Homotopy Type Theory and Algebraic Model Structures (I)

Nicola Gambino

School of Mathematics University of Leeds

Topologie Algébrique et Applications

Paris, 2nd December 2016

Plan of the talks

Goal

analysis of the cubical set model of Homotopy Type Theory

By-products

- general method to obtain right proper algebraic model structures,
- a new proof of model structure for Kan complexes and its right properness, avoiding minimal fibrations.

Outline of this talk

Part I: Homotopy Type Theory

- Models of HoTT
- Quillen model structures
- Some issues

Part II: Uniform fibrations and the Frobenius property

- Algebraic weak factorization systems
- Uniform fibrations
- The Frobenius property

References

- C. Cohen, T. Coquand, S. Huber and A. Mörtberg Cubical Type Theory: a constructive interpretation of the univalence axiom arXiv, 2016.
- N. Gambino and C. Sattler Frobenius condition, right properness, and uniform fibrations arXiv, 2016.

Part I: Homotopy Type Theory

Homotopy Type Theory

 $\mathsf{HoTT} = \mathsf{Martin-L\"of's type theory} + \mathsf{Voevodsky's univalence axiom}$

Key ingredients:

- (1) substitution operation,
- (2) identity types,
- (3) Π-types,
- (4) a type universe,
- (5) univalence axiom.

We give a category-theoretic account of these.

Models of HoTT

Definition. A model of homotopy type theory consists of

- a category $\mathcal E$ with a terminal object 1,
- > a class Fib of maps, called *fibrations*,

subject to axioms (1)-(5).

Idea: the sequent

 $x: A \vdash B(x): type$

is interpreted as a fibration

$$B \\ \downarrow_p \\ A$$

Warning: issues of coherence will be ignored.

Models of HoTT: substitution

(1) Pullbacks of fibrations exist and are again fibrations.

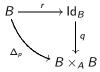
So for every map $\sigma: \mathcal{A}' \to \mathcal{A}$ we have

$$\operatorname{Fib}/A \xrightarrow{\sigma^*} \operatorname{Fib}/A'$$

Diagrammatically:

Models of HoTT: identity types

(2) For every fibration $p: B \rightarrow A$, there is a factorization



where $r \in {}^{\pitchfork}\mathsf{Fib}$ and $q \in \mathsf{Fib}$.

Models of HoTT: Π-types

(3) If $p: B \to A$ is a fibration, pullback along p has a right adjoint

$$\operatorname{Fib}/B \xrightarrow{p_*} \operatorname{Fib}/A$$

We call this the *pushforward* along *p*.

Note. For a fibration $q: C \rightarrow B$, global elements of $p_*(q)$ are sections of q:

Models of HoTT: universes

We now assume that there is a notion of 'smallness' for the maps of \mathcal{E} (e.g. given by a bound on the cardinality of fibers).

(4) There is a fibrant object U and a small fibration

$$\pi: \tilde{U} \to U$$

which weakly classifies small fibrations, i.e. for all such $p: B \rightarrow A$ there is a pullback

Note. We do not ask for uniqueness of the pullback.

Models of HoTT: univalence

(5) The fibration $\pi: \tilde{U} \to U$ is univalent.

In SSet, this holds if and only if for every small fibration $p: B \rightarrow A$, the space of squares

such that

$$B \to A \times_U \tilde{U}$$

is a weak equivalence, is contractible.

Question: how can we define examples of models of HoTT?

Quillen model categories

Fix \mathcal{E} with a Quillen model structure (Weq, Fib, Cof). Let TrivFib = Weg \cap Fib, TrivCof = Weg \cap Cof.

```
Question: Is (\mathcal{E}, Fib) a model of HoTT?
```

Let's look at the axioms for a model of HoTT:

- (1) : pullbacks exist and preserve fibrations.
- (2) : given by factorization as trivial cofibration followed by a fibration.

