Differential λ-calculus and analytic functors

Nicola Gambino

Department of Mathematics
University of Manchester

XXVII Incontro di Logica - AILA

September 14th, 2022

Overview

Goal. Define a model of the

- differential λ-calculus [Ehrhard and Regnier]
using
- anaytic functors [Joyal]

Based on joint works with M. Fiore, M. Hyland, A. Joyal, G. Winskel.

Key idea: $\quad f(x)=\sum_{n=0}^{\infty} f_{n} \frac{x^{n}}{n!} \quad \Rightarrow \quad f^{\prime}(x)=\sum_{n=0}^{\infty} f_{n+1} \frac{x^{n}}{n!}$

Outline of the talk

Part I: Syntax

- Review of λ-calculus
- Differential λ-calculus

Part II: The relational model

- Relations
- Differential structure

Part III: Analytic functors

- Profunctors
- Differential structure

Part I: Syntax

Simply-typed λ-calculus

Product types

$$
\frac{a: A \quad b: B}{\operatorname{pair}(a, b): A \times B} \quad \frac{c: A \times B}{\pi_{1}(c): A} \quad \frac{c: A \times B}{\pi_{2}(c): B}
$$

Function types

$$
\frac{x: A \vdash b: B}{(\lambda x: A) b: B^{A}} \quad \frac{f: B^{A} \quad a: A}{\operatorname{app}(f, a): B}
$$

The β-rule

$$
\operatorname{app}((\lambda x: A) b, a)=b[a / x]: B
$$

Cartesian closed categories

\mathcal{C} a cartesian closed category.

Binary products

- There are $\pi_{1}: A \times B \rightarrow A$ and $\pi_{2}: A \times B \rightarrow B$ such that

$$
\mathcal{C}[X, A \times B] \xrightarrow{\left(\pi_{1}, \pi_{2}\right) \circ(-)} \mathcal{C}[X, A] \times \mathcal{C}[X, B]
$$

is a bijection.

Exponentials

- There is app: $B^{A} \times A \rightarrow B$ such that

$$
\mathcal{C}\left[X, B^{A}\right] \xrightarrow{(-) \times A} \mathcal{C}\left[X \times A, B^{A} \times A\right] \xrightarrow{\text { appo(-) }} \mathcal{C}[X \times A, B]
$$

is a bijection.

Substitution

Syntax. For $x: A \vdash b: B$ and $\Gamma \vdash a: A$,

- $b[a / x]$ is defined by structural induction on b.

Semantics. For $b: A \rightarrow B$ and $a: \Gamma \rightarrow A$,

- $b[a / x]$ is given by composition

$$
\Gamma \xrightarrow{a} A \xrightarrow{b} B
$$

The naturality of the adjunctions ensures that these match.

The differential λ-calculus (I)

For a differentiable map $f: A \rightarrow B$ and $x \in A$, we have a linear map (the Jacobian):

$$
\begin{array}{rlc}
f^{\prime}(x): A & \longrightarrow & B \\
a & \longmapsto f^{\prime}(x) \cdot a \tag{1}
\end{array}
$$

Transposing, for $a \in A$, we obtain a (generally) non-linear map:

$$
\begin{array}{rlcc}
f^{\prime}(x): & A & \longrightarrow & B \\
x & \longmapsto & f^{\prime}(x) \cdot a \tag{2}
\end{array}
$$

Differentiation rule [Ehrhard-Regnier]. This corresponds to (2).

$$
\frac{\Gamma \vdash f: B^{A} \quad \Delta \vdash a: A}{\Gamma, \Delta \vdash \mathrm{D} f \cdot a: B^{A}}
$$

We think of a as being applied linearly.

The differential λ-calculus (II)

Fix a commutative rig R and allow linear combinations of λ-terms.
The differential β-rule:

$$
\mathrm{D}((\lambda x: A) b) \cdot a=\lambda x\left(\frac{\partial b}{\partial x} \cdot a\right)
$$

where $\frac{\partial b}{\partial x} \cdot a$ is the linear substitution of a in b.
This is defined by structural induction on b.

Idea: "Sum of all terms obtained by replacing one linear occurrence of x in b with a."

