Shimura varieties reading group

Oct-Dec 2024, University of Manchester

Tuesdays 12.00 - 1.00 pm, Frank Adams 1

1 Oct Martin Introductory talk
8 Oct William Hodge structures, example of abelian varieties
Edixhoven 2, 2.1
Roughly the same material as: part of Daw 5 and 6, or Moonen 1.1, 1.6
Deligne 1.1.3-1.1.4
15 Oct Miriam Algebraic groups, Deligne torus
Edixhoven 2.2, 4.1, 4.10, Milne SVI sec. 1 "Cartan involutions"
Reductive groups defined via Cartan involutions (Milne SVI 1.16)
Deligne 1.1.1, 1.1.15 and paragraph before it
22 Oct Bijay Deligne torus (recap), polarisations, Mumford-Tate groups
Daw 4, rest of 5, Edixhoven 2.5-2.7, 5.1, 5.7
Note that the proofs of Edixhoven 5.7 (not the one in the first sentence) and Milne SVI 1.20 are essentially the same.
Deligne 1.1.10
29 Oct Bijay Examples of Mumford-Tate groups, variations of Hodge structures
Moonen 5.2, 5.4, Milne SVI sec. 2 "Variations of hodge structures" (first 5 paragraphs), maybe some of Edixhoven 6
VHS part is roughly the same material as Edixhoven 2.8
Deligne 1.1.7-1.1.9
5 Nov Open plan group meeting
12 Nov Andrew Axioms for Shimura data
Edixhoven 6, 6.1 (not proof), 6.2, 7.1, maybe some of 7.2-7.3
Similar material to Daw 10, Milne SVI 2.14, 5.5-5.7
Deligne 1.1.14, 1.1.18??, 2.1.1
19 Nov Bijay Hermitian symmetric domains
Edixhoven 6.4, 6.5 (very brief), Daw 2, 3, Milne SVM p. 10-12
Deligne 0.4, some of 1.2
26 Nov Open plan group meeting
3 Dec Vahagn Arithmetic, congruence, neat subgroups
Edixhoven 7.8, 7.10, Daw 11, 13, Milne SVM 3
10 Dec Guy Definition of Shimura variety components/locally symmetric varieties, Baily-Borel
Orr-Skorobogatov 3.1, Edixhoven 7.14, Daw 15, 16, Milne SVM 4 (more details in Milne SVI 3)

References

Daw: André-Oort via o-minimality
Deligne: Variétés de Shimura (English translation by Milne)
Edixhoven: Shimura varieties, notes for some introductory lectures
Kerr: Shimura varieties: A Hodge-theoretic perspective
Milne SVI: Introduction to Shimura varieties
Milne SVM: Shimura varieties and moduli
Moonen: An introduction to Mumford-Tate groups
Orr-Skorobogatov: Finiteness theorems for K3 surfaces and abelian varieties of CM type