$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 There follows, after this introduction, an output from the Gaussian
 suite of programs with  comments that explain what the various parts
 of the output mean. So you know what is comments and what is output,
 comments will have a line of $ signs at the beginning and end, just
 as this introduction does.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Entering Gaussian System, Link 0=/software/davinci/gaussian/g98a7/g98/g98
 Initial command:
 /software/davinci/gaussian/g98a7/g98/l1.exe /tmp/tmp_g98.68780/Gau-83784.inp -scrdir=/tmp/tmp_g98.68780/
 Entering Link 1 = /software/davinci/gaussian/g98a7/g98/l1.exe PID=     69194.

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The above few lines merely state Gaussian has started to run and that
 Links 0 and 1 have been called.  What are Links? The Gaussian suite
 of programs is divided up into sub-programs, each with its own tasks.
 It is these subprograms that are called links.  Links have names like
 301, 302, 303 and 502.  If the first number is the same (i.e. the
 first 3 of 301, 302 and 303) then the links have similar or related
 functions. Gaussian calls links in a specific order to enable it to
 carry of certain calculations. Also, links have options (called iop)
 which invoke certain functions of the link or turn them off). Thus
 iop(5/10=1000) means in links beginning with the number 5 set
 option 10 equal to 1000.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 
 Copyright (c) 1988,1990,1992,1993,1995,1998 Gaussian, Inc.
                  All Rights Reserved.
 
 This is part of the Gaussian(R) 98 program.  It is based on
 the Gaussian 94(TM) system (copyright 1995 Gaussian, Inc.),
 the Gaussian 92(TM) system (copyright 1992 Gaussian, Inc.),
 the Gaussian 90(TM) system (copyright 1990 Gaussian, Inc.),
 the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc.),
 the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon
 University), and the Gaussian 82(TM) system (copyright 1983
 Carnegie Mellon University). Gaussian is a federally registered
 trademark of Gaussian, Inc.
 
 This software contains proprietary and confidential information,
 including trade secrets, belonging to Gaussian, Inc.
 
 This software is provided under written license and may be
 used, copied, transmitted, or stored only in accord with that
 written license.
 
 The following legend is applicable only to US Government
 contracts under DFARS:
 
                    RESTRICTED RIGHTS LEGEND
 
 Use, duplication or disclosure by the US Government is subject
 to restrictions as set forth in subparagraph (c)(1)(ii) of the
 Rights in Technical Data and Computer Software clause at DFARS
 252.227-7013.
 
 Gaussian, Inc.
 Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA
 
 The following legend is applicable only to US Government
 contracts under FAR:
 
                    RESTRICTED RIGHTS LEGEND
 
 Use, reproduction and disclosure by the US Government is subject
 to restrictions as set forth in subparagraph (c) of the
 Commercial Computer Software - Restricted Rights clause at FAR
 52.227-19.
 
 Gaussian, Inc.
 Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA
 
 
 ---------------------------------------------------------------
 Warning -- This program may not be used in any manner that
 competes with the business of Gaussian, Inc. or will provide
 assistance to any competitor of Gaussian, Inc.  The licensee
 of this program is prohibited from giving any competitor of
 Gaussian, Inc. access to this program.  By using this program,
 the user acknowledges that Gaussian, Inc. is engaged in the
 business of creating and licensing software in the field of
 computational chemistry and represents and warrants to the
 licensee that it is not a competitor of Gaussian, Inc. and that
 it will not use this program in any manner prohibited above.
 ---------------------------------------------------------------

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 As you may have realized the above lines deal with various
 versions of Gaussian and the legal protection of the program
 from copyright violations. It also states that not everyone can
 use Gaussian (i.e. if they work for a competitor). In addition do
 not publish comparisons of Gaussian to other programs.
  This is a summary of the above and not an interpretation
 Most of this will not effect users.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Cite this work as:
 Gaussian 98, Revision A.7,
 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
 M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr.,
 R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam,
 A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
 V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
 S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,
 K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari,
 J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul,
 B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,
 R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
 C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
 P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres,
 C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople,
 Gaussian, Inc., Pittsburgh PA, 1998.

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 If you publish a paper using Gaussian, it must be cited as above.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$


 **********************************************
 Gaussian 98:  IBM-RS6000-G98RevA.7 11-Apr-1999
                  30-Aug-2002
 **********************************************

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 This gives the version of Gaussian running and the date of its
 relase (11-Apr-1999) and the date this job was run (30-Aug-2002)
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 %save
 %mem=1000000

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
  Commands beginning with % deal with files and memory handling
  The %save means save any file following this command. In this
  case there are not any. The %mem gives the amount of memory
  allocated to the job in words (i.e. one million)
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Default route:  SCF=Direct MP2=Stingy MAXDISK=25000000
 ---------------
 #p hf/3-21g opt
 ---------------
 ---------------

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The # says the information on the type of calculation
 is on this line. The hf/3-21g means use the Hartree-Fock
 Hamiltonian and the 3-21g set of orbitals on each atom.
 The p means do extended printing. This is useful to see
 how the wavefunction determination behaves.
 The opt means determine the minimum energy geometry. This
 should give the bond lengths and angles of the molecule under
 study.
  The line beginning Default gives the way the program will
 do things as default (i.e. The wavefunction (SCF) determination
 will use minimal amount of disk (Direct). We are not doing an
 MP2 calculation, but if we are it would use the stingy option
 which use upto MAXDISK of disk space.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$


