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The univalent foundations of mathematics programme

Origin:

I formulated around 2009 by Vladimir Voevodsky

I related to Homotopy Type Theory

Motivation:

I to facilitate computer-assisted verification of proofs

Main feature: it combines ideas from

I type theory

I homotopy theory
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Overview of the talk

Part I: Simplicial sets

I simplicial sets

I univalent fibrations

I simplicial univalence

Part II: Univalent foundations

I type theory

I the univalence axiom

I univalent foundations
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Part I: Simplicial sets
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Simplicial sets as a category

SSet = category of simplicial sets.

SSet is a presheaf topos ⇒

I all small limits and colimits exist

I it is locally cartesian closed: all slices are cartesian closed. Equivalently:

X
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��
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Simplicial sets as a model category

SSet has a model structure (W,F , C), where

I W = weak homotopy equivalences

I F = Kan fibrations

I C = monomorphisms

In particular, every diagram

X

i

��

// E

p

��

Y //

??

B

where

{
i ∈ W ∩ C
p ∈ F

has a diagonal filler.

The fibrant objects are exactly the Kan complexes.

The model structure is cofibrantly generated and (left and right) proper:

I right proper = pullback along fibrations preserves weak equivalences

I left proper = pushout along cofibrations preserves weak equivalences
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Homotopy theory in simplicial sets

The rich structure of SSet allows us to internalize a lot of constructions.

Example. Let p :E → B a fibration. There is a fibration

(s, t) : Weq(E)→ B × B

such that the fiber over (x , y) is

Weq(E)x,y = {w :Ex → Ey | w ∈ W }

Note. Given p :E → B, we have

B //

i

��

Weq(E)

(s,t)

��

Path(B) //

jp

66

B × B
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Univalent fibrations

Definition. A fibration p :E → B is said to be univalent if

jp : Path(B)→Weq(E)

is a weak equivalence.

Idea. Weak equivalences between fibers are ‘witnessed’ by paths in the base.

Proposition (Kapulkin, Lumsdaine and Voevodsky). A fibration p :E → B is
univalent if and only if for every fibration p′ :E ′ → B ′, the space of squares

E ′ //

p′

��

u // E

p

��

B ′
v
// B

such that
(u, p′) :E ′ → B ′ ×B E

is a weak equivalence, is either empty or contractible.

Idea. Essential uniqueness of u, v (when they exist).
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The generic Kan fibration

Fix an inaccessible cardinal κ. There exists a fibration

π : Ũ → U

that weakly classifies fibrations with fibers of cardinality < κ, i.e. for every such
p :E → B there exists a pullback diagram

E //

p

��

Ũ

π

��

B // U .

Note. Given x : 1→ U, we can form a pullback

El(x) //

��

Ũ

��

1
x
// U

We think of x as the ‘name’ of the Kan complex El(x).
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Simplicial univalence

Theorem (Voevodsky). The generic fibration π : Ũ → U is univalent.

Several proofs:

I Voevodsky

I Lumsdaine, Kapulkin, Voevodsky (using simplifications by Joyal)

I Moerdijk (using fiber bundles)

I Cisinski (general setting)

Note. The fibration π : Ũ → U is therefore

versal & univalent

for the class of κ-small fibrations.
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The universe is Kan

Theorem. The codomain of π : Ũ → U is a Kan complex.

Proof. Show

Λk
n

∀f //

i

��

U

∆[n]
∃f ′

LL

This reduces to the problem of extending fibrations along horn inclusions:

E //

p

��

?

��

Λk
n

i
// ∆[n]

which can be done using the theory of minimal fibrations.

Note. A similar unfolding is possible for the univalence of π : Ũ → U.
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Part II: Univalent Foundations
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General idea

Type theories are formal systems.

They have axioms for manipulating types and their elements:

A type , a ∈ A .

Many type theories in the literature.

Key fact. The axioms of Martin-Löf type theories correspond quite closely to a
fragment of the structure of SSet.

Original inspiration for Martin-Löf type theories comes from proof theory and
theoretical computer science (cf. implementation in Coq, Agda).

We have axioms for

0 , 1 , . . . , N

X × Y , X + Y , Y X , . . .

