The bicategory of operads is cartesian closed

Nicola Gambino
University of Palermo, University of Leeds

Joint work with André Joyal

British Mathematical Colloquium

Sheffield, March 26th 2013

References

1. A. Joyal, Une théorie combinatorie des séries formelles, 1982.
2. C. Rezk, Spaces of algebra structures and cohomology of operads, 1996.
3. M. Fiore, M. Hyland, N. Gambino and G. Winskel, The cartesian closed bicategory of generalised species of structures, 2008.
4. B. Fresse, Modules over operads and functors, 2009.

Bicategories

A bicategory \mathcal{E} consists of

- objects (X, Y, Z, \ldots)
- morphisms ($M: X \rightarrow Y, N: Y \rightarrow Z, \ldots$)
- 2-cells $\left(\alpha: M \Rightarrow M^{\prime}, \ldots\right)$
together with
- composition operations (e.g. $N \circ M: X \rightarrow Z$)
- identity morphisms and 2-cells (e.g. $1_{X}: X \rightarrow X$)
- associativity and unit isomorphisms

$$
\begin{gathered}
\alpha_{M, N, P}:(P \circ N) \circ M \Rightarrow P \circ(N \circ M), \\
\lambda_{M}: 1_{Y} \circ M \Rightarrow M, \quad \rho_{M}: M \circ 1_{X} \Rightarrow M,
\end{gathered}
$$

subject to axioms.

Examples

1. The bicategory Cat of small categories:

- objects = categories
- morphisms $=$ functors
- 2-cells $=$ natural transformations

2. For every monoidal category (\mathbb{C}, \otimes, I), we have a bicategory:

- objects $=\{*\}$
- morphisms $=$ objects of \mathbb{C}
- 2-cells $=$ arrows of \mathbb{C}

Example: $(\mathbf{A b}, \otimes, \mathbb{Z})$

Fix \mathcal{V} symmetric monoidal closed cocomplete category.
3. The bicategory \mathcal{V}-Mat of \mathcal{V}-matrices:

- objects $=$ sets
- morphisms $=$ functors

$$
M: A \times B \rightarrow \mathcal{V}
$$

- 2-cells $=$ natural transformations.

The composite of $M: A \times B \rightarrow \mathcal{V}, N: B \times C \rightarrow \mathcal{V}$ is

$$
N \circ M(a, c)={ }_{\operatorname{def}} \sum_{b \in B} M(a, b) \otimes N(b, c)
$$

Idea. Generalised relations.
4. The bicategory \mathcal{V}-Sym of symmetric \mathcal{V}-sequences:

- objects $=$ sets
- morphisms $=$ functors

$$
M: \Sigma_{*}(A) \times B \rightarrow \mathcal{V}
$$

- 2-cells $=$ natural transformations

Here, the category $\Sigma_{*}(A)$ has

- objects: sequences $\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i} \in A$
- morphisms:

$$
\left(a_{1}, \ldots, a_{n}\right) \rightarrow\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)
$$

given by $\sigma \in \Sigma_{n}$ such that $a_{i}^{\prime}=a_{\sigma(i)}$.

A symmetric sequence $M: \Sigma_{*}(A) \times B \rightarrow \mathcal{V}$ determines a functor

$$
M^{\sharp}: \mathcal{V}^{A} \rightarrow \mathcal{V}^{B}
$$

defined by
$M^{\sharp}(X, b)=\int^{\left(a_{1}, \ldots, a_{n}\right) \in \Sigma_{*}(A)} M\left(a_{1}, \ldots, a_{n} ; b\right) \otimes X\left(a_{1}\right) \otimes \ldots X\left(a_{n}\right)$
for $X \in \mathcal{V}^{A}, b \in B$.

Composition of morphisms in \mathcal{V}-Sym is defined so that

$$
(N \circ M)^{\sharp} \cong N^{\sharp} \cdot M^{\sharp}
$$

Monads and bimodules

Let \mathcal{E} be a bicategory.

Definition. A monad in \mathcal{E} consists of

- $X \in \mathcal{E}$
- $A: X \rightarrow X$
- $\mu: A \circ A \Rightarrow A, \eta: 1_{X} \Rightarrow A$
subject to associativity and unit axioms.