 1/18=20,38=1/1,3;
 2/9=110,17=6,18=5/2;
 3/5=5,11=9,25=1,30=1/1,2,3;
 4//1;
 5/5=2,38=4/2;
 6/7=2,8=2,9=2,10=2,28=1/1;
 7//1,2,3,16;
 1/18=20/3(1);
 99//99;
 2/9=110/2;
 3/5=5,11=9,25=1,30=1/1,2,3;
 4/5=5,16=2/1;
 5/5=2,38=4/2;
 7//1,2,3,16;
 1/18=20/3(-5);
 2/9=110/2;
 6/7=2,8=2,9=2,10=2,19=2,28=1/1;
 99/9=1/99;


$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The above is how the #p hf/3-21g opt is presented in terms
 of links. In other words what links have to be executed to
 calculate the wavefunction and then determine the geometry of the
 molecule from this wavefunction.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$


 Leave Link    1 at Fri Aug 30 09:47:44 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l101.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 This just says we have finished in link 1 and moved on to link 101.
 cpu:        .1  means the cpu time for that link is .1 second
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 -----
 title
 -----

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 This is just a copy of the title you put on your job input.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Symbolic Z-matrix:
 Charge =  0 Multiplicity = 1
 O
 O                    1     1.24
 O                    1     1.24     2     116.

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 Here is the z-matrix together with the charge and
 spin multiplicity (all of which you should have inputed)
 In this case we have ozone (O3) as a singlet uncharged molecule
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Leave Link  101 at Fri Aug 30 09:47:44 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l103.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 We have a gain just a couple of lines about leaving one
 link and entering another.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$


 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
 Berny optimization.
 Initialization pass.
                         ----------------------------
                         !    Initial Parameters    !
                         ! (Angstroms and Degrees)  !
 ------------------------                            -------------------------
 ! Name  Definition              Value          Derivative Info.             !
 -----------------------------------------------------------------------------
 ! R1    R(1,2)                  1.24           estimate D2E/DX2             !
 ! R2    R(1,3)                  1.24           estimate D2E/DX2             !
 ! A1    A(2,1,3)              116.             estimate D2E/DX2             !
 -----------------------------------------------------------------------------
 Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07
 Number of steps in this run=  20 maximum allowed number of steps= 100.
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 Above are two lines of GradGrad....................
 The lines between these give the geomtry optimization information.
 The bond lengths (e.g. R(1,3)) and angles (i.e. A(1,2,3)) and their
 inital values (i.e. 1.24 and 116.). These values will be varied to
 determine the geometry that has the lowest energy.
 The statement Berny optimzer defines the optimzation algorithm to
 be used in the calculation. While the other lines define parameters
 to be used by the optimizer.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Leave Link  103 at Fri Aug 30 09:47:45 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l202.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 More link change information
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

                          Input orientation:                         
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          8             0         .000000     .000000     .000000
    2          8             0         .000000     .000000    1.240000
    3          8             0        1.114505     .000000    -.543580
 ---------------------------------------------------------------------

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
  The above is the Cartesian coordinates of our molecule-these
 have been calculated from the z-matrix.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

                    Distance matrix (angstroms):
                    1          2          3
     1  O     .000000
     2  O    1.240000    .000000
     3  O    1.240000   2.103159    .000000

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 Above is the distance matrix (i.e. the distance between each atom)
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 Stoichiometry    O3
 Framework group  C2V[C2(O),SGV(O2)]
 Deg. of freedom    2
 Full point group                 C2V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C2      NOp   2

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The above gives the chemical formula and the point group
 information. If you do not know group theory then do not
 worry about this information.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

                         Standard orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          8             0         .000000     .000000     .438067
    2          8             0         .000000    1.051580    -.219033
    3          8             0         .000000   -1.051580    -.219033
 ---------------------------------------------------------------------
 Rotational constants (GHZ):    109.7649794     14.2863404     12.6410575
 Isotopes: O-16,O-16,O-16
 Leave Link  202 at Fri Aug 30 09:47:45 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l301.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 Gaussian reorientates the molecule to a specific orientation.
 The Cartesian coordinates are given for this new orientation.
 You might ask why this happens? It is so Gaussian can take
 advantage of the symmetry of the molecule. Symmetry simplifies
 the calculation leading to it taking less time to complete.
 Also given here are the rotational constants and the isotopes used.
 In addition there are the link changes.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Standard basis: 3-21G (6D, 7F)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 You requested the 3-21g basis set and it restates it here.
 Also it states it will use six d-functions and 7 f-functions.
 If you thought there were 5 d-functions, the 6 refered to
 are  X**2 , Y**2 , Z**2 , XY , XZ and YZ. In the atom the
 d-functions are X**2-Y**2, 2*Z**2-X**2-Y**2, XY, XZ and YZ.
 The remaining X**2 + Y**2 + Z**2 is an s-function.
 Thus the 5 d-functions are made up of six cartesian functions.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 There are    12 symmetry adapted basis functions of A1  symmetry.
 There are     2 symmetry adapted basis functions of A2  symmetry.
 There are     4 symmetry adapted basis functions of B1  symmetry.
 There are     9 symmetry adapted basis functions of B2  symmetry.

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The above gives the irreducible representations of the symmetry
 adapted basis set. If you do not understand group theory then ignore
 this.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Crude estimate of integral set expansion from redundant integrals=1.014.
 Integral buffers will be    262144 words long.
 Raffenetti 1 integral format.
 Two-electron integral symmetry is turned on.

