On the bicategory of operads and analytic functors

> Nicola Gambino University of Leeds

Joint work with André Joyal

Cambridge, Category Theory 2014

Reference

N. Gambino and A. Joyal On operads, bimodules and analytic functors ArXiv, 2014

Main result

Let ${\mathcal V}$ be a symmetric monoidal closed presentable category.

Theorem. The bicategory $\mathbf{Opd}_{\mathcal{V}}$ that has

- ▶ 0-cells = operads (= symmetric many-sorted \mathcal{V} -operads)
- 1-cells = operad bimodules
- 2-cells = operad bimodule maps

is cartesian closed.

Note. For operads A and B, we have

 $\mathbf{Alg}(A \sqcap B) = \mathbf{Alg}(A) \times \mathbf{Alg}(B), \quad \mathbf{Alg}(B^A) = \mathbf{Opd}_{\mathcal{V}}[A, B].$

- 1. Symmetric sequences and operads
- 2. Bicategories of bimodules
- 3. A universal property of the bimodule construction
- 4. Proof of the main theorem

1. Symmetric sequences and operads

Single-sorted symmetric sequences

Let \mathbf{S} be the category of finite cardinals and permutations.

Definition. A single-sorted symmetric sequence is a functor

$$\begin{array}{rccc} F \colon \ \mathbf{S} & \to & \mathcal{V} \\ & n & \mapsto & F[n] \end{array}$$

For $F: \mathbf{S} \to \mathcal{V}$, we define the single-sorted analytic functor

$$F^{\sharp} \colon \mathcal{V} \to \mathcal{V}$$

by letting

$$F^{\sharp}(T) = \sum_{n \in \mathbb{N}} F[n] \otimes_{\Sigma_n} T^n.$$

Single-sorted operads

Recall that:

1. The functor category $[\mathbf{S},\mathcal{V}]$ admits a monoidal structure such that

$$(G \circ F)^{\sharp} \cong G^{\sharp} \circ F^{\sharp},$$
$$I^{\sharp} \cong \mathrm{Id}_{\mathcal{V}}$$

2. Monoids in $[\mathbf{S}, \mathcal{V}]$ are exactly single-sorted operads.

See [Kelly 1972] and [Joyal 1984].

Symmetric sequences

For a set X, let S(X) be the category with

- objects: (x_1, \ldots, x_n) , where $n \in \mathbb{N}$, $x_i \in X$ for $1 \le i \le n$
- morphisms: $\sigma: (x_1, \ldots, x_n) \to (x'_1, \ldots, x'_n)$ is $\sigma \in \Sigma_n$ such that $x'_i = x_{\sigma(i)}$.

Definition. Let X and Y be sets. A symmetric sequence indexed by X and Y is a functor

$$F: \begin{array}{ccc} S(X)^{\mathrm{op}} \times Y & \to & \mathcal{V} \\ (x_1, \dots, x_n, y) & \mapsto & F[x_1, \dots, x_n; y] \end{array}$$

Note. For X = Y = 1 we get single-sorted symmetric sequences.

Analytic functors

Let $F: S(X)^{\mathrm{op}} \times Y \to \mathcal{V}$ be a symmetric sequence.

We define the **analytic functor**

 $F^{\sharp} \colon \mathcal{V}^X \to \mathcal{V}^Y$

by letting

$$F^{\sharp}(T,y) = \int^{(x_1,\dots,x_n)\in S(X)} F[x_1,\dots,x_n;y] \otimes T(x_1) \otimes \dots T(x_n)$$

for $T \in \mathcal{V}^X, y \in Y$.

Note. For X = Y = 1, we get single-sorted analytic functors.

The bicategory of symmetric sequences

The bicategory $\mathbf{Sym}_{\mathcal{V}}$ has

 \triangleright 0-cells = sets

▶ 1-cells = symmetric sequences, i.e. $F: S(X)^{\text{op}} \times Y \to \mathcal{V}$

• 2-cells = natural transformations.

Note. Composition and identities in $\mathbf{Sym}_{\mathcal{V}}$ are defined so that

 $(G \circ F)^{\sharp} \cong G^{\sharp} \circ F^{\sharp}$ $(\mathrm{Id}_X)^{\sharp} \cong \mathrm{Id}_{\mathcal{V}^X}$

Monads in a bicategory

Let \mathcal{E} be a bicategory.

