Differential λ -calculus and analytic functors

Nicola Gambino

Department of Mathematics University of Manchester

XXVII Incontro di Logica – AILA September 14th, 2022

Overview

Goal. Define a model of the

• differential λ -calculus [Ehrhard and Regnier]

using

anaytic functors [Joyal]

Based on joint works with M. Fiore, M. Hyland, A. Joyal, G. Winskel.

Key idea:
$$f(x) = \sum_{n=0}^{\infty} f_n \frac{x^n}{n!} \Rightarrow f'(x) = \sum_{n=0}^{\infty} f_{n+1} \frac{x^n}{n!}$$

Outline of the talk

Part I: Syntax

- Review of λ -calculus
- Differential λ -calculus

Part II: The relational model

- Relations
- Differential structure

Part III: Analytic functors

- Profunctors
- Differential structure

Part I: Syntax

Simply-typed λ -calculus

Product types

a : A	b : B	$c: A \times B$	$c: A \times B$
pair(<i>a</i> , <i>b</i>	$(b): A \times B$	$\overline{\pi_1(c)}$: A	$\pi_2(c)$: B

Function types

$x: A \vdash b: B$	$f:B^A$	a : A
$(\lambda x : A)b : B^A$	app(f,	a) : B

The β -rule

$$app((\lambda x : A)b, a) = b[a/x] : B$$

Cartesian closed categories

 $\ensuremath{\mathcal{C}}$ a cartesian closed category.

Binary products

• There are $\pi_1: A \times B \to A$ and $\pi_2: A \times B \to B$ such that

$$\mathcal{C}[X, A \times B] \xrightarrow{(\pi_1, \pi_2) \circ (-)} \mathcal{C}[X, A] \times \mathcal{C}[X, B]$$

is a bijection.

Exponentials

• There is app : $B^A \times A \rightarrow B$ such that

$$\mathcal{C}[X, B^{A}] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{\mathsf{app} \circ (-)} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A] \xrightarrow{(-) \times A} \mathcal{C}[X \times A, B^{A} \times A]$$

is a bijection.

Substitution

Syntax. For $x : A \vdash b : B$ and $\Gamma \vdash a : A$,

• b[a/x] is defined by structural induction on b.

Semantics. For $b: A \to B$ and $a: \Gamma \to A$,

• b[a/x] is given by composition

$$\Gamma \xrightarrow{a} A \xrightarrow{b} B$$

The naturality of the adjunctions ensures that these match.

The differential λ -calculus (I)

For a differentiable map $f : A \to B$ and $x \in A$, we have a linear map (the Jacobian):

$$\begin{array}{cccc} f'(x) \colon & A & \longrightarrow & B \\ & a & \longmapsto & f'(x) \cdot a \end{array} \tag{1}$$

Transposing, for $a \in A$, we obtain a (generally) non-linear map:

$$\begin{array}{ccccc} f'(x) \colon & A & \longrightarrow & B \\ & x & \longmapsto & f'(x) \cdot a \end{array} \tag{2}$$

Differentiation rule [Ehrhard-Regnier]. This corresponds to (2).

$$\frac{\Gamma \vdash f: B^A \qquad \Delta \vdash a: A}{\Gamma, \Delta \vdash \mathrm{D}f \cdot a: B^A}$$

We think of *a* as being applied **linearly**.

The differential λ -calculus (II)

Fix a commutative rig R and allow linear combinations of λ -terms.

The differential β -rule:

$$D((\lambda x : A)b) \cdot a = \lambda x \left(\frac{\partial b}{\partial x} \cdot a\right),$$

where $\frac{\partial b}{\partial x} \cdot a$ is the linear substitution of a in b.

This is defined by structural induction on b.

Idea: "Sum of all terms obtained by replacing one linear occurrence of x in b with a."

Models

Questions

- How to find models?
- What equations are needed in order to model linear substitution?