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The four lines above give information on the integrals needed to
 determine the wavefunction.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

    27 basis functions       45 primitive gaussians
    12 alpha electrons       12 beta electrons
       nuclear repulsion energy        70.7278291502 Hartrees.
 Leave Link  301 at Fri Aug 30 09:47:45 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l302.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 Above we have the total numer of orbitals (27 i.e. 9 on each
 oxygen atom of ozone).  The number of alpha and beta electrons
 and the nuclear repulsion energy. This nuclear repulsion energy
 is the Coulomb interaction between the nuclei.
 Also, we have  the information  about link changes.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 One-electron integrals computed using PRISM.
 One-electron integral symmetry used in STVInt
 NBasis=    27 RedAO= T  NBF=    12     2     4     9
 NBsUse=    27 1.00D-04 NBFU=    12     2     4     9
 Leave Link  302 at Fri Aug 30 09:47:46 2002, MaxMem=    1000000 cpu:        .3
 (Enter /software/davinci/gaussian/g98a7/g98/l303.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The above lines say the One-electron integrals are calculated
 using PRISM. The one-electron integrals are the kinetic
 energy and nuclear attraction integrals of the atomic orbitals
 (.e. the 3-21g basis set)
 Again we have link change information.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 
 DipDrv:  MaxL=1.
 Leave Link  303 at Fri Aug 30 09:47:46 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l401.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The DipDrv: MaxL=1 I think means dipole derivatives the maximum
 in orbital angular momentum is 1 (i.e. P-orbitals)
 Link change too.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Projected INDO Guess.
 Initial guess orbital symmetries:
       Occupied  (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B1) (B2) (B2)
                 (A1) (A2)
       Virtual   (B1) (A1) (B2) (A1) (A1) (A1) (A1) (A1) (A2) (B1)
                 (B1) (B2) (B2) (B2) (B2)
 Leave Link  401 at Fri Aug 30 09:47:47 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l502.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The above section tells us the guess at the wavefunction of ozone
 is a projected INDO one. It then gives the symmtery of the orbitals
 it has guessed.  We need to guess the orbitals to start the interative
 process of determining the wavefunction. Just in case you do not
 understand the last statement, what it means is the equations to
 determine the orbitals of ozone have the orbitals in them. Thus
 you need to know the orbitals to begin with to find them. As you can
 see this does not make sense. Thus one has to guess the orbitals
 and then use these to generate a new set of better orbitals
 and then this second set of orbitals is used to generate yet
 another set. This goes on until the orbitals  generated do not
 change from the orbitals used to generate them (the orbitals
 are said to be self-consistent). The process of reaching
 self-consistency is called the SCF (standing for self-consistent-
 field) and is the next section below.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 
 IExCor=   0 DFT=F Ex=HF Corr=None ScaHFX= 1.0000
 ScaDFX=   .0000   .0000   .0000   .0000
 IRadAn=      0 IRanWt=     -1 IRanGd=            0 ICorTp=0
 Using DIIS extrapolation.
 Closed shell SCF:
 Requested convergence on RMS density matrix=1.00D-08 within  64 cycles.
 Requested convergence on MAX density matrix=1.00D-06.
 Integral symmetry usage will be decided dynamically.
 Keep R1 integrals in memory in canonical form, NReq=      478586.
 IEnd=      6941 IEndB=      6941 NGot=   1000000 MDV=    926395
 LenX=    926395
 Symmetry not used in FoFDir.
 MinBra= 0 MaxBra= 1 Meth= 1.
 IRaf=       0 NMat=   1 IRICut=       1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0.

 Cycle   1  Pass 1  IDiag 1:
 E= -.293355269344583D+03
 DIIS: error= 2.73D-01 at cycle   1.
 T= 2820. Gap=  .435 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=4.4D-11
 RMSDP=1.53D-02 MaxDP=9.10D-02

 Cycle   2  Pass 1  IDiag 1:
 E= -.293686013426962D+03 Delta-E=        -.330744082379
 DIIS: error= 3.05D-02 at cycle   2.
 Coeff: -.110D-01 -.989D+00
 T= 2609. Gap=  .477 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=1.5D-11
 RMSDP=5.64D-03 MaxDP=4.59D-02

 Cycle   3  Pass 1  IDiag 1:
 E= -.293697355991079D+03 Delta-E=        -.011342564117
 DIIS: error= 1.97D-02 at cycle   3.
 Coeff:  .121D-01 -.381D+00 -.631D+00
 T= 2262. Gap=  .449 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=1.2D-12
 RMSDP=2.55D-03 MaxDP=1.53D-02

 Cycle   4  Pass 1  IDiag 1:
 E= -.293705935504722D+03 Delta-E=        -.008579513643
 DIIS: error= 4.90D-03 at cycle   4.
 Coeff:  .397D-02 -.269D-01 -.167D+00 -.810D+00
 T= 1201. Gap=  .453 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=0.0D+00
 RMSDP=5.62D-04 MaxDP=3.96D-03

 Cycle   5  Pass 1  IDiag 1:
 E= -.293706350446595D+03 Delta-E=        -.000414941873
 DIIS: error= 1.11D-03 at cycle   5.
 Coeff: -.186D-02  .353D-01  .717D-01  .166D+00 -.127D+01
 T=  743. Gap=  .451 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=0.0D+00
 RMSDP=3.10D-04 MaxDP=1.52D-03

 Cycle   6  Pass 1  IDiag 1:
 E= -.293706416233930D+03 Delta-E=        -.000065787335
 DIIS: error= 4.69D-04 at cycle   6.
 Coeff:  .115D-02 -.244D-01 -.482D-01 -.225D-01  .893D+00 -.180D+01
 RMSDP=1.83D-04 MaxDP=1.11D-03

 Cycle   7  Pass 1  IDiag 1:
 E= -.293706430781880D+03 Delta-E=        -.000014547951
 DIIS: error= 1.07D-04 at cycle   7.
 Coeff: -.377D-03  .828D-02  .144D-01  .424D-02 -.304D+00  .791D+00
 Coeff: -.151D+01
 RMSDP=4.26D-05 MaxDP=2.83D-04

