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Plan of the talks

Goal

» analysis of the cubical set model of Homotopy Type Theory

By-products

» general method to obtain right proper algebraic model structures,

> a new proof of model structure for Kan complexes and its right
properness, avoiding minimal fibrations.



Outline of this talk

Part I: Homotopy Type Theory
» Models of HoTT
» Quillen model structures

» Some issues

Part II: Uniform fibrations and the Frobenius property
» Algebraic weak factorization systems
» Uniform fibrations

» The Frobenius property
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Part I: Homotopy Type Theory



Homotopy Type Theory
HoTT = Martin-Lof's type theory + Voevodsky's univalence axiom

Key ingredients:

(1) substitution operation,
(2) identity types,

(3) N-types,

(4)
(5)

5

a type universe,

univalence axiom.

We give a category-theoretic account of these.



Models of HoTT

Definition. A model of homotopy type theory consists of

> a category £ with a terminal object 1,
» a class Fib of maps, called fibrations,

subject to axioms (1)-(5).

Idea: the sequent
x:AF B(x) :type

B
|
A

Warning: issues of coherence will be ignored.

is interpreted as a fibration



Models of HoT T: substitution

(1) Pullbacks of fibrations exist and are again fibrations.

So for every map o: A’ — A we have

Fib/A—2— Fib/A’

Diagrammatically:



Models of HoTT: identity types

(2) For every fibration p: B — A, there is a factorization

B—"—ldg
lq
Ap
BXAB

where r € "Fib and q € Fib.



Models of HoTT: ll-types

(3) If p: B — A'is a fibration, pullback along p has a right adjoint
Fib/B — 5 Fib/A

We call this the pushforward along p.

Note. For a fibration q: C — B, global elements of p.(q) are
sections of g:

A— 5 p,(C) B—

N e A



Models of HoTT: universes

We now assume that there is a notion of ‘smallness’ for the maps of £
(e.g. given by a bound on the cardinality of fibers).

(4) There is a fibrant object U and a small fibration

U= U

which weakly classifies small fibrations, i.e. for all such p: B — A
there is a pullback

B——U
4

]
A—— U

Note. We do not ask for uniqueness of the pullback.



Models of HoTT: univalence

(5) The fibration 7: U — U is univalent.

In SSet, this holds if and only if for every small fibration p: B — A, the
space of squares

T
3 <

<

—

such that _
B—->AxyU

is a weak equivalence, is contractible.

Question: how can we define examples of models of HoTT?



Quillen model categories

Fix £ with a Quillen model structure (Weq, Fib, Cof).
Let TrivFib = Weq N Fib, TrivCof = Weq N Cof.

Question: Is (&, Fib) a model of HoTT?

Let's look at the axioms for a model of HoTT:

(1) : pullbacks exist and preserve fibrations.

(2) : given by factorization as trivial cofibration followed by a fibration.



The Frobenius property

Lemma. Assume that, for a fibration p: B — A, we have

o
_
E/A L E/B
P
TFAE:
(i) ps preserves fibrations

(i) p* preserves trivial cofibrations.

Definition. A wfs (L, R) is said to have the Frobenius property if
pullback along R-maps preserves L-maps.

Remark. Assume that Cof = {monomorphisms}. TFAE:
(i) The wfs (TrivCof, Fib) has the Frobenius property.

(i) The model structure is right proper, i.e. pullback of weak
equivalences along fibrations are weak equivalences.



The fibration extension property
Assume & = Psh(C), cofibrations C monos, fibrations are local (Cisinski).

Lemma. Assume 7: U — U classifies small fibrations. Then TFAE:

(i) the universe U is fibrant,

(ii) small fibrations can be extended along trivial cofibrations, i.e.

By B/
_

Pl p/

A—— A

1

(iii) small fibrations can be extended along generating trivial cofibrations.

We call (i) the fibration extension property.



Quillen model categories: the glueing property

Lemma. TFAE:
(i) the fibration 7: U — U is univalent,

(i) weak equivalences between small fibrations can be extended along
cofibrations:

B e

\ 5

oy
~ B, B}

We call (ii) the glueing property (cf. Coquand et al.)



Example: simplicial sets

Let SSet be the category of simplicial sets.

We consider the model structure for Kan complexes.

Right properness
> via geometric realization (see Hovey, Hirschhorn)

> via minimal fibrations (Joyal and Tierney)

Fibration extension property

> via minimal fibrations and theory of bundles (Joyal)

Glueing property

» Direct proof (Voevodsky)
> Via theory of fiber bundles (Moerdijk)



Issues

Theorem (Bezem, Coquand, Parmann). The right properness of SSet
cannot be proved constructively.

A constructive proof is essential for applications in mathematical logic.
How can we fix this?

Coquand’s approach

» Switch from simplicial sets to cubical sets

» Work with uniform fibrations. This is useful also to deal with
coherence (Swan, Larrea-Schiavon).

Plan:
» alternative presentation of cubical set model

> analysis via the notions of an algebraic weak factorization system.



Goal

For a category £, we want:
1) to construct an algebraic weak factorization system (Cof, TrivFib)
2) to construct an algebraic weak factorization system (TrivCof, Fib)
3) to show that (TrivCof, Fib) has the Frobenius property.

) to prove the glueing property.

)

)

5) to prove the fibration extension property

(
(
(
(4
(
(6

to show that we have an algebraic model structure.

(1)-(3) this talk, (4)-(6) next talk.

The approach to (1)-(2) is inspired by Cisinski's theory.



Part Il: Uniform fibrations and the Frobenius property



Algebraic weak factorization systems

For a weak factorization system, we often ask for
> functorial factorizations, i.e. functors (L, R) such that

gives the required factorization.