IdX (x , y) ,
∑
b∈B

E(b) ,
∏
b∈B

E(b) , U
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A dictionary

Simplicial sets Type Theory

Kan complexes Types

x : 1→ X x ∈ X

p is a path from x to y in X p ∈ IdX (x , y)

fibration p :E → B b ∈ B ` E(b) type

total space of p :E → B
∑

b∈B E(b)

space of sections of p :E → B
∏

b∈B E(b)

base of the generic fibration π : Ũ → U type universe U

the generic fibration π : Ũ → U x ∈ U ` El(x) type

Note. We do not have counterparts for all the structure of simplicial sets. This
is a limitation, but ensures good proof-theoretical and computational properties.
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Type theory and homotopical algebra (I)

Theorem (Awodey and Warren). The axioms for identity types can be stated
equivalently as follows:

1. For every type X and x , y ∈ X , we have a type

IdX (x , y) .

2. For every X , the diagonal map ∆X :X → X × X has a factorisation

X
i //

∑
x,y∈X IdX (x , y)

p
// X × X .

3. Every commutative diagram of the form

X

i

��

//
∑

b∈B E(b)

π1

��∑
x,y∈X IdX (x , y) // B .

has a diagonal filler.
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Type theory and homotopical algebra (II)

Theorem (Gambino and Garner). There is a weak factorization system (L,R),
where

L = functions with LLP w.r.t. every π1 :
∑
b∈B

E(b)→ B .

Theorem (Voevodsky). The category SSet is a model of Martin-Löf type
theory and of the Univalence Axiom.

Theorem (Garner and van den Berg; Lumsdaine). Every type X determines a
weak ∞-groupoid Π∞(X ) (in the sense of Batanin-Leinster) in which

I objects are elements of X ,

I 1-cells p : x → y are p ∈ IdX (x , y),

I 2-cells α : p → q are α ∈ IdIdX (x,y)(p, q),

I . . .
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Univalent foundations of mathematics

These connections suggest to:

1. use type theory as a language for speaking about homotopy types,

2. develop mathematics using this language; in particular

sets =def discrete homotopy types,

3. add axioms to type theory motivated by homotopy theory
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Homotopy-theoretic notions in type theory

I A type X is said to be contractible if the type

iscontr(X ) =def

∑
x∈X

∏
y∈X

IdX (x , y)

is inhabited.

I The homotopy fiber of f :X → Y at y ∈ B is the type

hfiber(f , y) =def

∑
x∈X

IdY (fx , y) .

I We say that a function f :X → Y is a weak equivalence if for every
y ∈ Y , the homotopy fiber of f at y is contractible.

I For types X and Y , there is a type

Weq(X ,Y )

of weak equivalences from X to Y .
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The hierarchy of homotopy levels in type theory

Definition. We say that a type X has

I homotopy level 0 if it is contractible,

I homotopy level n + 1 if IdX (x , y) is an n-type for all x , y ∈ X .

Example. Let X be a type.

X has level 1 ⇔ for all x , y ∈ X , IdX (x , y) is contractible

⇔ if X is inhabited, then it is contractible.

Idea:

Level 0 1 2 3

Types ∗ ∅ , {∗} sets groupoids

Mathematics “logic” “algebra” “category theory”
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The univalence axiom

The type universe U is such that if x ∈ U then El(x) is a type.

Idea.

El(x) //

��

∑
x∈U El(x)

π1

��

1
x

// U

Note. For x , y ∈ U, we have

I the type of paths from x to y , IdU(x , y)

I the type of weak equivalences from El(x) to El(y), Weq(El(x),El(y))

and there is a canonical map

jx,y : IdU(x , y)→Weq(El(x),El(y)) .

Univalence Axiom. For all x , y ∈ U, the map jx,y is a weak equivalence.
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Remarks on the univalence axiom

The univalence axiom is valid in SSet by the univalence of π : Ũ → U.

This axiom has several interesting aspects from a logical point of view:

I it forces the type universe U not to be of level 2 (the level of “sets”)

I it is not valid in the set-theoretical model

I it allows us to treat isomorphic structures as if they were equal

I it has useful consequences, such as function extensionality (Voevodsky)

I it gives the ‘Rezk completion’ of a category (Ahrens, Kapulkin, Shulman)
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Further aspects

I Synthetic homotopy theory (Shulman, Lumsdaine, Licata, Brunerie, . . . )

I Higher inductive types (Shulman, Lumsdaine)

I Homotopy-initial algebras in type theory (Awodey, Gambino and Sojakova)

I Other models of univalent foundations (Coquand et al., Shulman, Cisinski)

I Univalent maps in (∞, 1)-categories (Gepner and Kock)


