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Theme: property vs structure

Fundamental distinction:

I satisfaction of a property

I the existence of additional structure.

Examples:

I categories with finite products

I fibrations.

Sometimes ignoring this distinction is not harmful.

But sometimes things become more subtle:

I choices are unique up to higher and higher homotopies

I coherence issues

I constructivity issues.
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Outline

Part I: Context and motivation

I Homotopy type theory

I The simplicial model

Part II: Uniform fibrations

I Algebraic weak factorization systems

I Uniform (trivial) fibrations

Part III: The Frobenius property

I Strong homotopy equivalences
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Part I: Context and motivation
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Homotopy type theory

Martin-Löf’s type theory (ML) + Voevodsky’s univalence axiom (UA)

Key aspects

I Isomorphic structures can be identified

I Concise definition of weak n-groupoid

Note

I Does not admit set-theoretic models

I Known models are homotopy-theoretic
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Motivation from mathematical logic

Relative consistency problem

I Assume that ML is consistent. Is ML + UA consistent?

Line of attack

I Define a model of ML + UA working within ML

Issue

I Simplicial model of ML + UA is defined working in ZFC

I Can we redevelop it constructively?
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Motivation from homotopy theory

Problem

I Can we develop homotopy theory without minimal fibrations?

Minimal fibrations are not very explicit, and often just tools.

Examples

(1) Existence of model structure for Kan complexes

(2) Right properness

Recent progress

(1) Proof by Christian Sattler

(2) Today
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Categorical setting

Definition. A model of homotopy type theory consists of

I a category E with a terminal object 1,

I a class Fib of maps, called fibrations, subject to axioms.

Some axioms

(1) Pullbacks of fibrations exist and are fibrations, i.e. for every
map f :B → A, we have f ∗ : Fib/A→ Fib/B

(2) For every fibrant object A, we have a factorization

A
∆A //

i
!!

A× A

IdA

p

;;

where p ∈ Fib and i ∈ tFib.

(3) If f :B → A is a fibration, f ∗ : Fib/A→ Fib/B has a right adjoint.
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Examples from homotopy theory

Fix E with a model structure (Weq,Fib,Cof).

Let TrivFib = Weq ∩ Fib , TrivCof = Weq ∩ Cof.

Is (E ,Fib) a model of homotopy type theory?

Checking the axioms:

(1) X (pullbacks exist and preserve fibrations)

(2) X (given by factorization axiom)

(3) It would suffice to show that for a fibration p :B → A, we have

E/A
p∗

//
⊥ E/B
p∗

oo

where the right adjoint p∗ (pushforward) preserves fibrations.

But we do not know this in general!
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The Frobenius property

Remark. Let p :B → A be a fibration. TFAE:

(i) pushforward p∗ : E/B → E/A preserves fibrations

(ii) pullback p∗ : E/A→ E/B preserves trivial cofibrations.

Note. The second statement refers only to (TrivCof,Fib).

Definition. We say that a wfs (L,R) has the Frobenius property if
pullback along R-maps preserves L-maps.

Remark. Assume that Cof = {monomorphisms}. TFAE:

(i) The wfs (TrivCof,Fib) has the Frobenius property.

(ii) The model structure is right proper, i.e. pullback of weak
equivalences along fibrations are weak equivalences.
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Example: simplicial sets

Let SSet be the category of simplicial sets.

We consider the model structure:

I Weq = {weak homotopy equivalences}
I Fib = {Kan fibrations}
I Cof = {monomorphisms}

Proofs of right properness:

I via geometric realization (see Hovey, Hirschhorn)

I via minimal fibrations (Joyal and Tierney)
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Constructivity issues

Theorem (Bezem, Coquand, Parmann).

The right properness of SSet cannot be proved constructively, i.e.
without the law of excluded middle.

How can we fix this?

Coquand’s approach

I Switch from simplicial sets to cubical sets

I Work with uniform fibrations

Idea

I Work with uniform fibrations

I Keep simplicial sets

As a byproduct, we get a new proof of right properness of SSet.
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Part II: Uniform fibrations
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Algebraic weak factorization systems

Recall that in a weak factorization system (L,R), we often ask for

I functorial factorizations, i.e. functors such that

A
f //

Lf   

B

Kf

Rf

>>

gives the required factorization.

In an algebraic weak factorization system, we ask also that

I L has the structure of a comonad,

I R has the structure of a monad,

I a distributive law between L and R.

Grandis and Tholen (2006), Garner (2009).
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The algebraic setting

Fix a category E . Let u : I → E→ be a functor.

Definition. A right I-map is a map f :B → A in E equipped with

I a function φ which assigns a diagonal filler

Xi
s //

ui
��

B

f
��

Yi t
//

77

A

where i ∈ I, subject to a uniformity condition:

Xj
//

uj

��

Xi
s //

��

B

f
��

Yj
//

33

Yi t
//

77

A

It = category of right I-maps.
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Goals

Working in SSet, we want:

1. To construct an algebraic weak factorization system (TrivCof,Fib)

2. To show that (TrivCof,Fib) has the Frobenius property.

Preliminary step:

I To construct an algebraic weak factorization system (Cof,TrivFib)

The approach is inspired by Cisinski’s theory.
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Uniform trivial fibrations

Let Mono be the sub-category of SSet→ of

I monomorphisms

I pullback squares

Write u : Mono→ SSet→ for the inclusion.

Definition. A uniform trivial fibration is a right Mono-map, i.e. a map
f :B → A in SSet together with a function which assigns fillers

X
s //

i
��

B

f
��

Y
t

//

77

A

where i :X → Y is a monomorphism, subject to uniformity.

TrivFib = Monot = category of uniform trivial fibrations.
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Uniform fibrations (I)

Let δk : {k} → ∆1 be the endpoint inclusions, k ∈ {0, 1}.