 Cycle   8  Pass 1  IDiag 1:
 E= -.293706431544480D+03 Delta-E=        -.000000762600
 DIIS: error= 1.91D-05 at cycle   8.
 Coeff:  .715D-04 -.159D-02 -.258D-02  .323D-03  .598D-01 -.192D+00
 Coeff:  .593D+00 -.146D+01
 RMSDP=1.08D-05 MaxDP=5.89D-05

 Cycle   9  Pass 1  IDiag 1:
 E= -.293706431583973D+03 Delta-E=        -.000000039493
 DIIS: error= 7.16D-06 at cycle   9.
 Coeff: -.238D-04  .534D-03  .864D-03 -.300D-03 -.205D-01  .740D-01
 Coeff: -.280D+00  .920D+00 -.170D+01
 RMSDP=3.81D-06 MaxDP=1.96D-05

 Cycle  10  Pass 1  IDiag 1:
 E= -.293706431586987D+03 Delta-E=        -.000000003014
 DIIS: error= 9.53D-07 at cycle  10.
 Coeff:  .519D-05 -.116D-03 -.178D-03  .263D-04  .457D-02 -.171D-01
 Coeff:  .696D-01 -.254D+00  .597D+00 -.140D+01
 RMSDP=4.77D-07 MaxDP=2.51D-06

 Cycle  11  Pass 1  IDiag 1:
 E= -.293706431587041D+03 Delta-E=        -.000000000055
 DIIS: error= 1.19D-07 at cycle  11.
 Coeff: -.815D-06  .173D-04  .231D-04  .547D-05 -.698D-03  .281D-02
 Coeff: -.123D-01  .477D-01 -.122D+00  .350D+00 -.127D+01
 RMSDP=2.99D-08 MaxDP=1.72D-07

 Cycle  12  Pass 1  IDiag 1:
 E= -.293706431587042D+03 Delta-E=        -.000000000001
 DIIS: error= 1.44D-08 at cycle  12.
 Coeff:  .810D-07 -.154D-05 -.141D-05 -.142D-05  .605D-04 -.303D-03
 Coeff:  .154D-02 -.662D-02  .185D-01 -.627D-01  .381D+00 -.133D+01
 RMSDP=7.94D-09 MaxDP=3.87D-08

 SCF Done:  E(RHF) =  -222.978602437     A.U. after   12 cycles
             Convg  =     .7941D-08             -V/T =  2.0020
             S**2   =    .0000
 KE= 2.225419917519D+02 PE=-6.692730018661D+02 EE= 1.530245785271D+02
 Leave Link  502 at Fri Aug 30 09:47:50 2002, MaxMem=    1000000 cpu:        .2
 (Enter /software/davinci/gaussian/g98a7/g98/l601.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The above section is the SCF. Note it took 12 cycles for the
 orbitals to reach a self-consistency such that the energy changes
 by 1 in the 12 decimal place. The SCF can take alot more cycles
 (iterations) than 12 to converge for other systems.
 The line SCF Done: E(RHF) = ...
 this line gives the energy of the wavefunction -222.978602437
 the units are Hartrees (A.U.) The line with Convg on it gives
 the convergence of the wavefunction (not the energy, i.e. how
 much the density changes from one cycle to the next). Convergence
 is reached when this is less than 0.00000001.
  S**2 gives the expectation value of the spin squared operator.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Copying SCF densities to generalized density rwf, ISCF=0 IROHF=0.

 **********************************************************************

            Population analysis using the SCF density.

 **********************************************************************

 Orbital Symmetries:
       Occupied  (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B1) (B2) (B2)
                 (A1) (A2)
       Virtual   (B1) (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (B1)
                 (A1) (B2) (A1) (B2) (A1)
  The electronic state is 1-A1.
 Alpha  occ. eigenvalues --  -20.81822 -20.60201 -20.60134  -1.80550  -1.45351
 Alpha  occ. eigenvalues --   -1.06772   -.83927   -.80699   -.78226   -.55298
 Alpha  occ. eigenvalues --    -.53484   -.47629
 Alpha virt. eigenvalues --    -.02620    .35118    .45131   1.58422   1.58429
 Alpha virt. eigenvalues --    1.60783   1.67624   1.75140   1.78489   1.81566
 Alpha virt. eigenvalues --    1.86397   2.05899   2.53815   2.97788   3.24244

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
  The above gives the orbital symmetry and the eigenvalue of each
  orbital. By Koopmans theorem the orbital eigenvalue is the
 ionization potential or electron affinity (depending if the orbital
 is occupied or unoccupied).
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

          Condensed to atoms (all electrons):
              1          2          3
  1  O    7.803380    .020152    .020152
  2  O     .020152   8.133106   -.075101
  3  O     .020152   -.075101   8.133106
 Total atomic charges:
              1
  1  O     .156315
  2  O    -.078157
  3  O    -.078157
 Sum of Mulliken charges=    .00000
 Atomic charges with hydrogens summed into heavy atoms:
              1
  1  O     .156315
  2  O    -.078157
  3  O    -.078157
 Sum of Mulliken charges=    .00000