Models

Questions

- How to find models?
- What equations are needed in order to model linear substitution?

Concrete models

- Köthe spaces (some topological vector spaces) [Ehrhard]
- Finiteness spaces [Ehrhard]
- Relational model [Blute, Cockett, Seely], [Ehrhard], [Hyland]

Categorical axiomatisations. Differential categories and variants:

- [Blute, Cockett, Seely]
- [Fiore]
- [Lemay], [Cockett and Lemay]
- [Manzonetto]

Part II: The relational model

The category of relations

Define the category Rel as follows.

- Objects: sets
- Morphisms: relations

$$
F: A \rightarrow B \quad \text { is } \quad F \subseteq B \times A
$$

- Composition: for $A \xrightarrow{F} B \xrightarrow{G} C$ we define

$$
(G \circ F)(c, a)=(\exists b \in B) G(c, b) \wedge F(b, a)
$$

- Identity: for a set A, we define $1_{A}: A \rightarrow A$ by

$$
1_{A}(a, b)= \begin{cases}1 & \text { if } a=b \\ 0 & \text { otherwise }\end{cases}
$$

Structure of Rel

- Symmetric monoidal structure: $A \times B$
- Closed structure (internal hom): $A \multimap B=_{\operatorname{def}} B \times A$, since

$$
\operatorname{Rel}[A \times B, C] \cong \operatorname{Rel}[A, B \multimap C]
$$

- Binary products: $A+B$, since

$$
\operatorname{Rel}[X, A] \times \operatorname{Rel}[X, B] \cong \operatorname{Rel}[X, A+B]
$$

- Terminal object: 0 , since

$$
\operatorname{Rel}[X, 0] \cong 1
$$

The exponential modality

For $A \in \mathbf{R e l}$, define

$$
\begin{aligned}
!A & =\text { free commutative monoid on } A \\
& =\text { set of multisets } \alpha=\left[a_{1}, \ldots, a_{n}\right] \text { of elements of } A
\end{aligned}
$$

This is a comonad, with

$$
\mathrm{d}_{A}:!A \rightarrow A \quad \mathrm{p}_{A}:!A \rightarrow!!A
$$

defined by

$$
\mathrm{d}_{A}(a, \alpha) \Leftrightarrow[a]=\alpha \quad \mathrm{p}_{A}\left(\left[\alpha_{1}, \ldots, \alpha_{n}\right], \alpha\right) \Leftrightarrow \alpha_{1}+\ldots+\alpha_{n}=\alpha
$$

Seely isomorphisms:

- $!(A+B) \cong!A \times!B$ and $!0=1$.

Theorem [Folklore]. Rel is a (degenerate) model of classical linear logic.

The Kleisli category

Define the category Rel! as follows.

- Objects: sets
- Morphisms: relations $F:!A \rightarrow B$
- Composition: given $F:!A \rightarrow B$ and $G:!B \rightarrow C$, consider

$$
!A \xrightarrow{\mathrm{P}_{A}}!!A \xrightarrow{!F}!B \xrightarrow{G} C
$$

- Identity: for A, consider $d_{A}:!A \rightarrow A$.

Idea:

- Rel $=$ sets and linear maps, Rel $_{!}=$sets and non-linear maps
- Given $F: A \rightarrow B$ linear, we obtain $!A \xrightarrow{\mathrm{~d}_{A}} A \xrightarrow{F} B$
- $\operatorname{Pt}(A)={ }_{\operatorname{def}} \operatorname{Rel}[0, A]=\operatorname{Rel}[!0, A]=\operatorname{Rel}[1, A]=\operatorname{Pow}(A)$.

The cartesian closed structure

- Binary products

$$
\begin{aligned}
\operatorname{Rel}_{!}[X, A] \times \operatorname{Rel}_{!}[X, B] & =\operatorname{Rel}[!X, A] \times \operatorname{Rel}[!X, B] \\
& \cong \operatorname{Rel}[!X, A+B]
\end{aligned}
$$

- Exponentials

$$
\begin{aligned}
\operatorname{Rel}_{!}[X+A, B] & =\operatorname{Rel}[!(X+A), B] \\
& \cong \operatorname{Rel}[!X \times!A, B] \\
& \cong \operatorname{Rel}[!X,!A \multimap B] \\
& \cong \operatorname{Rel}[!X,!A \multimap B] \\
& =\operatorname{Rel}_{!}\left[X, B^{A}\right]
\end{aligned}
$$

where $B^{A}={ }_{\text {def }}!A \multimap B$.