The Frobenius property

Lemma. Assume that, for a fibration $p: B \rightarrow A$, we have

$$\mathcal{E}/A \xrightarrow{p^*} \mathcal{E}/B$$

TFAE:

(i) p_* preserves fibrations

(ii) p^* preserves trivial cofibrations.

Definition. A wfs (L, R) is said to have the *Frobenius property* if pullback along R-maps preserves L-maps.

Remark. Assume that Cof = {monomorphisms}. TFAE:

- (i) The wfs (TrivCof, Fib) has the Frobenius property.
- (ii) The model structure is right proper, i.e. pullback of weak equivalences along fibrations are weak equivalences.

The fibration extension property

Assume $\mathcal{E} = \mathsf{Psh}(\mathbb{C})$, cofibrations \subseteq monos, fibrations are local (Cisinski).

Lemma. Assume $\pi: \tilde{U} \to U$ classifies small fibrations. Then TFAE:

(i) the universe U is fibrant,

(ii) small fibrations can be extended along trivial cofibrations, i.e.

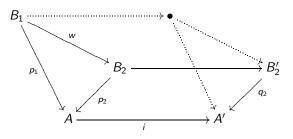
(iii) small fibrations can be extended along generating trivial cofibrations.

We call (ii) the fibration extension property.

Quillen model categories: the glueing property

Lemma. TFAE:

- (i) the fibration $\pi: \widetilde{U}
 ightarrow U$ is univalent,
- (ii) weak equivalences between small fibrations can be extended along cofibrations:



We call (ii) the glueing property (cf. Coquand et al.)

Example: simplicial sets

Let SSet be the category of simplicial sets.

We consider the model structure for Kan complexes.

Right properness

- via geometric realization (see Hovey, Hirschhorn)
- via minimal fibrations (Joyal and Tierney)

Fibration extension property

via minimal fibrations and theory of bundles (Joyal)

Glueing property

- Direct proof (Voevodsky)
- Via theory of fiber bundles (Moerdijk)

Issues

Theorem (Bezem, Coquand, Parmann). The right properness of SSet cannot be proved constructively.

A constructive proof is essential for applications in mathematical logic.

How can we fix this?

Coquand's approach

- Switch from simplicial sets to cubical sets
- ▶ Work with uniform fibrations. This is useful also to deal with coherence (Swan, Larrea-Schiavon).

Plan:

- alternative presentation of cubical set model
- ▶ analysis via the notions of an algebraic weak factorization system.

Goal

For a category ${\mathcal E},$ we want:

- (1) to construct an algebraic weak factorization system (Cof, TrivFib)
- (2) to construct an algebraic weak factorization system (TrivCof, Fib)
- (3) to show that (TrivCof, Fib) has the Frobenius property.
- (4) to prove the glueing property.
- (5) to prove the fibration extension property
- (6) to show that we have an algebraic model structure.

(1)-(3) this talk, (4)-(6) next talk.

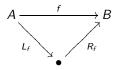
The approach to (1)-(2) is inspired by Cisinski's theory.

Part II: Uniform fibrations and the Frobenius property

Algebraic weak factorization systems

For a weak factorization system, we often ask for

• functorial factorizations, i.e. functors (L, R) such that



gives the required factorization.

In an algebraic weak factorization system, we also ask that

- L has the structure of a comonad,
- R has the structure of a monad,
- ▶ a distributive law between *L* and *R*.

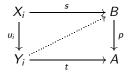
Grandis and Tholen (2006), Garner (2009).

Uniform liftings

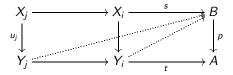
Fix a category \mathcal{E} . Let $u: \mathcal{I} \to \mathcal{E}^{\to}$ be a functor.

Definition. A right \mathcal{I} -map is a map $p: B \to A$ in \mathcal{E} equipped with

 \blacktriangleright a function ϕ which assigns a diagonal filler



for $i \in \mathcal{I}$, subject to a uniformity condition:



 $\mathcal{I}^{\pitchfork} = \mathsf{category} \text{ of right } \mathcal{I}\text{-maps.}$

The setting (I)

Let $\ensuremath{\mathcal{E}}$ be a presheaf category.

