Exercise Sheet 1

AILA Summer School

August 23rd, 2023

- 1. Prove in detail that the following are indeed categories:
 - (a) Grp, the category of groups and group homomorphisms;
 - (b) Top, the category of topological spaces and continuous functions;
 - (c) Another example of your choice.
- 2. Find a terminal object in the following categories:
 - (a) **Set**, the category of sets and functions;
 - (b) Rel, the category of sets and relations.
- 3. Let \mathbb{C} be a category, $f: X \to Y$ a map in \mathbb{C} . An **inverse** of f is a map $g: Y \to X$ such that

$$g \circ f = 1_X$$
, $f \circ g = 1_Y$.

We say that *f* is an **isomorphism** if it admits an inverse.

- (a) Prove that an inverse of f, if it exists, is unique.
- (b) Prove that the composite of two isomorphisms is an isomorphism and that identities are isomorphisms.
- (c) Prove that functors preserve isomorphisms, i.e. that if $f: X \to Y$ is an isomorphism in \mathbb{C} and $F: \mathbb{C} \to \mathbb{D}$ is a functor, then $Ff: FX \to FY$ is an isomorphism in \mathbb{D} .
- (d) Let \mathbb{C} be a category and $f: X \to Y$ an isomorphism in \mathbb{C} . Prove that for every $Z \in \mathbb{C}$, the functions defined by composition with f

$$\mathbb{C}[Y, Z] \xrightarrow{(-) \circ f} \mathbb{C}[X, Z] \qquad \mathbb{C}[Z, X] \xrightarrow{f \circ (-)} \mathbb{C}[Z, Y]$$

are bijections.

- 4. Prove that a terminal object in a category, if it exists, is unique up to unique isomorphism.
- 5. (a) Let $F : \mathbb{C} \to \mathbb{D}$, $F' : \mathbb{C} \to \mathbb{D}$ be functors and $\alpha : F \Rightarrow F'$ be a natural transformation between them. For a functor $G : \mathbb{D} \to \mathbb{E}$, define a family of maps $GFX \to GF'X$ in \mathbb{E} , for $X \in \mathbb{C}$, and prove that this forms a natural transformation, which we will denote $G\alpha : GF \Rightarrow GF'$.
 - (b) Let $G: \mathbb{D} \to \mathbb{E}$, $G': \mathbb{D} \to \mathbb{E}$ be functors and $\beta: G \Rightarrow G'$ be a natural transformation between them. For a functor $F: \mathbb{C} \to \mathbb{D}$, define a family of maps $GFX \to G'FX$ in \mathbb{E} , for $X \in \mathbb{C}$, and prove that it is a natural transformation, which we will denote $\beta F: GF \Rightarrow G'F$.

(c) Let $F: \mathbb{C} \to \mathbb{D}$, $F': \mathbb{C} \to \mathbb{D}$, $G: \mathbb{D} \to \mathbb{E}$, $G': \mathbb{D} \to \mathbb{E}$ be functors, $\alpha: F \Rightarrow F'$ and $\beta: G \Rightarrow G'$ be natural transformations. By part (a), we have natural transformations

 $G\alpha: GF \Rightarrow GF', \qquad G'\alpha: G'F \Rightarrow G'F'.$

By part (b), we also have natural transformations

$$\beta F \colon GF \Rightarrow G'F$$
, $\beta F' \colon GF' \Rightarrow G'F'$.

Prove that the following diagram of natural transformations commutes:

$$\begin{array}{c|c} GF \xrightarrow{G\alpha} GF' \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & G'F \xrightarrow{G'\alpha} G'F' . \end{array}$$

We will denote the value of the composite as $\beta \alpha \colon GF \Rightarrow G'F'$.