Concrete models

- Köthe spaces (some topological vector spaces) [Ehrhard]
- Finiteness spaces [Ehrhard]
- ► Relational model [Blute, Cockett, Seely], [Ehrhard], [Hyland]

Categorical axiomatisations. Differential categories and variants:

- ► [Blute, Cockett, Seely]
- ► [Fiore]
- ► [Lemay], [Cockett and Lemay]
- ► [Manzonetto]

Part II: The relational model

The category of relations

Define the category **Rel** as follows.

- ► Objects: sets
- ► Morphisms: relations

$$F: A \to B$$
 is $F \subseteq B \times A$

• **Composition:** for
$$A \xrightarrow{F} B \xrightarrow{G} C$$
 we define

$$(G \circ F)(c, a) = (\exists b \in B) \ G(c, b) \land F(b, a)$$

• Identity: for a set A, we define $1_A : A \to A$ by

$$1_A(a,b) = \begin{cases} 1 & \text{if } a = b, \\ 0 & \text{otherwise.} \end{cases}$$

Structure of Rel

• Symmetric monoidal structure: $A \times B$

• Closed structure (internal hom): $A \multimap B =_{def} B \times A$, since

 $\operatorname{Rel}[A \times B, C] \cong \operatorname{Rel}[A, B \multimap C]$

• Binary products: A + B, since

$$\operatorname{Rel}[X,A] \times \operatorname{Rel}[X,B] \cong \operatorname{Rel}[X,A+B]$$

► Terminal object: 0, since

 $\operatorname{Rel}[X,0]\cong 1$.

The exponential modality

For $A \in \mathbf{Rel}$, define

!A = free commutative monoid on A= set of multisets $\alpha = [a_1, \ldots, a_n]$ of elements of A

This is a comonad, with

$$d_A: !A \to A \qquad p_A: !A \to !!A$$

defined by

$$\mathsf{d}_{\mathsf{A}}(\mathsf{a},\alpha) \Leftrightarrow [\mathsf{a}] = \alpha \qquad \mathsf{p}_{\mathsf{A}}([\alpha_1,\ldots,\alpha_n],\alpha) \Leftrightarrow \alpha_1 + \ldots + \alpha_n = \alpha$$

Seely isomorphisms:

•
$$!(A+B) \cong !A \times !B$$
 and $!0 = 1$.

Theorem [Folklore]. Rel is a (degenerate) model of classical linear logic.

The Kleisli category

Define the category $\mathbf{Rel}_{!}$ as follows.

- ► Objects: sets
- Morphisms: relations $F : !A \to B$
- ▶ **Composition:** given $F : !A \to B$ and $G : !B \to C$, consider

$$!A \xrightarrow{\mathsf{p}_A} !!A \xrightarrow{!F} !B \xrightarrow{G} C$$

• **Identity:** for A, consider $d_A : !A \to A$.

Idea:

- ▶ **Rel** = sets and linear maps, **Rel**_! = sets and non-linear maps
- Given $F: A \to B$ linear, we obtain $!A \xrightarrow{d_A} A \xrightarrow{F} B$

$$\blacktriangleright \mathbf{Pt}(A) =_{\mathrm{def}} \mathbf{Rel}_{!}[0, A] = \mathbf{Rel}[!0, A] = \mathbf{Rel}[1, A] = \mathbf{Pow}(A).$$

The cartesian closed structure

Binary products

$$\mathbf{Rel}_{!}[X, A] \times \mathbf{Rel}_{!}[X, B] = \mathbf{Rel}[!X, A] \times \mathbf{Rel}[!X, B]$$
$$\cong \mathbf{Rel}[!X, A + B]$$

► Exponentials

$$\mathbf{Rel}_{!} [X + A, B] = \mathbf{Rel} [!(X + A), B]$$
$$\cong \mathbf{Rel} [!X \times !A, B]$$
$$\cong \mathbf{Rel} [!X, !A \multimap B]$$
$$\cong \mathbf{Rel} [!X, !A \multimap B]$$
$$= \mathbf{Rel}_{!} [X, B^{A}]$$

where
$$B^A =_{def} ! A \multimap B$$
.