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The  above section is the population analysis and attempts to
 assign electrons to atoms and say what atoms in bonding gain
 electron density and which loose it. The top matrix gives
 overlap populations and from the wavefunction attempts to
 say how many electrons are shared.  The  two columns give
 the charges on each atom.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Electronic spatial extent (au):  <R**2>=   106.6565
 Charge=      .0000 electrons
 Dipole moment (Debye):
    X=      .0000    Y=      .0000    Z=      .6484  Tot=      .6484
 Quadrupole moment (Debye-Ang):
   XX=   -14.2370   YY=   -17.4754   ZZ=   -15.7000
   XY=      .0000   XZ=      .0000   YZ=      .0000
 Octapole moment (Debye-Ang**2):
  XXX=      .0000  YYY=      .0000  ZZZ=      .2936  XYY=      .0000
  XXY=      .0000  XXZ=      .1834  XZZ=      .0000  YZZ=      .0000
  YYZ=     -.0905  XYZ=      .0000
 Hexadecapole moment (Debye-Ang**3):
 XXXX=    -8.2505 YYYY=   -77.8870 ZZZZ=   -18.0831 XXXY=      .0000
 XXXZ=      .0000 YYYX=      .0000 YYYZ=      .0000 ZZZX=      .0000
 ZZZY=      .0000 XXYY=   -13.7786 XXZZ=    -4.2240 YYZZ=   -15.2060
 XXYZ=      .0000 YYXZ=      .0000 ZZXY=      .0000

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 Above is presented several physical quantities calculated from
 the wavefunction. They are pretty self-explanatory.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 N-N= 7.072782915023D+01 E-N=-6.692730018644D+02  KE= 2.225419917519D+02
 Symmetry A1   KE= 1.387758784902D+02
 Symmetry A2   KE= 4.784784633178D+00
 Symmetry B1   KE= 4.216007411299D+00
 Symmetry B2   KE= 7.476532121725D+01
 Leave Link  601 at Fri Aug 30 09:47:52 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l701.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The above gives the break down of the energy into its components.
  In addition there is the change of links
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Compute integral first derivatives.
 ... and contract with generalized density number  0.
 Leave Link  701 at Fri Aug 30 09:47:53 2002, MaxMem=    1000000 cpu:        .4
 (Enter /software/davinci/gaussian/g98a7/g98/l702.exe)
 L702 exits ... SP integral derivatives will be done elsewhere.
 Leave Link  702 at Fri Aug 30 09:47:53 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l703.exe)
 Compute integral first derivatives.
 Integral derivatives from FoFDir, PRISM(SPD) Scalar Rys(F).
 Petite list used in FoFDir.
 MinBra= 0 MaxBra= 2 Meth= 1.
 IRaf=       0 NMat=   1 IRICut=       1 DoRegI=T DoRafI=F ISym2E= 1 JSym2E=1.
 Leave Link  703 at Fri Aug 30 09:47:54 2002, MaxMem=    1000000 cpu:        .2
 (Enter /software/davinci/gaussian/g98a7/g98/l716.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 Above is the calculation of the derivative of the energy with
 respect to the cartesian coordinates of the atoms.  This has
 taken place in several links. The best way to visualize this is
 that we have guessed a geometry for ozone, it will not be the lowest
 energy geometry. We need to find where the energy is lowest, as
 this is the best structure for our molecule. If you image that the
 geometry we have guessed is on the side of a hill and the lowest
 energy is down in the valley below. These derivatives tell us which
 direction is the valley bottom, hence they are very important.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Dipole        = 2.58516606D-17-8.97273332D-17 2.55083181D-01
 ***** Axes restored to original set *****
 -------------------------------------------------------------------
 Center     Atomic                   Forces (Hartrees/Bohr)
 Number     Number              X              Y              Z
 -------------------------------------------------------------------
    1          8           -.063491687     .000000000    -.039674009
    2          8           -.009681601     .000000000     .086134775
    3          8            .073173288     .000000000    -.046460765
 -------------------------------------------------------------------
 Cartesian Forces:  Max      .086134775 RMS      .047878419
 Leave Link  716 at Fri Aug 30 09:47:54 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l103.exe)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 Above the derivatives (forces) are printed out. There is one derivative
 for each cartesian coordinate. Thus for each oxygen atom there is a
 number under a heading X, Y or Z. The Y derivative is zero as the
 molecule is planar.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
 Berny optimization.
 Internal  Forces:  Max      .086134775 RMS      .071538047
 Search for a local minimum.
 Step number   1 out of a maximum of  20
 All quantities printed in internal units (Hartrees-Bohrs-Radians)
 Second derivative matrix not updated -- first step.
 The second derivative matrix:
                          R1        R2        A1
           R1            .87044
           R2            .00000    .87044
           A1            .00000    .00000    .25000
     Eigenvalues ---     .25000    .87044    .87044
 RFO step:  Lambda=-1.86063800D-02.
 Linear search not attempted -- first point.
 Iteration  1 RMS(Cart)=   .11045464 RMS(Int)=   .00250722
 Iteration  2 RMS(Cart)=   .00236537 RMS(Int)=   .00000378
 Iteration  3 RMS(Cart)=   .00000423 RMS(Int)=   .00000000
 Iteration  4 RMS(Cart)=   .00000000 RMS(Int)=   .00000000
 Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
                                 (Linear)    (Quad)   (Total)
    R1        2.34326    .08613    .00000    .09688    .09688   2.44014
    R2        2.34326    .08613    .00000    .09688    .09688   2.44014
    A1        2.02458    .02269    .00000    .08446    .08446   2.10904
         Item               Value     Threshold  Converged?
 Maximum Force             .086135      .000450     NO
 RMS     Force             .071538      .000300     NO
 Maximum Displacement      .120975      .001800     NO
 RMS     Displacement      .111538      .001200     NO
 Predicted change in Energy=-9.062179D-03
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 The section above, between the two lines of GradGrad.............,
 deals with calculating a new geometry, which should be closer
 the the valley bottom (minimum energy structure) than the initial
 geometry.  It uses a guess second derivative matrix to do this.
 This matrix is the matrix given in lower triangular form with
 R1, R2 and A1 beginning the rows and R1, R2 and A1 at the head of the
 columns.
 The second set of lines beginning R1, R2 and A1
 give the new geometry at the end,
 although the units may not be the units used by you when you inputed
 the z-matrix at the beginning. The angles are given in radians
 and the bond lengths are given in bohrs.
 The section with NO at the end of the lines (4 in all) deals
 with can the molecule be deemed to be at the minimum energy geometry?
 For this to be so, the derivatives (forces) have to be small
 and the predicted geometry change has to be small. The gradients and
 the predicted geomtry change are not deemed to be small enough
 hence the NO after each question. (i.e. is the Maximum Force
 below 0.000450? The answer is NO as the Maximum Force is 0.086135)
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