Recall that a **monad** on $X \in \mathcal{E}$ consists of

- $\blacktriangleright A: X \to X$
- $\blacktriangleright \ \mu: A \circ A \Rightarrow A$
- $\blacktriangleright \eta: 1_X \Rightarrow A$

subject to associativity and unit axioms.

Examples.

- monads in Ab = monoids in Ab = commutative rings
- monads in $Mat_{\mathcal{V}} = small \mathcal{V}$ -categories
- ▶ monads in $\mathbf{Sym}_{\mathcal{V}} = (\text{symmetric, many-sorted}) \ \mathcal{V}\text{-operads}$

An analogy

$\mathbf{Mat}_{\mathcal{V}}$

 $\begin{array}{l} \text{Matrix} \\ F \colon X \times Y \to \mathcal{V} \end{array}$

Linear functor

Category

Bimodule/profunctor/distributor

$\mathbf{Sym}_{\mathcal{V}}$

Symmetric sequence $F: S(X)^{\text{op}} \times Y \to \mathcal{V}$ Analytic functor Operad Operad bimodule

Categorical symmetric sequences

The bicategory $\mathbf{CatSym}_{\mathcal{V}}$ has

▶ 0-cells = small \mathcal{V} -categories

▶ 1-cells = \mathcal{V} -functors

$$F\colon S(\mathbb{X})^{\mathrm{op}}\otimes\mathbb{Y}\to\mathcal{V}\,,$$

where $S(\mathbb{X}) =$ free symmetric monoidal \mathcal{V} -category on \mathbb{X} .

• 2-cells = \mathcal{V} -natural transformations

Note. We have $\mathbf{Sym}_{\mathcal{V}} \subseteq \mathbf{CatSym}_{\mathcal{V}}$.

Theorem 1. The bicategory $CatSym_{\mathcal{V}}$ is cartesian closed.

Proof. Enriched version of main result in [FGHW 2008].

► Products:

$$\mathbb{X} \sqcap \mathbb{Y} =_{\mathrm{def}} \mathbb{X} \sqcup \mathbb{Y} \,,$$

• Exponentials:

$$[\mathbb{X},\mathbb{Y}] =_{\mathrm{def}} S(\mathbb{X})^{\mathrm{op}} \otimes \mathbb{Y} \,.$$

2. Bicategories of bimodules

Bimodules

Let \mathcal{E} be a bicategory.

Let $A: X \to X$ and $B: Y \to Y$ be monads in \mathcal{E} .

Definition. A (B, A)-bimodule consists of

- $\blacktriangleright M: X \to Y$
- a left *B*-action $\lambda : B \circ M \Rightarrow M$
- a right A-action $\rho: M \circ A \Rightarrow M$.

subject to a commutation condition.

Examples.

- bimodules in $\mathbf{Ab} = \operatorname{ring} \operatorname{bimodules}$
- bimodules in $Mat_{\mathcal{V}}$ = bimodules/profunctors/distributors
- bimodules in $\mathbf{Sym}_{\mathcal{V}}$ = operad bimodules

Bicategories with local reflexive coequalizers

Definition.

We say that a bicategory \mathcal{E} has **local reflexive coequalizers** if

- (i) the hom-categories $\mathcal{E}[X,Y]$ have reflexive coequalizers,
- (ii) the composition functors preserve reflexive coequalizers in each variable.

Examples.

- $\blacktriangleright (\mathbf{Ab}, \otimes, \mathbb{Z})$
- $Mat_{\mathcal{V}}$
- $\mathbf{Sym}_{\mathcal{V}}$ and $\mathbf{CatSym}_{\mathcal{V}}$

The bicategory of bimodules

The bicategory $\operatorname{Bim}(\mathcal{E})$ has

▶ 0-cells = (X, A), where $X \in \mathcal{E}$ and $A \colon X \to X$ monad

- ► 1-cells = bimodules
- \blacktriangleright 2-cells = bimodule morphisms

Composition: for $M : (X, A) \to (Y, B)$, $N : (Y, B) \to (Z, C)$, $N \circ_B M : (X, A) \to (Z, C)$

is given by

$$N \circ B \circ M \xrightarrow[\rho \circ M]{} N \circ \lambda \longrightarrow N \circ M \longrightarrow N \circ_B M.$$

Identities: $Id_{(X,A)}$: $(X,A) \to (X,A)$ is $A: X \to X$.

