Univalent Foundations of Mathematics and Homotopical Algebra

Nicola Gambino
School of Mathematics, University of Leeds

Homotopical Algebra and Geometry
University of Lancaster
April 10th, 2015

The univalent foundations of mathematics programme

Origin:

- formulated around 2009 by Vladimir Voevodsky
- related to Homotopy Type Theory

Motivation:

- to facilitate computer-assisted verification of proofs

Main feature: it combines ideas from

- type theory
- homotopy theory

Overview of the talk

Part I: Simplicial sets

- simplicial sets
- univalent fibrations
- simplicial univalence

Part II: Univalent foundations

- type theory
- the univalence axiom
- univalent foundations

Part I: Simplicial sets

Simplicial sets as a category

SSet $=$ category of simplicial sets.
SSet is a presheaf topos \Rightarrow

- all small limits and colimits exist
- it is locally cartesian closed: all slices are cartesian closed. Equivalently:

Simplicial sets as a model category

SSet has a model structure $(\mathcal{W}, \mathcal{F}, \mathcal{C})$, where

- $\mathcal{W}=$ weak homotopy equivalences
- $\mathcal{F}=$ Kan fibrations
- $\mathcal{C}=$ monomorphisms

In particular, every diagram

has a diagonal filler.
The fibrant objects are exactly the Kan complexes.
The model structure is cofibrantly generated and (left and right) proper:

- right proper $=$ pullback along fibrations preserves weak equivalences
- left proper $=$ pushout along cofibrations preserves weak equivalences

Homotopy theory in simplicial sets

The rich structure of SSet allows us to internalize a lot of constructions.

Example. Let $p: E \rightarrow B$ a fibration. There is a fibration

$$
(s, t): \text { Weq }(E) \rightarrow B \times B
$$

such that the fiber over (x, y) is

$$
\operatorname{Weq}(E)_{x, y}=\left\{w: E_{x} \rightarrow E_{y} \mid w \in \mathcal{W}\right\}
$$

Note. Given $p: E \rightarrow B$, we have

Univalent fibrations

Definition. A fibration $p: E \rightarrow B$ is said to be univalent if

$$
j_{p}: \operatorname{Path}(B) \rightarrow \operatorname{Weq}(E)
$$

is a weak equivalence.
Idea. Weak equivalences between fibers are 'witnessed' by paths in the base.
Proposition (Kapulkin, Lumsdaine and Voevodsky). A fibration $p: E \rightarrow B$ is univalent if and only if for every fibration $p^{\prime}: E^{\prime} \rightarrow B^{\prime}$, the space of squares

such that

$$
\left(u, p^{\prime}\right): E^{\prime} \rightarrow B^{\prime} \times_{B} E
$$

is a weak equivalence, is either empty or contractible.
Idea. Essential uniqueness of u, v (when they exist).

The generic Kan fibration

Fix an inaccessible cardinal κ. There exists a fibration

$$
\pi: \tilde{U} \rightarrow U
$$

that weakly classifies fibrations with fibers of cardinality $<\kappa$, i.e. for every such $p: E \rightarrow B$ there exists a pullback diagram

Note. Given $x: 1 \rightarrow U$, we can form a pullback

We think of x as the 'name' of the Kan complex $\operatorname{El}(x)$.

Simplicial univalence

Theorem (Voevodsky). The generic fibration $\pi: \tilde{U} \rightarrow U$ is univalent.
Several proofs:

- Voevodsky
- Lumsdaine, Kapulkin, Voevodsky (using simplifications by Joyal)
- Moerdijk (using fiber bundles)
- Cisinski (general setting)

Note. The fibration $\pi: \tilde{U} \rightarrow U$ is therefore
versal \& univalent
for the class of κ-small fibrations.

The universe is Kan

Theorem. The codomain of $\pi: \tilde{U} \rightarrow U$ is a Kan complex.
Proof. Show

This reduces to the problem of extending fibrations along horn inclusions:

which can be done using the theory of minimal fibrations.

Note. A similar unfolding is possible for the univalence of $\pi: \tilde{U} \rightarrow U$.

Part II: Univalent Foundations

General idea

Type theories are formal systems.
They have axioms for manipulating types and their elements:

$$
\text { A type, } \quad a \in A
$$

Many type theories in the literature.
Key fact. The axioms of Martin-Löf type theories correspond quite closely to a fragment of the structure of SSet.

Original inspiration for Martin-Löf type theories comes from proof theory and theoretical computer science (cf. implementation in Coq, Agda).

We have axioms for

$$
\begin{gathered}
0, \quad 1, \quad \ldots, \quad \mathbb{N} \\
X \times Y, \quad X+Y, \quad Y^{X}, \quad \ldots \\
\operatorname{ld}_{X}(x, y), \quad \sum_{b \in B} E(b), \quad \prod_{b \in B} E(b), \quad U
\end{gathered}
$$

A dictionary

Simplicial sets

Kan complexes

$$
x: 1 \rightarrow X
$$

p is a path from x to y in X
fibration $p: E \rightarrow B$

$$
\text { total space of } p: E \rightarrow B
$$

space of sections of $p: E \rightarrow B$
base of the generic fibration $\pi: \tilde{U} \rightarrow U$
the generic fibration $\pi: \tilde{U} \rightarrow U$

Type Theory

$$
\begin{gathered}
\text { Types } \\
x \in X \\
p \in \operatorname{Id}_{x}(x, y) \\
b \in B \vdash E(b) \text { type } \\
\sum_{b \in B} E(b) \\
\prod_{b \in B} E(b) \\
\text { type universe } U \\
x \in U \vdash E \mathrm{El}(x) \text { type }
\end{gathered}
$$

Note. We do not have counterparts for all the structure of simplicial sets. This is a limitation, but ensures good proof-theoretical and computational properties.