In an algebraic weak factorization system, we also ask that

» L has the structure of a comonad,
» R has the structure of a monad,
» a distributive law between L and R.

Grandis and Tholen (2006), Garner (2009).



Uniform liftings

Fix a category £. Let u:Z — £ be a functor.

Definition. A right Z-map is a map p: B — A in £ equipped with

» a function ¢ which assigns a diagonal filler

x

uj

p

Xé——
De—W

s
—
t

for i € Z, subject to a uniformity condition:

=
B
prs!

<o
D——W™
e

uj

I™ = category of right Z-maps.



The setting (1)

Let £ be a presheaf category.

We assume a functorial cylinder
X—=1eX
with endpoint inclusions ¥ ® X : X — | ® X such that
(C1) the cylinder has contractions, ex : / ® X — X
(C2) the cylinder has connections, cX: 1 ®@ 1@ X — 1@ X
(C3) 1 ®(—) has a right adjoint
(C4) I ®(=):& — & preserves pullback squares
(C5)

C5) the endpoint inclusions 6% ® X : X — | ® X are cartesian.

Examples: SSet, CSet.



The setting (II)

We also fix a full subcategory
M= E,
of monomorphisms such that:

(M1) the unique map Lx:0 — X isin M, for every X € £
(M2) M is closed under pullbacks

(M3) M is closed under pushout product with the endpoint inclusions.

Examples: M = all monomorphisms, in SSet or CSet.



Uniform trivial fibrations

Fix £, I ® (=), M as above.

Write u: M — £ for the inclusion.

Definition. A uniform trivial fibration is a right M-map, i.e. a map
f: B — A together with a function which assigns fillers

s

—

—
t

1

<X

where i: X — Y is a monomorphism in M, subject to uniformity.

TrivFib = M™ = category of uniform trivial fibrations.



Cylinder inclusions

For a monomorphism i: X — Y in M, we have the pushout product

i

X———mm

Y
5RX l
o

X ——m—

s I®Y

We get a subcategory Cyl C £ with objects the “cylinder inclusions”

K@i (1eX)U(kIeY)= 1Y




Uniform fibrations

Definition. A uniform fibration is a right Cyl-map, i.e. amap p: B — A
together with a function which assigns fillers

(leoX)u(kteY) ——:7

5k®il lp
;

QY-

where i: X — Y is a monomorphism in M, subject to uniformity.

Fib = Cylrh = category of uniform fibrations.

Theorem*. A map is a (trivial) fibration in the usual sense if and only if
it can be equipped with the structure of a uniform (trivial) fibration.



The algebraic weak factorization systems

Theorem. £ admits two cofibrantly-generated algebraic weak
factorization systems:

1. (Cof, TrivFib)
2. (TrivCof, Fib).

Proof.

» Use Garner's algebraic small object argument

> For this, isolate a small category Z such that

I" = M™ (= TrivFib)

» E.g. Z = {monomorphisms in M with representable codomain}.

Note. Algebraic aspect is essential to work constructively.



The Frobenius property

We want to show that (TrivCof, Fib) has the Frobenius property.

For simplicity, we work in the non-algebraic setting.

Recall that we have a class of maps Cyl such that Cylm = Fib

To show:
» for p: B — Ain Fib, pullback
p*E/A—=E/B
preserves trivial cofibrations, i.e. for all
Y — X
_
B — A

we have f € TrivCof = g € TrivCof.



Outline of the proof
Define the class SHeq of strong homotopy equivalences

Step 1

» characterize strong homotopy equivalences as retracts

Step 2
» Show SHeq N M C Cyl
» Show Cyl C SHeq N M

Step 3
» Prove the Frobenius property for SHeq N M



Strong homotopy equivalences

Definition. A map f: X — A is a strong left homotopy equivalence if

there exist
g A= X, p:gofr~lx :fogm~lpy
such that
loX — 2" L19A
J| I
X A
f

Example. The endpoint inclusion 6°® X : X — | @ X.

There is a dual notion of strong right homotopy equivalence.



Step 1: a characterisation

Lemma. A map f: X — A is a strong left homotopy equivalence if and
only if the canonical square

1 L
X2 L ieX " L (loX)ixA
fl léo@)f
A I®A
SIRA

exhibits f as a retract of 0°Qf, i.e. we have

X (X)) +x A—"—> X

R

A—m— | QA——— A
QA t

where the horizontal composites are identities.



Step 2: a lemma

Lemma. We have
(i) SHeqN M C Cyl
(i) Cyl C SHeq N M

Proof.
(i) Let f € SHeq N M.
Since f € SHeq, by Step 1, we have that f is a retract of, say, 6°&f.
Since f € M, we have 6°&f € Cyl.

(i) Each 0°®f € Cyl is both in SHeq and in M.



Step 3: end of the proof

Theorem. The weak factorization system (TrivCof, Fib) has the
Frobenius property.

Proof. We need to show that for every pullback

Y — X
_
B — A
where p € Fib, we have
f € TrivCof = g € TrivCof
But by Step 2, it suffices to show

f € SHeqN M = g € SHeqN M



Let f € SHeq N M. To show: g = p*(f) € SHeq N M.

By Step 1 and some diagram-chasing, we need

@B

Here t is part of the data making f into a retract of 6'®f.

Such a map is given by a diagonal filler:

B e ,
Cy|96°®BJ
| B~ I A

I®p t

oy}

>

peFib



Summary

Done:

(1) algebraic weak factorization system (Cof, TrivFib)
(2) algebraic weak factorization system (TrivCof, Fib)
(3) (TrivCof,Fib) has the Frobenius property.

Examples

> CSet
> SSet, so get new proof that SSet is right proper.

Still to do:
(4) To prove the glueing property
(5) To prove the fibration extension property

(6) To show that we have an algebraic model structure.