Differential structure (I)

Want:

$$\frac{F: !A \to B}{\mathsf{d}F: !A \times A \to B}$$

Idea (Differential categories). [Blute, Cockett, Seely]

▶ it suffices to have maps $\partial_A : !A \times A \rightarrow !A$. Then dF is obtained as

$$!A \times A \xrightarrow{\partial_A} !A \xrightarrow{F} B$$

▶ it suffices to have maps $\bar{d}_A : A \rightarrow !A$. Then dF is obtained as

$$!A \times A \xrightarrow{1 \times \overline{d}_A} !A \times !A \xrightarrow{\overline{c}_A} !A \xrightarrow{F} B$$

Differential structure (II)

Explicitly:

• define $\bar{d}_A : A \rightarrow !A$ by

$$\bar{d}_{A}(\alpha, a) \Leftrightarrow \alpha = [a]$$

• define $\partial_A : !A \times A \rightarrow !A$ by

$$\partial_{\mathcal{A}}(\beta, (\alpha, \mathbf{a})) \Leftrightarrow \beta = \alpha + [\mathbf{a}]$$

• define
$$dF: !A \times A \rightarrow B$$
 by

$$\mathsf{d}F(b,(\alpha,a)) \Leftrightarrow F(b,\alpha+[a]).$$

Note: Shift of one from α to $\alpha + [a]$.

Theorem. [BCS], [Ehrhard], [Hyland] The rules of differential λ -calculus hold in **Rel**₁.

Differential structure (III)

Example. Say $F : !A \to B$ is **constant** if there is $T \subseteq B$ such that

in Rel. This means

$$F(b, \alpha) \quad \Leftrightarrow \quad w_A(*, \alpha) \wedge T(b, *) \quad \Leftrightarrow \quad \alpha = [] \wedge b \in T$$

Proposition. If *F* constant, then dF = 0. **Proof.** $dF(b, (\alpha, a)) \Leftrightarrow F(b, \alpha + [a]) \Leftrightarrow \alpha + [a] = [] \land b \in T \Leftrightarrow \bot$

Note. The axioms can be expressed in terms of d_A .

Part III: Analytic functors

Profunctors

A 'categorification' of relations [Bénabou], [Lawvere].

Definition. Let A, B be small categories. A (B, A)-profunctor is a functor

 $F:B^{\mathrm{op}}\times A\to \mathbf{Set}$

Some intuition

- ▶ *F*(*b*, *a*) is the set of 'proofs' that *b* and *a* are related.
- Sets F(b, a), together with actions

 $F(b,a) imes A[a,a']
ightarrow F(b,a'), \quad B[b',b] imes F(b,a)
ightarrow F(b',a)$

Example. For a small category *A*, we have

$$A[-,-]: A^{\mathrm{op}} \times A \to \mathbf{Set}$$
 .

The bicategory of profunctors

Define the bicategory **Prof** as follows.

- Objects: small categories
- Morphisms: profunctors

$$F: A \to B$$
 is $F: B^{\mathrm{op}} \times A \to \mathbf{Set}$

- > 2-cells: natural transformations
- ▶ Horizontal composition: for $A \xrightarrow{F} B \xrightarrow{G} \mathbb{C}$ we define

$$(G \circ F)(c, a) = \int^{b \in B} G(c, b) \times F(b, a)$$

▶ **Identity:** for a small category A, we define $1_A : A \to A$ by

$$1_A(b,a) = A[b,a]$$

The structure of **Prof**

- Symmetric monoidal structure: $A \times B$
- Closed structure (internal hom): $A \multimap B =_{def} B \times A^{op}$, since

 $\operatorname{Prof}[X \times A, B] \cong \operatorname{Prof}[X, A \multimap B]$

• Binary products: A + B, since

 $\operatorname{Prof}[X, A] \times \operatorname{Prof}[X, B] \cong \operatorname{Prof}[X, A + B]$

► Terminal object: 0, since

 $\operatorname{Prof}[X, 0] \cong 1$

Note: All this is now in a 'weak', bicategorical, sense.