Differential structure (I)

Want:

$$
\frac{F:!A \rightarrow B}{\mathrm{~d} F:!A \times A \rightarrow B}
$$

Idea (Differential categories). [Blute, Cockett, Seely]

- it suffices to have maps $\partial_{A}:!A \times A \rightarrow!A$. Then $\mathrm{d} F$ is obtained as

$$
!A \times A \xrightarrow{\partial_{A}}!A \xrightarrow{F} B
$$

- it suffices to have maps $\bar{d}_{A}: A \rightarrow!A$. Then $\mathrm{d} F$ is obtained as

$$
!A \times A \xrightarrow{1 \times \bar{d}_{A}}!A \times!A \xrightarrow{\bar{c}_{A}}!A \xrightarrow{F} B
$$

Differential structure (II)

Explicitly:

- define $\bar{d}_{A}: A \rightarrow!A$ by

$$
\bar{d}_{A}(\alpha, a) \Leftrightarrow \alpha=[a]
$$

- define $\partial_{A}:!A \times A \rightarrow!A$ by

$$
\partial_{A}(\beta,(\alpha, a)) \Leftrightarrow \beta=\alpha+[a]
$$

- define $\mathrm{d} F:!A \times A \rightarrow B$ by

$$
\mathrm{d} F(b,(\alpha, a)) \Leftrightarrow F(b, \alpha+[a])
$$

Note: Shift of one from α to $\alpha+[a]$.
Theorem. [BCS], [Ehrhard], [Hyland] The rules of differential λ-calculus hold in Rel!.

Differential structure (III)

Example. Say $F:!A \rightarrow B$ is constant if there is $T \subseteq B$ such that

in Rel. This means

$$
F(b, \alpha) \quad \Leftrightarrow \quad w_{A}(*, \alpha) \wedge T(b, *) \quad \Leftrightarrow \quad \alpha=[] \wedge b \in T
$$

Proposition. If F constant, then $\mathrm{d} F=0$.
Proof. $\mathrm{d} F(b,(\alpha, a)) \Leftrightarrow F(b, \alpha+[a]) \Leftrightarrow \alpha+[a]=[] \wedge b \in T \quad \Leftrightarrow \quad \perp$
Note. The axioms can be expressed in terms of d_{A}.

Part III: Analytic functors

Profunctors

A 'categorification' of relations [Bénabou], [Lawvere].
Definition. Let A, B be small categories. $\mathrm{A}(B, A)$-profunctor is a functor

$$
F: B^{\mathrm{op}} \times A \rightarrow \text { Set }
$$

Some intuition

- $F(b, a)$ is the set of 'proofs' that b and a are related.
- Sets $F(b, a)$, together with actions

$$
F(b, a) \times A\left[a, a^{\prime}\right] \rightarrow F\left(b, a^{\prime}\right), \quad B\left[b^{\prime}, b\right] \times F(b, a) \rightarrow F\left(b^{\prime}, a\right)
$$

Example. For a small category A, we have

$$
A[-,-]: A^{\mathrm{op}} \times A \rightarrow \text { Set }
$$

The bicategory of profunctors

Define the bicategory Prof as follows.

- Objects: small categories
- Morphisms: profunctors

$$
F: A \rightarrow B \quad \text { is } \quad F: B^{\mathrm{op}} \times A \rightarrow \text { Set }
$$

- 2-cells: natural transformations
- Horizontal composition: for $A \xrightarrow{F} B \xrightarrow{G} \mathbb{C}$ we define

$$
(G \circ F)(c, a)=\int^{b \in B} G(c, b) \times F(b, a)
$$

- Identity: for a small category A, we define $1_{A}: A \rightarrow A$ by

$$
1_{A}(b, a)=A[b, a]
$$

The structure of Prof

- Symmetric monoidal structure: $A \times B$
- Closed structure (internal hom): $A \multimap B={ }_{\operatorname{def}} B \times A^{\mathrm{op}}$, since

$$
\operatorname{Prof}[X \times A, B] \cong \operatorname{Prof}[X, A \multimap B]
$$

- Binary products: $A+B$, since

$$
\operatorname{Prof}[X, A] \times \operatorname{Prof}[X, B] \cong \operatorname{Prof}[X, A+B]
$$

- Terminal object: 0, since

$$
\operatorname{Prof}[X, 0] \cong 1
$$

Note: All this is now in a 'weak', bicategorical, sense.

