The bicategory of operads is cartesian closed

Nicola Gambino University of Palermo, University of Leeds

Joint work with André Joyal

British Mathematical Colloquium Sheffield, March 26th 2013

References

- 1. A. Joyal, Une théorie combinatorie des séries formelles, 1982.
- 2. C. Rezk, Spaces of algebra structures and cohomology of operads, 1996.
- 3. M. Fiore, M. Hyland, N. Gambino and G. Winskel, The cartesian closed bicategory of generalised species of structures, 2008.
- 4. B. Fresse, Modules over operads and functors, 2009.

Bicategories

- A bicategory \mathcal{E} consists of
 - objects (X, Y, Z, \dots)
 - morphisms $(M: X \to Y, N: Y \to Z, \dots)$
 - 2-cells $(\alpha : M \Rightarrow M', \dots)$

together with

- ▶ composition operations (e.g. $N \circ M : X \to Z$)
- identity morphisms and 2-cells (e.g. $1_X : X \to X$)
- associativity and unit isomorphisms

$$\alpha_{M,N,P} : (P \circ N) \circ M \Rightarrow P \circ (N \circ M),$$
$$\lambda_M : 1_Y \circ M \Rightarrow M, \quad \rho_M : M \circ 1_X \Rightarrow M,$$

subject to axioms.

Examples

- 1. The bicategory **Cat** of small categories:
 - \triangleright objects = categories
 - \blacktriangleright morphisms = functors
 - 2-cells = natural transformations

- 2. For every monoidal category $(\mathbb{C},\otimes,I),$ we have a bicategory:
 - objects = $\{*\}$
 - morphisms = objects of \mathbb{C}
 - ▶ 2-cells = arrows of \mathbb{C}

Example: $(\mathbf{Ab}, \otimes, \mathbb{Z})$

Fix \mathcal{V} symmetric monoidal closed cocomplete category.

- 3. The bicategory \mathcal{V} -Mat of \mathcal{V} -matrices:
 - \triangleright objects = sets
 - \blacktriangleright morphisms = functors

 $M\colon A\times B\to \mathcal{V}$

▶ 2-cells = natural transformations.

The composite of $M: A \times B \to \mathcal{V}, N: B \times C \to \mathcal{V}$ is

$$N \circ M(a,c) =_{\operatorname{def}} \sum_{b \in B} M(a,b) \otimes N(b,c).$$

Idea. Generalised relations.

- 4. The bicategory \mathcal{V} -Sym of symmetric \mathcal{V} -sequences:
 - \blacktriangleright objects = sets
 - \blacktriangleright morphisms = functors

$$M: \Sigma_*(A) \times B \to \mathcal{V}$$

 \blacktriangleright 2-cells = natural transformations

Here, the category $\Sigma_*(A)$ has

- objects: sequences (a_1, \ldots, a_n) with $a_i \in A$
- ▶ morphisms:

$$(a_1,\ldots,a_n) \to (a'_1,\ldots,a'_n)$$

given by $\sigma \in \Sigma_n$ such that $a'_i = a_{\sigma(i)}$.

A symmetric sequence $M\colon \Sigma_*(A)\times B\to \mathcal{V}$ determines a functor $M^\sharp:\mathcal{V}^A\to \mathcal{V}^B$

defined by

$$M^{\sharp}(X,b) = \int^{(a_1,\dots,a_n)\in\Sigma_*(A)} M(a_1,\dots,a_n;b)\otimes X(a_1)\otimes\dots X(a_n)$$

for $X \in \mathcal{V}^A, b \in B$.

Composition of morphisms in \mathcal{V} -Sym is defined so that

$$(N \circ M)^{\sharp} \cong N^{\sharp} \cdot M^{\sharp}$$

Monads and bimodules

Let ${\mathcal E}$ be a bicategory.

Definition. A monad in \mathcal{E} consists of

- $\blacktriangleright X \in \mathcal{E}$
- $\blacktriangleright A: X \to X$
- $\mu: A \circ A \Rightarrow A, \eta: 1_X \Rightarrow A$

subject to associativity and unit axioms.

