Polynomial functors and polynomial monads

Nicola Gambino

July 13th, 2009

Example

A natural numbers object in a category ${\mathcal C}$ consists of

$$\blacktriangleright (\mathbb{N}, 1 + \mathbb{N} \to \mathbb{N})$$

such that for all

 $\blacktriangleright (X, 1 + X \to X)$

there exists a unique $\theta : \mathbb{N} \to X$ such that

commutes.

The theory of polynomial functors

- Similar analysis for a wide class of inductively-defined sets
- Applications to free constructions

Outline

1. Background

- Endofunctors and their algebras
- Locally cartesian closed categories
- 2. Polynomial functors in a single variable
- 3. Polynomial functors in many variables
- 4. Free monads

Endofunctors and their algebras

Let $P : \mathcal{C} \to \mathcal{C}$ be an endofunctor.

The category *P*-Alg is defined as follows.

• **Objects:** $(X, PX \rightarrow X)$

Forgetful functor U : P-Alg $\rightarrow C$.

An **initial algebra** for *P* is an initial object in *P*-Alg. Explicitly:

 $\blacktriangleright (W, PW \to W)$

such that for all

 $\blacktriangleright (X, PX \to X)$

there exists a unique θ : $W \rightarrow X$ such that

commutes.

Lambek's Lemma.
$$PW \xrightarrow{\cong} W$$
.

Example

The object of natural numbers is the initial algebra for

Locally cartesian closed categories

Let \mathcal{E} be a category.

For $A \in \mathcal{E}$, the **slice category** \mathcal{E}/A is defined as follows.

• **Objects:** $(X, X \rightarrow A)$

Definition. We say that \mathcal{E} is locally cartesian closed if

- *E* has finite limits
- \mathcal{E}/A is a cartesian closed category for all $A \in \mathcal{E}$.

We also assume that \mathcal{E} has finite disjoint coproducts.

Examples:

- Set
- Variants of Top
- ▶ Psh(C)
- ► Sh(C, J)
- Every elementary topos

The **internal language** of \mathcal{E} is an extensional dependent type theory with rules for the following forms of type:

0, 1,
$$\operatorname{Id}_A(a,b)$$
, $A \times B$, B^A , $A + B$,
 $\sum_{a \in A} B_a$, $\prod_{a \in A} B_a$

Idea. Identify $(X, X \rightarrow A)$ with $(X_a \mid a \in A)$.

Given $f : B \rightarrow A$, we can define three functors.

▶ Reindexing:

$$(X_a \mid a \in A) \mapsto (X_{f(b)} \mid b \in B)$$

Sum:

$$(X_b \mid b \in B) \mapsto \left(\sum_{b \in B_a} X_b \mid a \in A\right)$$

Product:

$$(X_b \mid b \in B) \mapsto \left(\prod_{b \in B_a} X_b \mid a \in A\right).$$

Polynomial functors in a single variable

Given $f : B \rightarrow A$, we define the **polynomial functor**

Idea. ($B_a \mid a \in A$) as a signature.

W-types

The initial algebra for $P_f : \mathcal{E} \to \mathcal{E}$

$$\blacktriangleright (W, sup_W : P_f(W) \to W)$$

is called the **W-type** of $f : B \rightarrow A$.

For $a \in A$ and $h \in W^{B_a}$, we think of $sup_W(a, h) \in W$ as the tree

Examples of W-types

Second number class

List(A)

Polynomial functors in many variables

Idea. ($B_a \mid a \in A$) as an *I*-sorted signature

Examples

Polynomial functors in one variable

Linear functors

General tree types

The initial algebra for $P_f : \mathcal{E}/I \to \mathcal{E}/I$

is called the **general tree type** associated to $f : B \rightarrow A$.

For $a \in A_i$ and $h \in \prod_{b \in B_a} W_{\sigma(b)}$, we think of $\sup_{W_i}(a, h) \in W_{\tau(a)}$ as the tree

Note. $a \in A_i$ iff $\tau(a) = i$.

Examples of general trees

• The free Grothendieck site generated by a coverage.

Theorem [G. & Hyland 2004]

Let ${\mathcal E}$ be a locally cartesian closed category with finite disjoint coproducts and W-types.

• Every polynomial functor $P : \mathcal{E}/I \to \mathcal{E}/I$ has an initial algebra.

Basic properties

- 1. Identity functors are polynomial
- 2. Composites of polynomial functors are polynomial
- 3. The functor

$$\begin{array}{c} \operatorname{Poly}(\mathcal{E}/I) & \longrightarrow & \mathcal{E}/I \\ \\ P & \longmapsto & P(1) \end{array}$$

is a Grothendieck fibration.

Free monads

Let $P : \mathcal{C} \to \mathcal{C}$ be an endofunctor.

We say that *P* admits a **free monad** if the forgetful functor

 $\begin{array}{c} P-Alg \\ \downarrow u \\ \mathcal{C} \end{array}$

has a left adjoint $F : C \rightarrow P$ -Alg.

The monad (T, η, μ) resulting from $F \dashv U$ is called the free monad on *P*.

Let ${\mathcal E}$ be a locally cartesian closed category with finite disjoint coproducts and W-types.

- 1. Every polynomial functor $P : \mathcal{E}/I \to \mathcal{E}/I$ admits a free monad.
- 2. The free monad (T, η, μ) on a polynomial functor is a polynomial monad.

Proof of Part 1.

If $F : C \rightarrow P$ -Alg exists, it has to be

$$F(X) = \mu Y \cdot X + PY \cdot$$

But the endofunctor

is polynomial, since *P* is so.

Hence, it must have an initial algebra.

Sketch of the proof of Part 2.

We need to show that *T* is polynomial.

Let $P : \mathcal{E}/I \to \mathcal{E}/I$ be given by

Let us temporarily **assume** that $T : \mathcal{E}/I \to \mathcal{E}/I$ is given by

We have

$$TX = \mu Y \cdot X + P(Y)$$

Hence, by Lambek's Lemma, we must have

$$X + P(TX) \cong TX$$

Unfolding the definitions of *P* and *T*, we get equations. For example, we get

$$C_i \cong \{i\} + \sum_{a \in A_i} \prod_{b \in B_a} C_{\sigma(b)} \qquad (i \in I)$$

All of these equations can be solved via general tree types.

We also need to show that η : Id \Rightarrow *T* and μ : *T*² \Rightarrow *T* are cartesian. For this, use the following general fact.

Proposition. The following are equivalent.

1. $\phi : P_g \Rightarrow P_f$ cartesian natural transformation.

Further topics

- ▶ Polynomial functors $P : \mathcal{E}/I \to \mathcal{E}/J$
- The double category of polynomial functors
- Base change
- Relationship to operads and multicategories

Reference

N. Gambino and J. Kock Polynomial functors and polynomial monads ArXiv, 2009