Examples:

- monads in $\mathbf{A b}=$ rings
- monads in \mathcal{V}-Mat $=$ small \mathcal{V}-categories
- monads in \mathcal{V}-Sym $=($ symmetric, coloured $) \mathcal{V}$-operads

Bimodules

Let $(X, A),(Y, B)$ be monads in \mathcal{E}.
Definition. An (A, B)-bimodule consists of

- $M: X \rightarrow Y$
- $\rho: M \circ A \Rightarrow M$
- $\lambda: B \circ M \Rightarrow M$
subject to the axioms for a right A-action, a left B-action and a commutation condition.

Examples:

- bimodules in $\mathbf{A b}=$ ring bimodules
- bimodules in \mathcal{V}-Mat $=$ functors $\mathbb{A}^{\mathrm{op}} \times \mathbb{B} \rightarrow \mathcal{V}$
- bimodules in \mathcal{V}-Sym $=$ operad bimodules

Bicategories of bimodules

Let \mathcal{E} be a bicategory with stable local reflexive coequalizers.
The bicategory $\operatorname{Bim}(\mathcal{E})$ of bimodules:

- objects $=$ monads in \mathcal{E}
- morphisms $=$ bimodules
- 2 -cells $=$ bimodule morphisms

The composite of $M:(X, A) \rightarrow(Y, B), N:(Y, B) \rightarrow(Z, C)$,

$$
N \circ_{B} M:(X, A) \rightarrow(Z, C),
$$

is

$$
N \circ B \circ M \xrightarrow[\rho \circ M]{\xrightarrow{N \circ \lambda}} N \circ M \longrightarrow N \circ_{B} M
$$

Note. Generalisation of the tensor product of bimodules.

Examples

The bicategory of distributors \mathcal{V}-Dist $=\operatorname{Bim}(\mathcal{V}$-Mat $)$ has:

- objects $=$ small \mathcal{V}-categories
- morphisms $=$ distributors, i.e. \mathcal{V}-functors $\mathbb{A}^{\mathrm{op}} \otimes \mathbb{B} \rightarrow \mathcal{V}$
- 2 -cells $=$ natural transformations.

The bicategory of operads \mathcal{V} - Opd $=_{\text {def }} \operatorname{Bim}(\mathcal{V}$-Sym $)$ has:

- objects $=\mathcal{V}$-operads
- morphisms $=$ operad bimodules
- 2-cells $=$ operad bimodule morphisms.

Cartesian closed bicategories

A bicategory \mathcal{E} is cartesian if it has

- a terminal object 1 , characterised by:
$\operatorname{Hom}_{\mathcal{E}}(X, 1) \simeq 1$
- binary products $Y_{1} \times Y_{2}$, characterised by

$$
\operatorname{Hom}_{\mathcal{E}}\left(X, Y_{1}\right) \times \operatorname{Hom}_{\mathcal{E}}\left(X, Y_{2}\right) \simeq \operatorname{Hom}_{\mathcal{E}}\left(X, Y_{1} \times Y_{2}\right)
$$

A bicategory \mathcal{E} is cartesian closed if it also has

- exponentials $[Y, Z]$, characterised by

$$
\operatorname{Hom}_{\mathcal{E}}(X \times Y, Z) \simeq \operatorname{Hom}_{\mathcal{E}}(X,[Y, Z])
$$

General result

Theorem. Let \mathcal{E} be a bicategory with stable local reflexive coequalizers. If \mathcal{E} is cartesian closed, then so is $\operatorname{Bim}(\mathcal{E})$.

Idea.

- Products

$$
\left(Y_{1}, B_{1}\right) \times\left(Y_{2}, B_{2}\right)=\left(Y_{1} \times Y_{2}, B_{1} \times B_{2}\right)
$$

- Exponentials

$$
[(X, A),(Y, B)]=([X, Y],[A, B])
$$

Application

Theorem. The bicategory \mathcal{V} - Opd is cartesian closed.

Proof.

Let \mathcal{E} be just as \mathcal{V}-Sym but objects are small \mathcal{V}-categories.

Observe:

1. \mathcal{E} is cartesian closed, by an extension of [FGHW]
2. $\operatorname{Bim}(\mathcal{E})$ is cartesian closed by general theorem
3. $\mathbf{O p d}=\operatorname{Bim}(\mathcal{V}-\mathbf{S y m}) \simeq \operatorname{Bim}(\mathcal{E})$.