 Leave Link  103 at Fri Aug 30 09:47:55 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l202.exe)
                          Input orientation:                         
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          8             0        -.360380     .000000    -.225190
    2          8             0        -.414894     .000000    1.064928
    3          8             0         .775273     .000000    -.839738
 ---------------------------------------------------------------------

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 Above we have the new cartesian coordinates for ozone. These will be
 used to generate a new wave function for ozone. The derivatives
 will be taken again from this wave function and a new geometry determined.
 All this can be seen in the output below. There should be nothing new
 to you below as it has all been seen by you above. Look through it
 and see if you can understand it.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

                    Distance matrix (angstroms):
                    1          2          3
     1  O     .000000
     2  O    1.291269    .000000
     3  O    1.291269   2.245940    .000000
 Stoichiometry    O3
 Framework group  C2V[C2(O),SGV(O2)]
 Deg. of freedom    2
 Full point group                 C2V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C2      NOp   2
                         Standard orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          8             0         .000000     .000000     .424952
    2          8             0         .000000    1.122970    -.212476
    3          8             0         .000000   -1.122970    -.212476
 ---------------------------------------------------------------------
 Rotational constants (GHZ):    116.6446043     12.5276296     11.3126510
 Isotopes: O-16,O-16,O-16
 Leave Link  202 at Fri Aug 30 09:47:56 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l301.exe)
 Standard basis: 3-21G (6D, 7F)
 There are    12 symmetry adapted basis functions of A1  symmetry.
 There are     2 symmetry adapted basis functions of A2  symmetry.
 There are     4 symmetry adapted basis functions of B1  symmetry.
 There are     9 symmetry adapted basis functions of B2  symmetry.
 Crude estimate of integral set expansion from redundant integrals=1.014.
 Integral buffers will be    262144 words long.
 Raffenetti 1 integral format.
 Two-electron integral symmetry is turned on.
    27 basis functions       45 primitive gaussians
    12 alpha electrons       12 beta electrons
       nuclear repulsion energy        67.5352612308 Hartrees.
 Leave Link  301 at Fri Aug 30 09:47:56 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l302.exe)
 One-electron integrals computed using PRISM.
 One-electron integral symmetry used in STVInt
 NBasis=    27 RedAO= T  NBF=    12     2     4     9
 NBsUse=    27 1.00D-04 NBFU=    12     2     4     9
 Leave Link  302 at Fri Aug 30 09:47:58 2002, MaxMem=    1000000 cpu:        .3
 (Enter /software/davinci/gaussian/g98a7/g98/l303.exe)
 DipDrv:  MaxL=1.
 Leave Link  303 at Fri Aug 30 09:47:58 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l401.exe)
 Initial guess read from the read-write file:
 Guess basis functions will be translated to current atomic coordinates.
 Initial guess orbital symmetries:
       Occupied  (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B1) (B2) (B2)
                 (A1) (A2)
       Virtual   (B1) (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (B1)
                 (A1) (B2) (A1) (B2) (A1)
 Leave Link  401 at Fri Aug 30 09:47:59 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l502.exe)
 IExCor=   0 DFT=F Ex=HF Corr=None ScaHFX= 1.0000
 ScaDFX=   .0000   .0000   .0000   .0000
 IRadAn=      0 IRanWt=     -1 IRanGd=            0 ICorTp=0
 Using DIIS extrapolation.
 Closed shell SCF:
 Requested convergence on RMS density matrix=1.00D-08 within  64 cycles.
 Requested convergence on MAX density matrix=1.00D-06.
 Integral symmetry usage will be decided dynamically.
 Keep R1 integrals in memory in canonical form, NReq=      478586.
 IEnd=      6941 IEndB=      6941 NGot=   1000000 MDV=    926395
 LenX=    926395
 Symmetry not used in FoFDir.
 MinBra= 0 MaxBra= 1 Meth= 1.
 IRaf=       0 NMat=   1 IRICut=       1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0.

 Cycle   1  Pass 1  IDiag 1:
 E= -.290516174555840D+03
 DIIS: error= 1.53D-02 at cycle   1.
 T= 1091. Gap=  .428 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=0.0D+00
 RMSDP=2.87D-03 MaxDP=1.46D-02

 Cycle   2  Pass 1  IDiag 1:
 E= -.290522165177949D+03 Delta-E=        -.005990622108
 DIIS: error= 4.29D-03 at cycle   2.
 Coeff:  .285D-01 -.103D+01
 T=  926. Gap=  .424 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=0.0D+00
 RMSDP=1.04D-03 MaxDP=4.85D-03

 Cycle   3  Pass 1  IDiag 1:
 E= -.290522870115407D+03 Delta-E=        -.000704937458
 DIIS: error= 2.62D-03 at cycle   3.
 Coeff:  .691D-01 -.360D+00 -.709D+00
 T=  656. Gap=  .428 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=0.0D+00
 RMSDP=4.77D-04 MaxDP=2.92D-03

 Cycle   4  Pass 1  IDiag 1:
 E= -.290523123103030D+03 Delta-E=        -.000252987623
 DIIS: error= 1.43D-03 at cycle   4.
 Coeff: -.658D-03  .176D+00 -.130D+00 -.105D+01
 T=   69. Gap=  .428 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=0.0D+00
 RMSDP=3.95D-04 MaxDP=1.80D-03

