: A 2-categorical model
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Profunctors

A categorification of relations [Bénabou], [Lawvere].

Definition. Let A, B be small categories. A (B,A)-profunctor is a functor

F :Bop × A → Set

Idea:

▶ F (b, a) is the set of ‘proofs’ that b and a are related.

▶ A matrix of sets F (b, a), together with actions

F (b, a)× A[a, a′] → F (b, a′) , B[b′, b]× F (b, a) → F (b′, a)

Example. For a small category A, we have

A[−,−] :Aop × A → Set .
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The 2-category of profunctors

Define the 2-category Prof as follows.

▶ Objects: small categories

▶ Morphisms: profunctors

F :A → B is F :Bop × A → Set

▶ 2-cells: natural transformations

▶ Composition: for A
F // B

G // C define

(G ◦ F )(c, a) =
(∑

b∈B
G (c , b)× F (b, a)

)
/∼

▶ Identity: define 1A :A → A by

1A(b, a) = A[b, a]
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The structure of Prof

▶ Symmetric monoidal structure: A× B

▶ Closed structure (internal hom): A⊸ B =def B × Aop, since

Prof[X × A,B] ∼= Prof[X ,A⊸ B]

▶ Binary products: A+ B, since

Prof[X ,A]× Prof[X ,B] ∼= Prof[X ,A+ B]

▶ Terminal object: 0, since
Prof[X , 0] ∼= 1

All this is now in a 2-categorical sense.
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The exponential modality

For A ∈ Prof, define !A = free symmetric monoidal category on A as follows.

▶ Objects: (a1, . . . , an), where n ∈ N and ai ∈ A,

▶ Morphisms: (σ, f1, . . . fn) : (a1, . . . , an) → (b1, . . . , bm), only if n = m, with σ ∈ Sn
and fi : ai → bσ(i).

This is a pseudocomonad on Prof, with

▶ dA : !A → A defined by dA(a, α) =!A[α, (a)]

▶ pA : !A →!!A defined by pA((α1, . . . , αn), α) =!A[α, α1 ⊕ . . .⊕ αn]

Seely equivalences

▶ !(A+ B) ≃ !A×!B (equivalences, not isomorphisms) and !0 ∼= 1
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The Kleisli 2-category

Define the 2-category Prof ! as follows.

▶ Objects: small categories

▶ Morphisms: profunctors F : !A → B

▶ 2-cells: natural transformations

▶ Composition: for F : !A → B and G : !B → C , consider

!A
pA // !!A

!F // !B
G // C

▶ Identity: dA : !A → A.

Idea:

▶ Prof = categories and linear maps

▶ Prof ! = categories and non-linear maps
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Structure of Prof !

In analogy with the relational model, we have:

Theorem. The 2-category Prof ! is cartesian closed.

This means that, for F :X × A → B, there is λ(F ) :X → BA and a 2-cell

X × A

λ(F )×1A
��

F

��
∼=

BA × A app
// B

Note. This 2-cell witnesses the β-rule of the λ-calculus:

app
(
(λx :A)F , x

) ∼= F
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Towards differentiation: Joyal’s analytic functors

Consider A = B = 1. Then

F : 1 → 1 in Prof ! = F : !1 → 1 profunctor

= F : 1op×!1 → Set functor

= F :P → Set functor

where P is the category of natural numbers and permutations.

The analytic functor associated to F is the functor F̂ :Set → Set defined by

F̂ (X ) =
∑
n∈N

F (n)× X n

Sn

A categorification of exponential power series.
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Differentiation of analytic functors

Let F :P → Set be a symmetric sequence. Then F ′(n) = F (n + 1). So

F̂ ′(X ) =
∑
n∈N

F (n + 1)× X n

Sn

Compare with

f (x) =
∞∑
n=0

fn
xn

n!
⇝ f ′(x) =

∞∑
n=0

fn+1
xn

n!

We will generalise this to any F : !A → B in Prof !
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Differential structure

Differentiation. For F : !A → B, define dF : !A× A → B by

dF (b, (α, a)) = F (b, α⊕ [a])

Note: Shift by one.

For a ∈ A, define ∂
∂aF : !A → B by(

∂

∂a
F

)
(b, α) = F (b, α⊕ [a])
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Differential Calculus

Theorem.

1. [Symmetry rule] ∂
∂a′

∂
∂aF

∼= ∂
∂a

∂
∂a′F

2. [Sum rule] ∂
∂a(F + G ) ∼= ∂

∂a(F ) +
∂
∂a(G )

3. [Product rule] ∂
∂a(F · G ) ∼=

(
∂
∂aF

)
· G + F ·

(
∂
∂aG

)

4. [Chain rule] ∂
∂a(G ◦ F ) ∼=

(∑
b∈B

(
∂
∂b (G )

)
◦ F · ∂

∂a(F )
)
/≃
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The 2-categorical model

Theorem

▶ Prof ! is a 2-categorical model of the simply-typed differential λ-calculus.

Note: This comes from properties of d̄A :A →!A, defined by

d̄A(α, a) =!A[α, (a)]
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Challenges of categorification

1. Distributivity vs pseudo-distributivity
▶ Model is Rel is based on interaction between P and !
▶ Model in Prof is based on interaction between Psh and !

2. Kleisli construction for pseudomonads

3. Pseudonaturality of equivalences for cartesian closure

4. Some foundational results still not in place
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Related and ongoing work

Part of wider investigations on 2-dimensional models of linear logic:

▶ Coherence theorems (Fiore & Saville, Olimpieri)

▶ Connections with intersection type systems (Olimpieri)

▶ Fixpoint operators (Galal)

▶ Variants (Fiore & Galal & Paquet)

▶ Pseudocommutativity (Slattery)

▶ Foundations of 2-categorical models of linear logic (Miranda)