For a monomorphism i :X → Y , we have the pushout product

{k} × X
{k}×i

//

δk×X
��

{k} × Y

��
δk×Y

��

∆1 × X //

∆1×i //

•
δk×̂i

))

∆1 × Y

A subcategory Cyl ⊆ SSet→ with objects the “cylinder inclusions”

δk×̂i : (∆1 × X ) ∪ ({k} × Y )︸ ︷︷ ︸
•

→ ∆1 × Y



20

Uniform fibrations (II)

Definition. A uniform fibration is a right Cyl-map, i.e. a map p :B → A
in SSet together with a function which assigns fillers

(∆1 × X ) ∪ ({k} × Y ) //

δk×̂i
��

B

p

��

∆1 × Y //

44

A

where k ∈ {0, 1}, i :X → Y is a monomorphism, subject to uniformity.

Fib = Cylt = category of uniform fibrations.

Theorem (ZFC). A map is a (trivial) fibration in the usual sense if and
only if it can be equipped with the structure of a uniform (trivial)
fibration.
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The algebraic weak factorization systems

Theorem.

The category SSet admits two algebraic weak factorization systems:

1. (Cof,TrivFib)

2. (TrivCof,Fib).

Proof.

I Use Garner’s algebraic small object argument

I For this, isolate a small category I such that

It = Monot (= TrivFib)

I E.g. I = {monomorphisms with representable codomain}.

Note. Algebraic aspect is essential to work constructively.
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Part III: The Frobenius property



23

Plan
For simplicity, we work in the non-algebraic setting.

We have:

I a weak factorization system (TrivCof,Fib)

I a class of maps Cyl such that Cylt = Fib

To show:

I for p :B → A in Fib, pullback

p∗ : SSet/A→ SSet/B

preserves trivial cofibrations, i.e. for all

Y

g

��

// X

f
��

B
p
// A

we have f ∈ TrivCof ⇒ g ∈ TrivCof.
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Outline of the proof

Define the class SHeq of strong homotopy equivalences

Step 1

I characterize strong homotopy equivalences as retracts

Step 2

I Show SHeq ∩Mono ⊆ Cyl

I Show Cyl ⊆ SHeq ∩Mono

Step 3

I Prove the Frobenius property for SHeq ∩Mono
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Strong homotopy equivalences

Definition. A map f :X → A is a strong homotopy equivalence if there
exist

g :A→ X , φ : 1X ∼ g ◦ f ψ : 1A ∼ f ◦ g

such that

∆1 × X
∆1×f

//

φ

��

∆1 × A

ψ

��

X
f

// A

Example. The endpoint inclusions δk : {k} → ∆1.
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Step 1: a characterisation

Lemma. A map f :X → A is a strong homotopy equivalence if and only
if the canonical square

X
δ0×X

//

f

��

(∆1 × X )
ι1 // (∆1 × X ) +X A

δ1×̂f
��

A
δ0×A

// ∆1 × A

exhibits f as a retract of δ1×̂f , i.e. we have

X

f

��

// (∆1 × X ) +X A

δ1×̂f
��

s // X

f

��

A
δ0×A

// ∆1 × A
t

// A

where the horizontal composites are identities.
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Step 2

Lemma. We have

(i) SHeq ∩Mono ⊆ Cyl

(ii) Cyl ⊆ SHeq ∩Mono

Proof.

(i) Let f ∈ SHeq ∩Mono.

Since f ∈ SHeq, by Step 1, we have that f is a retract of δ1×̂f .

Since f ∈Mono, we have δ1×̂f ∈ Cyl.

(ii) Each δ1×̂f ∈ Cyl is both in SHeq and in Mono.
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Step 3

Theorem. The weak factorization system (TrivCof,Fib) has the
Frobenius property.

Proof. We need to show that for every pullback

Y

g

��

// X

f
��

B
p
// A

where p ∈ Fib, we have

f ∈ TrivCof ⇒ g ∈ TrivCof

But by Step 2, it suffices to show

f ∈ SHeq ∩Mono⇒ g ∈ SHeq ∩Mono
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End of the proof
So let f ∈ SHeq ∩Mono. To show: g ∈ SHeq ∩Mono.
By Step 1 and some diagram-chasing, we need

B

p

��

δ0×B
// ∆1 × B //

��

B

p

��

A
δ0×A

// ∆1 × A
t

// A

Here t is part of the data making f into a retract of δ1×̂f .

Such a map is given by a diagonal filler:

B
1B //

δ0×B
��

B

p

��

∆1 × B
∆1×p

//

33

∆1 × A
t

// A

This exists since δ0 × B ∈ Cyl and p ∈ Fib.
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Remarks

Corollary. The model structure (Weq,Fib,Cof) is right proper.

The argument in the algebraic setting is slighly more involved.

Everything generalizes from SSet to a presheaf category E with

I a functorial cylinder with contractions and connections

I a class of monomorphisms M satisfying some basic assumptions:

1. Closed under pullback
2. Closed under pushout product with endpoint inclusions
3. All maps 0 → X are in M
4. . . .

Example

I uniform fibrations in cubical sets (Bezem, Coquand, Huber)
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Conclusion

I Two algebraic weak factorization systems on SSet:

1. (Cof,TrivFib)

2. (TrivCof,Fib)

such that (TrivCof,Fib) satisfies the Frobenius property.

I Hence, pushforward along fibrations preserves fibrations.

I We obtain new proof of right properness.

To get a model of the univalence axiom, one needs to construct a
suitable universal fibration.

Again, there are constructivity issues in simplicial sets.

But, at least for cubical sets, it is possible to give an abstract account of
the work of Coquand et al. (Sattler)


