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Bicategories

A bicategory E consists of

I objects (X,Y, Z, . . . )

I morphisms (M : X → Y , N : Y → Z, . . . )

I 2-cells (α : M ⇒M ′, . . . )

together with

I composition operations (e.g. N ◦M : X → Z)

I identity morphisms and 2-cells (e.g. 1X : X → X)

I associativity and unit isomorphisms

αM,N,P : (P ◦N) ◦M ⇒ P ◦ (N ◦M) ,

λM : 1Y ◦M ⇒M , ρM : M ◦ 1X ⇒M ,

subject to axioms.



Examples

1. The bicategory Cat of small categories:

I objects = categories

I morphisms = functors

I 2-cells = natural transformations

2. For every monoidal category (C,⊗, I), we have a bicategory:

I objects = {∗}
I morphisms = objects of C
I 2-cells = arrows of C

Example: (Ab,⊗,Z)



Fix V symmetric monoidal closed cocomplete category.

3. The bicategory V-Mat of V-matrices:

I objects = sets

I morphisms = functors

M : A×B → V

I 2-cells = natural transformations.

The composite of M : A×B → V , N : B × C → V is

N ◦M(a, c) =def

∑
b∈B

M(a, b)⊗N(b, c) .

Idea. Generalised relations.



4. The bicategory V-Sym of symmetric V-sequences:

I objects = sets

I morphisms = functors

M : Σ∗(A)×B → V

I 2-cells = natural transformations

Here, the category Σ∗(A) has

I objects: sequences (a1, . . . , an) with ai ∈ A
I morphisms:

(a1, . . . , an)→ (a′1, . . . , a
′
n)

given by σ ∈ Σn such that a′i = aσ(i) .



A symmetric sequence M : Σ∗(A)×B → V determines a functor

M ] : VA → VB

defined by

M ](X, b) =

∫ (a1,...,an)∈Σ∗(A)

M(a1, . . . , an; b)⊗X(a1)⊗ . . . X(an)

for X ∈ VA, b ∈ B.

Composition of morphisms in V-Sym is defined so that

(N ◦M)] ∼= N ] ·M ]



Monads and bimodules

Let E be a bicategory.

Definition. A monad in E consists of

I X ∈ E
I A : X → X

I µ : A ◦A⇒ A, η : 1X ⇒ A

subject to associativity and unit axioms.

Examples:

I monads in Ab = rings

I monads in V-Mat = small V-categories

I monads in V-Sym = (symmetric, coloured) V-operads



Bimodules

Let (X,A), (Y,B) be monads in E .

Definition. An (A,B)-bimodule consists of

I M : X → Y

I ρ : M ◦A⇒M

I λ : B ◦M ⇒M

subject to the axioms for a right A-action, a left B-action and a
commutation condition.

Examples:

I bimodules in Ab = ring bimodules

I bimodules in V-Mat = functors Aop × B→ V
I bimodules in V-Sym = operad bimodules



Bicategories of bimodules

Let E be a bicategory with stable local reflexive coequalizers.

The bicategory Bim(E) of bimodules:

I objects = monads in E
I morphisms = bimodules

I 2-cells = bimodule morphisms

The composite of M : (X,A)→ (Y,B) , N : (Y,B)→ (Z,C),

N ◦B M : (X,A)→ (Z,C) ,

is

N ◦B ◦M
N◦λ //

ρ◦M
// N ◦M // N ◦B M

Note. Generalisation of the tensor product of bimodules.



Examples

The bicategory of distributors V-Dist = Bim(V-Mat) has:

I objects = small V-categories

I morphisms = distributors, i.e. V-functors Aop ⊗ B→ V
I 2-cells = natural transformations.

The bicategory of operads V-Opd =def Bim(V-Sym) has:

I objects = V-operads

I morphisms = operad bimodules

I 2-cells = operad bimodule morphisms.



Cartesian closed bicategories

A bicategory E is cartesian if it has

I a terminal object 1, characterised by:

HomE(X, 1) ' 1

I binary products Y1 × Y2, characterised by

HomE(X,Y1)×HomE(X,Y2) ' HomE(X,Y1 × Y2)

A bicategory E is cartesian closed if it also has

I exponentials [Y,Z], characterised by

HomE
(
X × Y, Z

)
' HomE

(
X, [Y,Z]

)
.



General result

Theorem. Let E be a bicategory with stable local reflexive
coequalizers. If E is cartesian closed, then so is Bim(E).

Idea.

I Products

(Y1, B1)× (Y2, B2) = (Y1 × Y2, B1 ×B2)

I Exponentials[
(X,A), (Y,B)

]
=
(
[X,Y ], [A,B]

)



Application

Theorem. The bicategory V-Opd is cartesian closed.

Proof.

Let E be just as V-Sym but objects are small V-categories.

V-Sym_

��

// // E_

��

V-Opd ' Bim(E)

Observe:

1. E is cartesian closed, by an extension of [FGHW]

2. Bim(E) is cartesian closed by general theorem

3. Opd = Bim(V-Sym) ' Bim(E).