Examples

1. The bicategory of ring bimodules

$\operatorname{Bim}(\mathbf{Ab})$

- 0-cells = rings
- 1-cells = ring bimodules
- 2-cells = bimodule maps
- 2. The bicategory of bimodules/profunctors/distributors

$\operatorname{Bim}(\mathbf{Mat}_{\mathcal{V}})$

- 0-cells = small \mathcal{V} -categories
- 1-cells = \mathcal{V} -functors $\mathbb{X}^{\mathrm{op}} \otimes \mathbb{Y} \to \mathcal{V}$
- 2-cells = \mathcal{V} -natural transformations.

3. The bicategory of operads

 $\mathbf{Opd}_{\mathcal{V}} =_{\mathrm{def}} \mathrm{Bim}(\mathbf{Sym}_{\mathcal{V}})$

- 0-cells = \mathcal{V} -operads
- 1-cells = operad bimodules
- ▶ 2-cells = operad bimodule maps.

Note. The composition operation of $\mathbf{Opd}_{\mathcal{V}}$ obtained in this way generalizes Rezk's circle-over construction.

Remark. For an operad bimodule $F: (X, A) \to (Y, B)$, we define the analytic functor

$$F^{\sharp} \colon \operatorname{Alg}(A) \to \operatorname{Alg}(B)$$
$$M \mapsto F \circ_A M$$

These include restriction and extension functors.

Cartesian closed bicategories of bimodules

Theorem 2. Let \mathcal{E} be a bicategory with local reflexive coequalizers. If \mathcal{E} is cartesian closed, then so is $Bim(\mathcal{E})$.

Idea.

▶ Products

$$(X, A) \times (Y, B) = (X \times Y, A \times B)$$

Exponentials

$$\left[(X,A),(Y,B)\right] = \left([X,Y],[A,B]\right)$$

Note. The proof uses a homomorphism

$$\operatorname{Mnd}(\mathcal{E}) \to \operatorname{Bim}(\mathcal{E}),$$

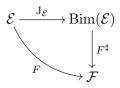
where $Mnd(\mathcal{E})$ is Street's bicategory of monads.

3. A universal property of the bimodule construction

Eilenberg-Moore completions

Let ${\mathcal E}$ be a bicategory with local reflexive coequalizers.

The bicategory $Bim(\mathcal{E})$ is the Eilenberg-Moore completion of \mathcal{E} as a bicategory with local reflexive coequalizers:



Note.

- ▶ This was proved independently by Garner and Shulman, extending work of Carboni, Kasangian and Walters.
- Different universal property from the Eilenberg-Moore completion studied by Lack and Street.

Theorem 3. The inclusion

 $\operatorname{Bim}(\mathbf{Sym}_{\mathcal{V}})\subseteq\operatorname{Bim}(\mathbf{CatSym}_{\mathcal{V}})$

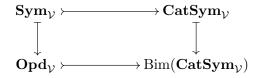
is an equivalence.

Idea. Every 0-cell of $CatSym_{\mathcal{V}}$ is an Eilenberg-Moore object for a monad in $Sym_{\mathcal{V}}$.

4. Proof of the main theorem

Theorem. The bicategory $\mathbf{Opd}_{\mathcal{V}}$ is cartesian closed.

Proof. Recall



Theorem 1 says that $\mathbf{CatSym}_{\mathcal{V}}$ is cartesian closed. So, by Theorem 2, $\operatorname{Bim}(\mathbf{CatSym}_{\mathcal{V}})$ is cartesian closed. But, Theorem 3 says

 $\mathbf{Opd}_{\mathcal{V}} = \operatorname{Bim}(\mathbf{Sym}_{\mathcal{V}}) \simeq \operatorname{Bim}(\mathbf{CatSym}_{\mathcal{V}}).$