Constructive Mathematics in Constructive Set Theory

Nicola Gambino

University of Palermo

MALOA Worskhop Leeds, June 30th 2011

Classical vs Constructive Mathematics

	\mathbf{AC}	$\mathbf{E}\mathbf{M}$	Pow
ZFC	\checkmark	\checkmark	\checkmark
ZF	×	\checkmark	\checkmark
IZF	×	×	\checkmark
Topos Theory	×	×	\checkmark
Constructive Set Theory	×	×	×
Constructive Type Theory	×	×	X

Constructive topology?

Problem

▶ Can we develop topology in Constructive Set Theory?

Issues

▶ Sometimes AC is essential. E.g.

Tychonoff's Theorem \iff Axiom of Choice.

- ▶ Use of EM and Pow is widespread in classical topology.
- ► Classically equivalent structures become distinct. E.g.

Dedekind reals \neq Cauchy reals.

Some developments

Pointfree topology (Banaschewski, Isbell, Johnstone, Vickers, \dots)

- ▶ Traditionally developed in ZF or Topos Theory
- ▶ Focus on frames and locales

Formal Topology (Martin-Löf, Sambin, Coquand, Schuster, Palmgren, \dots)

- ▶ Traditionally developed in Constructive Type Theory
- ► Focus on formal topologies

Formal Topology in CST (Aczel, Curi, Palmgren ...)

- ▶ Work in CZF, CZF⁺ or even fragments of CZF
- ▶ Focus on both frames and formal topologies

Outline

Part I: The basic notions

- Set-generated frames
- Formal topologies

Part II: Further topics

- Covering systems
- Inductively defined formal topologies
- ▶ The fundamental adjunction

$\mathbf{Part}~\mathbf{I}$

The basic notions

From topological spaces to frames

Let $(X, \mathcal{O}(X))$ be a topological space. The set $\mathcal{O}(X)$ is

▶ a partial order

$$U \le V =_{\mathrm{def}} U \subseteq V \,,$$

▶ a complete join-semilattice

$$\bigvee_{i\in I} U_i = \bigcup_{i\in I} U_i \,,$$

▶ a meet-semilattice:

$$U \wedge V =_{\mathrm{def}} U \cap V \,.$$

Furthermore, it satisfies the distributivity law

$$U \wedge \bigvee_{i \in I} V_i = \bigvee_{i \in I} (U \wedge V_i)$$

Frames

Definition. A frame is a partially ordered set (A, \leq) having arbitrary joins and binary meets which satisfy the distributive law

$$a \land \bigvee S = \bigvee \{a \land x \mid x \in S\}$$

for every $a \in A$ and $S \subseteq A$.

Note. Every frame is a complete lattice, since

$$\bigwedge S =_{\mathrm{def}} \bigvee \{ a \in A \mid (\forall x \in S) \, a \le x \} \, .$$

Examples. $\mathcal{P}(X)$ is a frame.

Pointfree topology

Key idea

- ▶ Replace topological spaces by frames
- ▶ Work with frames as 'generalized spaces'.

Fundamental adjunction

$$\mathcal{O}\colon \mathbf{Top}\longleftrightarrow \mathbf{Frm}^{\mathrm{op}}\colon \mathrm{Pt}$$

where

- ► **Top** = category of topological spaces and continuous maps,
- **Frm** = category of frames and frame homomorphisms.

Problems for Constructive Set Theory

If we try to represent this in CZF we run into problems, e.g.

- $\mathcal{O}(X)$ is not a frame in CZF, since in general it is not a set.
- $\mathcal{P}(X)$ is not ...

Idea

- We allow frames to be classes.
- We add data to have arbitrary meets and top element.

Set-generated frames

New Definition. A frame is a partially ordered class (A, \leq) with joins for all $S \in \mathcal{P}(A)$, a top element and binary meets satisfying the distributivity law.

Definition. A set-generated frame is a frame equipped with a generating set, i.e. a set G such that

- ▶ For all $a \in A$, the class $G_a =_{def} \{x \in G \mid x \leq a\}$ is a set.
- For all $a \in A$, we have $a = \bigvee G_a$.