Examples:

- monads in Ab = rings
- monads in \mathcal{V} -Mat = small \mathcal{V} -categories
- ▶ monads in \mathcal{V} -**Sym** = (symmetric, coloured) \mathcal{V} -operads

Bimodules

Let (X, A), (Y, B) be monads in \mathcal{E} .

Definition. An (A, B)-bimodule consists of

- $\blacktriangleright M: X \to Y$
- $\blacktriangleright \ \rho: M \circ A \Rightarrow M$
- $\blacktriangleright \ \lambda : B \circ M \Rightarrow M$

subject to the axioms for a right A-action, a left B-action and a commutation condition.

Examples:

- \blacktriangleright bimodules in Ab = ring bimodules
- ▶ bimodules in \mathcal{V} -**Mat** = functors $\mathbb{A}^{\mathrm{op}} \times \mathbb{B} \to \mathcal{V}$
- bimodules in \mathcal{V} -**Sym** = operad bimodules

Bicategories of bimodules

Let \mathcal{E} be a bicategory with stable local reflexive coequalizers.

The bicategory $\mathbf{Bim}(\mathcal{E})$ of bimodules:

- objects = monads in \mathcal{E}
- \blacktriangleright morphisms = bimodules
- \triangleright 2-cells = bimodule morphisms

The composite of $M : (X, A) \to (Y, B), N : (Y, B) \to (Z, C),$

$$N \circ_B M : (X, A) \to (Z, C)$$
,

is

$$N \circ B \circ M \xrightarrow[\rho \circ M]{N \circ \lambda} N \circ M \longrightarrow N \circ_B M$$

Note. Generalisation of the tensor product of bimodules.

Examples

The bicategory of distributors \mathcal{V} -**Dist** = **Bim**(\mathcal{V} -**Mat**) has:

- objects = small \mathcal{V} -categories
- ▶ morphisms = distributors, i.e. \mathcal{V} -functors $\mathbb{A}^{\mathrm{op}} \otimes \mathbb{B} \to \mathcal{V}$
- ▶ 2-cells = natural transformations.

The bicategory of operads \mathcal{V} -**Opd** =_{def} **Bim**(\mathcal{V} -**Sym**) has:

- objects = \mathcal{V} -operads
- \blacktriangleright morphisms = operad bimodules
- ▶ 2-cells = operad bimodule morphisms.

Cartesian closed bicategories

A bicategory ${\mathcal E}$ is **cartesian** if it has

▶ a terminal object 1, characterised by:

 $\operatorname{Hom}_{\mathcal{E}}(X,1)\simeq \mathbf{1}$

• binary products $Y_1 \times Y_2$, characterised by

 $\operatorname{Hom}_{\mathcal{E}}(X, Y_1) \times \operatorname{Hom}_{\mathcal{E}}(X, Y_2) \simeq \operatorname{Hom}_{\mathcal{E}}(X, Y_1 \times Y_2)$

- A bicategory \mathcal{E} is **cartesian closed** if it also has
 - exponentials [Y, Z], characterised by

 $\operatorname{Hom}_{\mathcal{E}}(X \times Y, Z) \simeq \operatorname{Hom}_{\mathcal{E}}(X, [Y, Z]).$

General result

Theorem. Let \mathcal{E} be a bicategory with stable local reflexive coequalizers. If \mathcal{E} is cartesian closed, then so is $Bim(\mathcal{E})$.

Idea.

▶ Products

$$(Y_1, B_1) \times (Y_2, B_2) = (Y_1 \times Y_2, B_1 \times B_2)$$

Exponentials

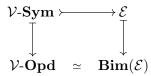
$$\left[(X,A),(Y,B)\right] = \left([X,Y],[A,B]\right)$$

Application

Theorem. The bicategory \mathcal{V} -**Opd** is cartesian closed.

Proof.

Let \mathcal{E} be just as \mathcal{V} -Sym but objects are small \mathcal{V} -categories.



Observe:

- 1. ${\mathcal E}$ is cartesian closed, by an extension of [FGHW]
- 2. $\mathbf{Bim}(\mathcal{E})$ is cartesian closed by general theorem
- 3. $\mathbf{Opd} = \mathbf{Bim}(\mathcal{V}\text{-}\mathbf{Sym}) \simeq \mathbf{Bim}(\mathcal{E}).$