We assume a functorial cylinder

$$X \mapsto I \otimes X$$

with endpoint inclusions $\delta^k \otimes X : X \to I \otimes X$ such that

(C1) the cylinder has contractions, $\varepsilon_X : I \otimes X \to X$ (C2) the cylinder has connections, $c_X^k : I \otimes I \otimes X \to I \otimes X$ (C3) $I \otimes (-)$ has a right adjoint (C4) $I \otimes (-) : \mathcal{E} \to \mathcal{E}$ preserves pullback squares (C5) the endpoint inclusions $\delta^k \otimes X : X \to I \otimes X$ are cartesian.

Examples: SSet, CSet.

The setting (II)

We also fix a full subcategory

$$\mathcal{M} \hookrightarrow \mathcal{E}_{\mathsf{cart}}^{\rightarrow}$$

of monomorphisms such that:

(M1) the unique map $\bot_X : 0 \to X$ is in \mathcal{M} , for every $X \in \mathcal{E}$

(M2) \mathcal{M} is closed under pullbacks

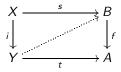
(M3) \mathcal{M} is closed under pushout product with the endpoint inclusions.

Examples: $\mathcal{M} = \text{all monomorphisms, in SSet or CSet.}$

Uniform trivial fibrations

Fix \mathcal{E} , $I \otimes (-)$, \mathcal{M} as above. Write $u : \mathcal{M} \to \mathcal{E}^{\to}$ for the inclusion.

Definition. A *uniform trivial fibration* is a right M-map, i.e. a map $f: B \to A$ together with a function which assigns fillers

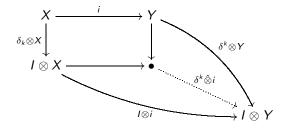


where $i: X \to Y$ is a monomorphism in \mathcal{M} , subject to uniformity.

 $\mathsf{TrivFib} = \mathcal{M}^{\pitchfork} = \mathsf{category} \text{ of uniform trivial fibrations.}$

Cylinder inclusions

For a monomorphism $i: X \to Y$ in \mathcal{M} , we have the **pushout product**

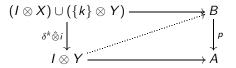


We get a subcategory $\mathsf{Cyl}\subseteq \mathcal{E}^{\rightarrow}$ with objects the "cylinder inclusions"

$$\delta^k \hat{\otimes} i : \underbrace{(I \otimes X) \cup (\{k\} \otimes Y)}_{\bullet} \to I \otimes Y$$

Uniform fibrations

Definition. A *uniform fibration* is a right Cyl-map, i.e. a map $p: B \rightarrow A$ together with a function which assigns fillers



where $i: X \to Y$ is a monomorphism in \mathcal{M} , subject to uniformity.

 $Fib = Cyl^{\uparrow\uparrow} = category of uniform fibrations.$

Theorem^{*}. A map is a (trivial) fibration in the usual sense if and only if it can be equipped with the structure of a uniform (trivial) fibration.

The algebraic weak factorization systems

Theorem. $\ensuremath{\mathcal{E}}$ admits two cofibrantly-generated algebraic weak factorization systems:

- 1. (Cof, TrivFib)
- 2. (TrivCof, Fib).

Proof.

- Use Garner's algebraic small object argument
- \blacktriangleright For this, isolate a small category ${\mathcal I}$ such that

$$\mathcal{I}^{\pitchfork} = \mathcal{M}^{\pitchfork} \quad (= \mathsf{TrivFib})$$

• E.g. $\mathcal{I} = \{\text{monomorphisms in } \mathcal{M} \text{ with representable codomain} \}.$

Note. Algebraic aspect is essential to work constructively.

The Frobenius property

We want to show that (TrivCof, Fib) has the Frobenius property. For simplicity, we work in the non-algebraic setting.