Observation. In a set-generated frame, we can define the meet of $S \in \mathcal{P}(A)$ by

$$\bigwedge S =_{\mathrm{def}} \bigvee \{ a \in G \mid (\forall x \in S) \, x \le a \}$$

Examples

- ▶ Let X be a set. The class $\mathcal{P}(X)$ is a set-generated frame. A generating set is $\{\{x\} \mid x \in X\}$.
- ▶ Let (X, \leq) be a poset. A **lower subset** of X is a subset $U \subseteq X$ such that

$$U = \downarrow U$$

where

$$\downarrow U =_{\mathrm{def}} \{ x \in X \mid (\exists u \in U) \, x \le u \}$$

The class $\mathcal{L}(X)$ of lower subsets is a set-generated frame. The generating set is $\{\downarrow \{x\} | x \in X\}$.

It is convenient to have an alternative way of working with set-generated frames.

Formal topologies

Definition. A formal topology consists of a poset (S, \leq) equipped with a cover relation, i.e. a relation

$$a \triangleleft U$$
 (for $a \in S, U \in \mathcal{P}(S)$)

such that

(1) if $a \in U$ then $a \triangleleft U$,

(2) if $a \leq b$ and $b \triangleleft U$ then $a \triangleleft U$,

(3) if $a \triangleleft U$ and $U \triangleleft V$ then $a \triangleleft V$,

(4) if $a \triangleleft U$ and $a \triangleleft V$ then $a \triangleleft U \downarrow V$,

(5) for every $U \in \mathcal{P}(S)$, the class $\{x \in S \mid x \triangleleft U\}$ is a set,

where

$$U \lhd V =_{\text{def}} (\forall x \in U) \ x \lhd V ,$$
$$U \downarrow V =_{\text{def}} \downarrow U \cap \downarrow V .$$

Formal topologies vs set-generated frames

Proposition.

1. For a set-generated frame $(A, \leq, \bigvee, \wedge, \top, G)$, we can define a cover relation on (G, \leq) by letting

$$a \lhd U \Longleftrightarrow a \le \bigvee U.$$

2. For a formal topology (S, \leq, \lhd) , the class of the subsets $U \subseteq S$ such that

$$U = \{ x \in S \ | \ x \lhd U \}$$

has the structure of a set-generated frame.

Note. This result extends to an equivalence of categories.

Points

Let (S, \leq, \triangleleft) be a formal topology.

Definition. A **point** of S is a subset $\alpha \subseteq S$ such that, letting

 $\alpha \Vdash a =_{\mathrm{def}} a \in \alpha \,,$

we have that

- 1. α is inhabited
- 2. If $\alpha \Vdash a$ and $a \leq b$ then $\alpha \Vdash b$
- 3. If $\alpha \Vdash a_1, \alpha \Vdash a_2$ then there is $a \leq a_1, a_2$ such that $\alpha \Vdash a$
- 4. If $\alpha \Vdash a$ and $a \triangleleft U$ then there is $x \in U$ such that $\alpha \Vdash x$.

Note. The points of S form a (large) topological space, Pt(S).

Example: the formal Dedekind reals

Define a formal topology $(\mathcal{R}, \leq, \triangleleft)$ as follows:

$$\blacktriangleright \mathcal{R} =_{\text{def}} \{ (p,q) \mid p \in \mathbb{Q} \cup \{-\infty\}, q \in \mathbb{Q} \cup \{+\infty\}, p < q \}$$

•
$$(p,q) \le (p',q')$$
 iff $p' \le p$ and $q \le q'$.

▶ The cover relation is defined inductively by the rules

$$\frac{(p,q) \in U}{(p,q) \triangleleft U} \qquad \frac{(p,q) \leq (r,s) \ (r,s) \triangleleft U}{(p,q) \triangleleft U}$$
$$\frac{(p,q') \triangleleft U \ (p',q) \triangleleft U}{(p,q) \triangleleft U} \quad \text{for } p \leq p' \leq q' \leq q$$
$$\frac{(\forall (p',q') < (p,q)) \ (p',q') \triangleleft U}{(p,q) \triangleleft U}$$

Proposition. The space $Pt(\mathcal{R})$ is homeomorphic to \mathbb{R} .