The exponential pseudo-comonad

For $A \in \mathbf{Prof}$, define !A = free symmetric monoidal category on A as follows.

- ▶ **Objects:** (a_1, \ldots, a_n) , where $n \in \mathbb{N}$ and $a_i \in A$,
- **Maps:** $(\sigma, f_1, \ldots, f_n) : (a_1, \ldots, a_n) \to (b_1, \ldots, b_m)$, only if n = m, with $\sigma \in S_n$ and $f_i : a_i \to b_{\sigma(i)}$.

This is a pseudocomonad, with

$$d_A: !A \to A \qquad p_A: !A \to !!A$$

defined by

$$\mathsf{d}_{\mathcal{A}}(\boldsymbol{a},\alpha) = !\mathcal{A}[\alpha,(\boldsymbol{a})] \qquad \mathsf{p}_{\mathcal{A}}((\alpha_1,\ldots,\alpha_n),\alpha) = !\mathcal{A}[\alpha,\alpha_1\otimes\ldots\otimes\alpha_n]$$

Seely equivalences:

▶ $!(A+B) \simeq !A \times !B$ (equivalences, not isos) and $!0 \cong 1$

The Kleisli bicategory

Define the bicategory $\mathbf{Prof}_{!}$ as follows.

- Objects: small categories
- Morphisms: profunctors $F : !A \rightarrow B$
- > 2-cells: natural transformations
- ▶ Horizontal composition: for $F : !A \to B$ and $G : !B \to C$, consider

$$!A \xrightarrow{\mathsf{p}_A} !!A \xrightarrow{!F} !B \xrightarrow{G} C$$

▶ **Identity:** for *A*, consider $d_A : !A \to A$.

Idea:

- Prof = categories and linear maps
- Prof₁ = categories and non-linear maps
- ▶ $Pt(A) =_{def} Prof_{!}[0, A] = Prof[!0, A] = Prof[1, A] = [A^{op}, Set].$

The cartesian closed structure

In analogy with the relational model, we obtain the following.

Theorem [FGHW] The bicategory Prof₁ is cartesian closed.

This means that, for $F: X \times A \rightarrow B$, there are 2-cells

witnessing the β -rule of the λ -calculus:

$$app((\lambda x : A)F, x) \cong F$$

Symmetric sequences (I)

The maps in $\mathbf{Prof}_{!}$ are of independent interest.

Consider A = B = 1.

$$\begin{array}{lll} F:1 \rightarrow 1 \text{ in } \mathbf{Prof}_{!} &=& F:!1 \rightarrow 1 \quad \text{profunctor} \\ &=& F:1^{\mathrm{op}} \times !1 \rightarrow \mathbf{Set} \quad \text{functor} \\ &=& F:\mathbf{P} \rightarrow \mathbf{Set} \quad \text{functor} \end{array}$$

where \mathbf{P} is the category of natural numbers and permutations.

Explicitly, for every $n \in \mathbb{N}$, a set F(n) with a S_n-action.

These functors are called symmetric sequences.

Analytic functors (I)

Let $F : \mathbf{P} \to \mathbf{Set}$ be a symmetric sequence.

The analytic functor associated to F is the functor \widehat{F} : **Set** \rightarrow **Set** defined by

$$\widehat{F}(X) = \sum_{n \in \mathbb{N}} \frac{F(n) \times X^n}{S_n}$$

Compare with

$$f(x) = \sum_{n \in \mathbb{N}} f_n \frac{x^n}{n!}$$

Analytic functors support a rich calculus, including differentiation. [Joyal].