Recall that we have a class of maps Cyl such that ${\rm Cyl}^{\pitchfork}={\rm Fib}$ To show:

• for $p: B \rightarrow A$ in Fib, pullback

 $p^*: \mathcal{E}/A \to \mathcal{E}/B$

preserves trivial cofibrations, i.e. for all

$$\begin{array}{c} Y \longrightarrow X \\ g \downarrow^{-} & \downarrow^{f} \\ B \longrightarrow A \end{array}$$

we have $f \in \text{TrivCof} \Rightarrow g \in \text{TrivCof}$.

Outline of the proof

Define the class SHeq of strong homotopy equivalences

Step 1

characterize strong homotopy equivalences as retracts

Step 2

- $\blacktriangleright \text{ Show SHeq} \cap \mathcal{M} \subseteq \overline{\mathsf{Cyl}}$
- $\blacktriangleright \ \ \mathsf{Show} \ \ \mathsf{Cyl} \subseteq \mathsf{SHeq} \cap \mathcal{M}$

Step 3

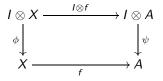
 \blacktriangleright Prove the Frobenius property for $\mathsf{SHeq}\cap\mathcal{M}$

Strong homotopy equivalences

Definition. A map $f: X \to A$ is a strong left homotopy equivalence if there exist

 $g: A \to X, \qquad \phi: g \circ f \sim 1_X \quad \psi: f \circ g \sim 1_A$

such that

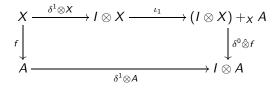


Example. The endpoint inclusion $\delta^0 \otimes X : X \to I \otimes X$.

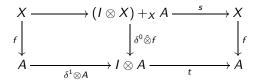
There is a dual notion of strong right homotopy equivalence.

Step 1: a characterisation

Lemma. A map $f : X \to A$ is a strong left homotopy equivalence if and only if the canonical square



exhibits f as a retract of $\delta^0 \hat{\otimes} f$, i.e. we have



where the horizontal composites are identities.

Step 2: a lemma

Lemma. We have

- (i) $\mathsf{SHeq} \cap \mathcal{M} \subseteq \overline{\mathsf{Cyl}}$
- (ii) $\mathsf{Cyl} \subseteq \mathsf{SHeq} \cap \mathcal{M}$

Proof.

(i) Let $f \in SHeq \cap M$.

Since $f \in SHeq$, by Step 1, we have that f is a retract of, say, $\delta^0 \hat{\otimes} f$. Since $f \in \mathcal{M}$, we have $\delta^0 \hat{\otimes} f \in Cyl$.

(ii) Each $\delta^0 \hat{\otimes} f \in Cyl$ is both in SHeq and in \mathcal{M} .

Step 3: end of the proof

Theorem. The weak factorization system (TrivCof, Fib) has the Frobenius property.

Proof. We need to show that for every pullback

where $p \in Fib$, we have

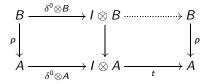
$$f \in \mathsf{TrivCof} \Rightarrow g \in \mathsf{TrivCof}$$

But by Step 2, it suffices to show

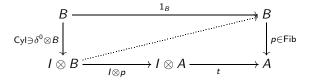
$$f\in\mathsf{SHeq}\cap\mathcal{M}\Rightarrow g\in\mathsf{SHeq}\cap\mathcal{M}$$

Let $f \in \mathsf{SHeq} \cap \mathcal{M}$. To show: $g = p^*(f) \in \mathsf{SHeq} \cap \mathcal{M}$.

By Step 1 and some diagram-chasing, we need



Here t is part of the data making f into a retract of $\delta^1 \hat{\otimes} f$. Such a map is given by a diagonal filler:



Summary

Done:

(1) algebraic weak factorization system (Cof, TrivFib)

(2) algebraic weak factorization system (TrivCof, Fib)

(3) (TrivCof, Fib) has the Frobenius property.

Examples

- CSet
- SSet, so get new proof that SSet is right proper.

Still to do:

- (4) To prove the glueing property
- (5) To prove the fibration extension property
- (6) To show that we have an algebraic model structure.