The exponential pseudo-comonad

For $A \in \operatorname{Prof}$, define $!A=$ free symmetric monoidal category on A as follows.

- Objects: $\left(a_{1}, \ldots, a_{n}\right)$, where $n \in \mathbb{N}$ and $a_{i} \in A$,
- Maps: $\left(\sigma, f_{1}, \ldots f_{n}\right):\left(a_{1}, \ldots, a_{n}\right) \rightarrow\left(b_{1}, \ldots, b_{m}\right)$, only if $n=m$, with $\sigma \in S_{n}$ and $f_{i}: a_{i} \rightarrow b_{\sigma(i)}$.

This is a pseudocomonad, with

$$
\mathrm{d}_{A}:!A \rightarrow A \quad \mathrm{p}_{A}:!A \rightarrow!!A
$$

defined by

$$
\mathrm{d}_{A}(a, \alpha)=!A[\alpha,(a)] \quad \mathrm{p}_{A}\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha\right)=!A\left[\alpha, \alpha_{1} \otimes \ldots \otimes \alpha_{n}\right]
$$

Seely equivalences:

- $!(A+B) \simeq!A \times!B$ (equivalences, not isos) and $!0 \cong 1$

The Kleisli bicategory

Define the bicategory Prof ${ }^{\text {I }}$ as follows.

- Objects: small categories
- Morphisms: profunctors $F:!A \rightarrow B$
- 2-cells: natural transformations
- Horizontal composition: for $F:!A \rightarrow B$ and $G:!B \rightarrow C$, consider

$$
!A \xrightarrow{\mathrm{p}_{A}}!!A \xrightarrow{!F}!B \xrightarrow{G} C
$$

- Identity: for A, consider $\mathrm{d}_{A}:!A \rightarrow A$.

Idea:

- Prof $=$ categories and linear maps
- Prof $_{1}=$ categories and non-linear maps
- $\operatorname{Pt}(A)={ }_{\text {def }} \operatorname{Prof}_{!}[0, A]=\operatorname{Prof}[!0, A]=\operatorname{Prof}[1, A]=\left[A^{\mathrm{op}}\right.$, Set $]$.

The cartesian closed structure

In analogy with the relational model, we obtain the following.
Theorem [FGHW] The bicategory Prof! is cartesian closed.
This means that, for $F: X \times A \rightarrow B$, there are 2-cells

witnessing the β-rule of the λ-calculus:

$$
\operatorname{app}((\lambda x: A) F, x) \cong F
$$

Symmetric sequences (I)

The maps in Prof ${ }_{!}$are of independent interest.
Consider $A=B=1$.

$$
\begin{aligned}
F: 1 \rightarrow 1 \text { in } \text { Prof }_{!} & =F:!1 \rightarrow 1 \text { profunctor } \\
& =F: 1^{\text {op }} \times!1 \rightarrow \text { Set functor } \\
& =F: \mathbf{P} \rightarrow \text { Set functor }
\end{aligned}
$$

where \mathbf{P} is the category of natural numbers and permutations.

Explicitly, for every $n \in \mathbb{N}$, a set $F(n)$ with a S_{n}-action.

These functors are called symmetric sequences.

Analytic functors (I)

Let $F: \mathbf{P} \rightarrow$ Set be a symmetric sequence.
The analytic functor associated to F is the functor \widehat{F} : Set \rightarrow Set defined by

$$
\widehat{F}(X)=\sum_{n \in \mathbb{N}} \frac{F(n) \times X^{n}}{S_{n}}
$$

Compare with

$$
f(x)=\sum_{n \in \mathbb{N}} f_{n} \frac{x^{n}}{n!}
$$

Analytic functors support a rich calculus, including differentiation. [Joyal].