 Cycle   5  Pass 1  IDiag 1:
 E= -.290523219867469D+03 Delta-E=        -.000096764439
 DIIS: error= 4.65D-04 at cycle   5.
 Coeff: -.162D-01  .743D-01  .136D+00  .204D+00 -.140D+01
 RMSDP=2.67D-04 MaxDP=1.03D-03

 Cycle   6  Pass 1  IDiag 1:
 E= -.290523241458989D+03 Delta-E=        -.000021591520
 DIIS: error= 9.01D-05 at cycle   6.
 Coeff:  .275D-02 -.222D-01 -.316D-01  .531D-01  .224D+00 -.123D+01
 RMSDP=3.29D-05 MaxDP=1.40D-04

 Cycle   7  Pass 1  IDiag 1:
 E= -.290523241933168D+03 Delta-E=        -.000000474180
 DIIS: error= 2.07D-05 at cycle   7.
 Coeff: -.664D-03  .775D-02  .473D-02 -.205D-01 -.572D-01  .509D+00
 Coeff: -.144D+01
 RMSDP=6.34D-06 MaxDP=3.93D-05

 Cycle   8  Pass 1  IDiag 1:
 E= -.290523241964325D+03 Delta-E=        -.000000031156
 DIIS: error= 6.84D-06 at cycle   8.
 Coeff:  .388D-03 -.487D-02 -.264D-02  .161D-01  .291D-01 -.344D+00
 Coeff:  .127D+01 -.196D+01
 RMSDP=4.09D-06 MaxDP=2.43D-05

 Cycle   9  Pass 1  IDiag 1:
 E= -.290523241971230D+03 Delta-E=        -.000000006906
 DIIS: error= 1.83D-06 at cycle   9.
 Coeff: -.101D-03  .146D-02  .543D-03 -.514D-02 -.730D-02  .104D+00
 Coeff: -.441D+00  .996D+00 -.165D+01
 RMSDP=1.64D-06 MaxDP=7.36D-06

 Cycle  10  Pass 1  IDiag 1:
 E= -.290523241971808D+03 Delta-E=        -.000000000578
 DIIS: error= 3.36D-07 at cycle  10.
 Coeff:  .282D-04 -.433D-03 -.737D-04  .147D-02  .189D-02 -.302D-01
 Coeff:  .134D+00 -.324D+00  .636D+00 -.142D+01
 RMSDP=1.84D-07 MaxDP=1.07D-06

 Cycle  11  Pass 1  IDiag 1:
 E= -.290523241971815D+03 Delta-E=        -.000000000007
 DIIS: error= 7.32D-08 at cycle  11.
 Coeff: -.468D-05  .765D-04 -.308D-05 -.246D-03 -.269D-03  .506D-02
 Coeff: -.234D-01  .598D-01 -.130D+00  .404D+00 -.131D+01
 RMSDP=1.51D-08 MaxDP=1.39D-07

 Cycle  12  Pass 1  IDiag 1:
 E= -.290523241971815D+03 Delta-E=         .000000000000
 DIIS: error= 7.18D-09 at cycle  12.
 Coeff:  .413D-06 -.745D-05  .425D-05  .209D-04  .840D-05 -.407D-03
 Coeff:  .220D-02 -.639D-02  .166D-01 -.731D-01  .369D+00 -.131D+01
 RMSDP=1.78D-09 MaxDP=1.45D-08

 SCF Done:  E(RHF) =  -222.987980741     A.U. after   12 cycles
             Convg  =     .1780D-08             -V/T =  2.0039
             S**2   =    .0000
 KE= 2.221216746709D+02 PE=-6.627836125357D+02 EE= 1.501386958930D+02
 Leave Link  502 at Fri Aug 30 09:48:00 2002, MaxMem=    1000000 cpu:        .2
 (Enter /software/davinci/gaussian/g98a7/g98/l701.exe)
 Compute integral first derivatives.
 ... and contract with generalized density number  0.
 Leave Link  701 at Fri Aug 30 09:48:01 2002, MaxMem=    1000000 cpu:        .4
 (Enter /software/davinci/gaussian/g98a7/g98/l702.exe)
 L702 exits ... SP integral derivatives will be done elsewhere.
 Leave Link  702 at Fri Aug 30 09:48:01 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l703.exe)
 Compute integral first derivatives.
 Integral derivatives from FoFDir, PRISM(SPD) Scalar Rys(F).
 Petite list used in FoFDir.
 MinBra= 0 MaxBra= 2 Meth= 1.
 IRaf=       0 NMat=   1 IRICut=       1 DoRegI=T DoRafI=F ISym2E= 1 JSym2E=1.
 Leave Link  703 at Fri Aug 30 09:48:02 2002, MaxMem=    1000000 cpu:        .2
 (Enter /software/davinci/gaussian/g98a7/g98/l716.exe)
 ***** Axes restored to original set *****
 -------------------------------------------------------------------
 Center     Atomic                   Forces (Hartrees/Bohr)
 Number     Number              X              Y              Z
 -------------------------------------------------------------------
    1          8           -.026891445     .000000000    -.016803640
    2          8            .008313270     .000000000     .016615460
    3          8            .018578175     .000000000     .000188179
 -------------------------------------------------------------------
 Cartesian Forces:  Max      .026891445 RMS      .013727022
 Leave Link  716 at Fri Aug 30 09:48:03 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l103.exe)

