ALGEBRAIC GEOMETRY Problem Sheet 6

(1) Suppose that k does not have characteristic 2 or 3.

For $a \in k$, let V_a denote the surface in \mathbb{A}^3 defined by the equation

 $x^{3} + y^{3} + z^{3} - 3a(x^{2} + y^{2} + z^{2}) - a^{2} = 0.$

You may assume that this polynomial generates the ideal $\mathbb{I}(V_a)$. For which values of a does V_a have singular points? For each a, find all the

- singular points of V_a .
- (2) Let V, W be affine varieties. Let $v \in V$ and $w \in W$. Prove that $V \times W$ is non-singular at (v, w) if and only if V is non-singular at v and W is non-singular at w.
- (3) Let $V \subseteq \mathbb{A}^n$ be a reducible affine algebraic set, with irreducible components V_1 and V_2 . Let $x \in V_1 \cap V_2$. Prove that

$$T_x V_1 + T_x V_2 \subseteq T_x V.$$

Is $T_xV_1 + T_xV_2$ always equal to T_xV ? (Here, $T_xV_1 + T_xV_2$ means the vector space spanned by T_xV_1 and T_xV_2 .)