Example: the formal Cantor space

Define a formal topology $(\mathcal{C}, \leq, \triangleleft)$ as follows:

• $C =_{def}$ set of finite sequences of 0's and 1's.

▶ For
$$p, q \in C$$
, let

 $p \leq q$ iff q is an initial segment of p

▶ The cover relation is defined inductively by the rules

 $\frac{p \in U}{p \lhd U} \qquad \frac{p \leq q \quad q \lhd U}{p \lhd U} \qquad \frac{p \cdot 0 \lhd U \quad p \cdot 1 \lhd U}{p \lhd U}$

Proposition. The space $Pt(\mathcal{C})$ is homeomorphic to $2^{\mathbb{N}}$.

Example: the double negation formal topology

Consider $1 =_{def} \{0\}$ as a discrete poset and let $\Omega =_{def} \mathcal{P}(1)$

For $a \in 1$ and $U \in \Omega$ define

$$a \triangleleft U =_{\mathrm{def}} \neg \neg a \in U \,.$$

To check:

1. If
$$a \in U$$
 then $\neg \neg a \in U$
2. If $a = b$ and $\neg \neg b \in U$ then $\neg \neg a \in U$
3. If $\neg \neg a \in U$ and $(\forall x \in U) \neg \neg x \in V$ then $\neg \neg a \in V$
4. If $\neg \neg a \in U$ and $\neg \neg a \in V$ then $\neg \neg a \in U \cap V$
5. For every $U \in \Omega$, the class $\{x \in 1 \mid \neg \neg x \in U\}$ is a set.

Part II Further topics

Covering systems

Let (S, \leq) be a poset.

Definition. A covering system on (S, \leq) is a family of sets

$$(\operatorname{Cov}(a) \mid a \in S)$$

such that

 if P ∈ Cov(a) then P ⊆ ↓ a,
 if P ∈ Cov(a) and b ≤ a, then there is Q ∈ Cov(b) such that (∀y ∈ Q)(∃x ∈ P) y ≤ x.

Note. Compare with the notion of a Grothendieck coverage.

Inductively defined formal topologies

Let ($\mathrm{Cov}(a) \ | \ a \in S$) be a covering system on $(S, \leq).$

We define inductively a cover relation on (S, \leq) by the rules

$$\frac{a \in U}{a \triangleleft U} \qquad \frac{a \leq b \quad b \triangleleft U}{a \triangleleft U} \qquad \frac{P \triangleleft U}{a \triangleleft U} \quad \text{for } P \in \text{Cov}(a)$$

Proposition. (S, \leq, \triangleleft) is a formal topology.

Examples.

- ▶ The formal Dedekind reals
- ▶ The formal Cantor space

$$U \in \operatorname{Cov}(p) \Longleftrightarrow U = \{p \cdot 0, p \cdot 1\}$$

A characterization

Theorem (Aczel). A formal topology (S, \leq, \triangleleft) is inductively defined if and only if it is **set-presented**, i.e. there exists

$$R\colon S\to \mathcal{P}(S)$$

such that

$$a \lhd U \Leftrightarrow (\exists V \in R(a))V \subseteq U$$

Proof. Application of the Set Compactness Theorem.

Theorem. The double-negation formal topology is not set-presented.

The fundamental adjunction

Classically, there is an adjunction

```
\mathcal{O}\colon \mathbf{Top}\longleftrightarrow \mathbf{Frm}^{\mathrm{op}}\colon \mathrm{Pt}
```

Peter Aczel has obtained a version of this adjunction in CZF

$$\mathcal{O}\colon \mathbf{Top}_1 \longleftrightarrow \mathbf{Frm}_1^{\mathrm{op}}\colon \mathrm{Pt}$$

where

- \mathbf{Top}_1 is equivalent to \mathbf{Top} in IZF
- \mathbf{Frm}_1 is equivalent to \mathbf{Frm} in IZF

The proof of this result involves subtle size conditions.

References

Pointfree topology

▶ P. T. Johnstone, Stone Spaces, 1982

Formal topology

- ▶ G. Sambin, Intuitionistic formal spaces, 1987
- ▶ P. Aczel, Aspects of general topology in CST, 2006