Symmetric sequences (II)

Let A and B be small categories.

$$F: A \to B$$
 in **Prof**_! = $F: !A \to B$ profunctor
= $F: B^{op} \times !A \to Set$ functor

Such an F

$$(b, a_1, \ldots, a_n) \mapsto F(b, a_1, \ldots, a_n)$$

We call these (B, A)-symmetric sequences.

A 'many-sorted' version of symmetric sequences.

Analytic functors (II)

Let F be a (B, A)-symmetric sequence. The **analytic functor** \hat{F} is defined by

Explicitly:

$$\widehat{F}(X)(b) = \int^{(a_1,\ldots,a_n)\in !A} F(b,a_1,\ldots,a_n) imes X(a_1) imes \ldots imes X(a_n)$$

Theorem [FGHW], [Fiore] Analytic functors support a rich calculus, including differentiation.

Differential structure

Differentiation. Define

$$\bar{d}_A: A \rightarrow !A$$

 $\bar{d}_A(\alpha, a) = !A[\alpha, (a)]$

by

For $F: !A \rightarrow B$, define

 $dF: !A \times A \rightarrow B$

by

$$!A \times A \xrightarrow{1 \times \overline{d}_{A}} !A \times !A \xrightarrow{\overline{c}_{A}} !A \xrightarrow{F} B$$

so that

$$\mathsf{d}F(b,(\alpha,a))=F(b,\alpha\otimes[a]).$$

Theorem. All the rules of differential λ -calculus are valid in **Prof**₁, up to isomorphism.

Differentiation of analytic functors

$$\frac{F: !A \times A \to B}{\mathsf{d}F: !A \times A \to B}$$
$$\overline{\mathsf{d}F: !A \to (A \multimap B)}$$

Recalling $A \multimap B = B \times A^{\mathrm{op}}$, we obtain

$$\widehat{\mathsf{d}F}$$
: [$A^{\mathrm{op}}, \mathbf{Set}$] \to [$B^{\mathrm{op}} \times A, \mathbf{Set}$]

Explicitly

$$\widehat{\mathsf{dF}}(X)(b,a) = \int^{(a_1,\ldots,a_n)\in !A} F(b,a_1,\ldots,a_n,a) \times X(a_1) \times \ldots \times X(a_n)$$

Note. Shift of one from (a_1, \ldots, a_n) to (a_1, \ldots, a_n, a) .

Calculus of analytic functors

Notation. For $F : !A \to B$ and $a \in A$, define $\frac{\partial}{\partial a}F : !A \to B$ by

$$\left(rac{\partial}{\partial \pmb{\mathsf{a}}}\pmb{\mathsf{F}}
ight)(\pmb{b},lpha)=\pmb{\mathsf{F}}(\pmb{b},lpha\otimes[\pmb{\mathsf{a}}])$$

Proposition. The following hold:

$$\frac{\partial}{\partial a'}\frac{\partial}{\partial a}F \cong \frac{\partial}{\partial a}\frac{\partial}{\partial a'}F \qquad \qquad \frac{\partial}{\partial a}(F+G) \cong \frac{\partial}{\partial a}(F) + \frac{\partial}{\partial a}(G)$$
$$\frac{\partial}{\partial a}(F \cdot G) \cong \left(\frac{\partial}{\partial a}F\right) \cdot G + F \cdot \left(\frac{\partial}{\partial a}G\right)$$
$$\frac{\partial}{\partial a}(G \circ F) \cong \int^{b \in B} \left(\frac{\partial}{\partial b}(G)\right) \circ F \cdot \frac{\partial}{\partial a}(F)$$

Future work

- Coherence conditions for differential (cf. rewriting of differential λ -calculus)
- Extension to analytic functors between operad algebras
- Links to Taylor series expansion

Part of wider project on 2-dimensional models of linear logic, with M. Fiore, Z. Galal and F. Olimpieri.