Symmetric sequences (II)

Let A and B be small categories.

$$
\begin{aligned}
F: A \rightarrow B \text { in Prof }! & =F:!A \rightarrow B \text { profunctor } \\
& =F: B^{\mathrm{op}} \times!A \rightarrow \text { Set functor }
\end{aligned}
$$

Such an F

$$
\left(b, a_{1}, \ldots, a_{n}\right) \mapsto F\left(b, a_{1}, \ldots, a_{n}\right)
$$

We call these (B, A)-symmetric sequences.

A 'many-sorted' version of symmetric sequences.

Analytic functors (II)

Let F be a (B, A)-symmetric sequence. The analytic functor \widehat{F} is defined by

Explicitly:

$$
\widehat{F}(X)(b)=\int^{\left(a_{1}, \ldots, a_{n}\right) \in!A} F\left(b, a_{1}, \ldots, a_{n}\right) \times X\left(a_{1}\right) \times \ldots \times X\left(a_{n}\right)
$$

Theorem [FGHW], [Fiore] Analytic functors support a rich calculus, including differentiation.

Differential structure

Differentiation. Define

$$
\bar{d}_{A}: A \rightarrow!A
$$

by

$$
\bar{d}_{A}(\alpha, a)=!A[\alpha,(a)]
$$

For $F:!A \rightarrow B$, define

$$
\mathrm{d} F:!A \times A \rightarrow B
$$

by

$$
!A \times A \xrightarrow{1 \times \bar{d}_{A}}!A \times!A \xrightarrow{\bar{c}_{A}}!A \xrightarrow{F} B
$$

so that

$$
\mathrm{d} F(b,(\alpha, a))=F(b, \alpha \otimes[a])
$$

Theorem. All the rules of differential λ-calculus are valid in Prof ${ }_{!}$, up to isomorphism.

Differentiation of analytic functors

$$
\frac{\frac{F:!A \times A \rightarrow B}{\mathrm{~d} F:!A \times A \rightarrow B}}{\mathrm{~d} F:!A \rightarrow(A \multimap B)}
$$

Recalling $A \multimap B=B \times A^{\mathrm{op}}$, we obtain

$$
\widehat{\mathrm{d} F}:\left[A^{\mathrm{op}}, \text { Set }\right] \rightarrow\left[B^{\mathrm{op}} \times A, \text { Set }\right]
$$

Explicitly

$$
\widehat{\mathrm{d} F}(X)(b, a)=\int^{\left(a_{1}, \ldots, a_{n}\right) \in!A} F\left(b, a_{1}, \ldots, a_{n}, a\right) \times X\left(a_{1}\right) \times \ldots \times X\left(a_{n}\right)
$$

Note. Shift of one from $\left(a_{1}, \ldots, a_{n}\right)$ to $\left(a_{1}, \ldots, a_{n}, a\right)$.

Calculus of analytic functors

Notation. For $F:!A \rightarrow B$ and $a \in A$, define $\frac{\partial}{\partial a} F:!A \rightarrow B$ by

$$
\left(\frac{\partial}{\partial a} F\right)(b, \alpha)=F(b, \alpha \otimes[a])
$$

Proposition. The following hold:

$$
\begin{aligned}
\frac{\partial}{\partial a^{\prime}} \frac{\partial}{\partial a} F & \cong \frac{\partial}{\partial a} \frac{\partial}{\partial a^{\prime}} F \\
\frac{\partial}{\partial a}(F \cdot G) & \cong\left(\frac{\partial}{\partial a} F\right) \cdot G+F \cdot\left(\frac{\partial}{\partial a} G\right) \\
\frac{\partial}{\partial a}(G \circ F) & \cong \int^{b \in B}\left(\frac{\partial}{\partial b}(G)\right) \circ F \cdot \frac{\partial}{\partial a}(F)+\frac{\partial}{\partial a}(G)
\end{aligned}
$$

Future work

- Coherence conditions for differential (cf. rewriting of differential λ-calculus)
- Extension to analytic functors between operad algebras
- Links to Taylor series expansion

Part of wider project on 2-dimensional models of linear logic, with M. Fiore, Z. Galal and F. Olimpieri.