Type theory and homotopical algebra (I)

Theorem (Awodey and Warren). The axioms for identity types can be stated equivalently as follows:

1. For every type X and $x, y \in X$, we have a type

$$
\operatorname{ld}_{x}(x, y)
$$

2. For every X, the diagonal map $\Delta_{X}: X \rightarrow X \times X$ has a factorisation

$$
X \xrightarrow{i} \sum_{x, y \in X} \operatorname{Id}_{X}(x, y) \xrightarrow{p} X \times X
$$

3. Every commutative diagram of the form

has a diagonal filler.

Type theory and homotopical algebra (II)

Theorem (Gambino and Garner). There is a weak factorization system ($\mathcal{L}, \mathcal{R})$, where

$$
\mathcal{L}=\text { functions with LLP w.r.t. every } \pi_{1}: \sum_{b \in B} E(b) \rightarrow B .
$$

Theorem (Voevodsky). The category SSet is a model of Martin-Löf type theory and of the Univalence Axiom.

Theorem (Garner and van den Berg; Lumsdaine). Every type X determines a weak ∞-groupoid $\Pi_{\infty}(X)$ (in the sense of Batanin-Leinster) in which

- objects are elements of X,
- 1-cells $p: x \rightarrow y$ are $p \in \operatorname{Id}_{x}(x, y)$,
- 2-cells $\alpha: p \rightarrow q$ are $\alpha \in \operatorname{ld}_{\mathrm{Id}_{X}(x, y)}(p, q)$,
- ...

Univalent foundations of mathematics

These connections suggest to:

1. use type theory as a language for speaking about homotopy types,
2. develop mathematics using this language; in particular

$$
\text { sets }={ }_{\text {def }} \text { discrete homotopy types, }
$$

3. add axioms to type theory motivated by homotopy theory

Homotopy-theoretic notions in type theory

- A type X is said to be contractible if the type

$$
\text { iscontr }(X)=\operatorname{def} \sum_{x \in X} \prod_{y \in X} \operatorname{Id}_{X}(x, y)
$$

is inhabited.

- The homotopy fiber of $f: X \rightarrow Y$ at $y \in B$ is the type

$$
\operatorname{hfiber}(f, y)=\operatorname{def} \sum_{x \in X} \operatorname{Id}_{Y}(f x, y)
$$

- We say that a function $f: X \rightarrow Y$ is a weak equivalence if for every $y \in Y$, the homotopy fiber of f at y is contractible.
- For types X and Y, there is a type

$$
\operatorname{Weq}(X, Y)
$$

of weak equivalences from X to Y.

The hierarchy of homotopy levels in type theory

Definition. We say that a type X has

- homotopy level 0 if it is contractible,
- homotopy level $\mathbf{n}+\mathbf{1}$ if $\mathrm{Id}_{x}(x, y)$ is an n-type for all $x, y \in X$.

Example. Let X be a type.

$$
\begin{aligned}
X \text { has level } 1 & \Leftrightarrow \text { for all } x, y \in X, \operatorname{Id} x(x, y) \text { is contractible } \\
& \Leftrightarrow \quad \text { if } X \text { is inhabited, then it is contractible. }
\end{aligned}
$$

Idea:

Level	0	1	2	3
Types	$*$	$\varnothing,\{*\}$	sets	groupoids
Mathematics		"logic"	"algebra"	"category theory"

The univalence axiom

The type universe U is such that if $x \in U$ then $\mathrm{EI}(x)$ is a type.

Idea.

Note. For $x, y \in \mathrm{U}$, we have

- the type of paths from x to $y, \operatorname{Idv}(x, y)$
- the type of weak equivalences from $\mathrm{EI}(x)$ to $\mathrm{El}(y), \mathrm{Weq}(\mathrm{El}(x), \mathrm{El}(y))$ and there is a canonical map

$$
j_{x, y}: \operatorname{Id}(x, y) \rightarrow \operatorname{Weq}(\operatorname{El}(x), \operatorname{El}(y)) .
$$

Univalence Axiom. For all $x, y \in \mathrm{U}$, the map $j_{x, y}$ is a weak equivalence.

Remarks on the univalence axiom

The univalence axiom is valid in SSet by the univalence of $\pi: \tilde{U} \rightarrow U$.

This axiom has several interesting aspects from a logical point of view:

- it forces the type universe U not to be of level 2 (the level of "sets")
- it is not valid in the set-theoretical model
- it allows us to treat isomorphic structures as if they were equal
- it has useful consequences, such as function extensionality (Voevodsky)
- it gives the 'Rezk completion' of a category (Ahrens, Kapulkin, Shulman)

Further aspects

- Synthetic homotopy theory (Shulman, Lumsdaine, Licata, Brunerie, ...)
- Higher inductive types (Shulman, Lumsdaine)
- Homotopy-initial algebras in type theory (Awodey, Gambino and Sojakova)
- Other models of univalent foundations (Coquand et al., Shulman, Cisinski)
- Univalent maps in ($\infty, 1$)-categories (Gepner and Kock)