 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
 Berny optimization.
 Internal  Forces:  Max      .021979170 RMS      .018359268
 Search for a local minimum.
 Step number   2 out of a maximum of  20
 All quantities printed in internal units (Hartrees-Bohrs-Radians)
 Update second derivatives using information from points  1  2
 Trust test= 1.03D+00 RLast= 1.61D-01 DXMaxT set to 4.24D-01
 The second derivative matrix:
                          R1        R2        A1
           R1            .76012
           R2           -.11032    .76012
           A1            .08204    .08204    .34063
     Eigenvalues ---     .30193    .68850    .87044
 RFO step:  Lambda=-2.76607070D-03.
 Quartic linear search produced a step of   .09425.
 Iteration  1 RMS(Cart)=   .04900799 RMS(Int)=   .00161719
 Iteration  2 RMS(Cart)=   .00202539 RMS(Int)=   .00000090
 Iteration  3 RMS(Cart)=   .00000073 RMS(Int)=   .00000000
 Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
                                 (Linear)    (Quad)   (Total)
    R1        2.44014    .01625    .00913    .02759    .03672   2.47687
    R2        2.44014    .01625    .00913    .02759    .03672   2.47687
    A1        2.10904   -.02198    .00796   -.08623   -.07827   2.03078
         Item               Value     Threshold  Converged?
 Maximum Force             .021979      .000450     NO
 RMS     Force             .018359      .000300     NO
 Maximum Displacement      .057365      .001800     NO
 RMS     Displacement      .049931      .001200     NO
 Predicted change in Energy=-1.448045D-03
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

 Leave Link  103 at Fri Aug 30 09:48:03 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l202.exe)
                          Input orientation:                         
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          8             0        -.390736     .000000    -.244159
    2          8             0        -.394795     .000000    1.066538
    3          8             0         .785531     .000000    -.822379
 ---------------------------------------------------------------------
                    Distance matrix (angstroms):
                    1          2          3
     1  O     .000000
     2  O    1.310703    .000000
     3  O    1.310703   2.227369    .000000
 Stoichiometry    O3
 Framework group  C2V[C2(O),SGV(O2)]
 Deg. of freedom    2
 Full point group                 C2V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C2      NOp   2
                         Standard orientation:                         
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          8             0         .000000     .000000     .460747
    2          8             0         .000000    1.113685    -.230374
    3          8             0         .000000   -1.113685    -.230374
 ---------------------------------------------------------------------
 Rotational constants (GHZ):     99.2244044     12.7374003     11.2883225
 Isotopes: O-16,O-16,O-16
 Leave Link  202 at Fri Aug 30 09:48:04 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l301.exe)
 Standard basis: 3-21G (6D, 7F)
 There are    12 symmetry adapted basis functions of A1  symmetry.
 There are     2 symmetry adapted basis functions of A2  symmetry.
 There are     4 symmetry adapted basis functions of B1  symmetry.
 There are     9 symmetry adapted basis functions of B2  symmetry.
 Crude estimate of integral set expansion from redundant integrals=1.014.
 Integral buffers will be    262144 words long.
 Raffenetti 1 integral format.
 Two-electron integral symmetry is turned on.
    27 basis functions       45 primitive gaussians
    12 alpha electrons       12 beta electrons
       nuclear repulsion energy        66.8832298044 Hartrees.
 Leave Link  301 at Fri Aug 30 09:48:04 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l302.exe)
 One-electron integrals computed using PRISM.
 One-electron integral symmetry used in STVInt
 NBasis=    27 RedAO= T  NBF=    12     2     4     9
 NBsUse=    27 1.00D-04 NBFU=    12     2     4     9
 Leave Link  302 at Fri Aug 30 09:48:05 2002, MaxMem=    1000000 cpu:        .3
 (Enter /software/davinci/gaussian/g98a7/g98/l303.exe)
 DipDrv:  MaxL=1.
 Leave Link  303 at Fri Aug 30 09:48:06 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l401.exe)
 Initial guess read from the read-write file:
 Guess basis functions will be translated to current atomic coordinates.
 Initial guess orbital symmetries:
       Occupied  (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (B1) (B2)
                 (A1) (A2)
       Virtual   (B1) (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (B1)
                 (A1) (B2) (A1) (B2) (A1)
 Leave Link  401 at Fri Aug 30 09:48:06 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l502.exe)
 IExCor=   0 DFT=F Ex=HF Corr=None ScaHFX= 1.0000
 ScaDFX=   .0000   .0000   .0000   .0000
 IRadAn=      0 IRanWt=     -1 IRanGd=            0 ICorTp=0
 Using DIIS extrapolation.
 Closed shell SCF:
 Requested convergence on RMS density matrix=1.00D-08 within  64 cycles.
 Requested convergence on MAX density matrix=1.00D-06.
 Integral symmetry usage will be decided dynamically.
 Keep R1 integrals in memory in canonical form, NReq=      478586.
 IEnd=      6941 IEndB=      6941 NGot=   1000000 MDV=    926395
 LenX=    926395
 Symmetry not used in FoFDir.
 MinBra= 0 MaxBra= 1 Meth= 1.
 IRaf=       0 NMat=   1 IRICut=       1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0.

 Cycle   1  Pass 1  IDiag 1:
 E= -.289869907820094D+03
 DIIS: error= 6.01D-03 at cycle   1.
 T=  531. Gap=  .417 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=0.0D+00
 RMSDP=1.41D-03 MaxDP=6.55D-03

 Cycle   2  Pass 1  IDiag 1:
 E= -.289871888904215D+03 Delta-E=        -.001981084121
 DIIS: error= 2.58D-03 at cycle   2.
 Coeff:  .112D+00 -.111D+01
 T=  405. Gap=  .415 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=0.0D+00
 RMSDP=7.04D-04 MaxDP=3.09D-03

 Cycle   3  Pass 1  IDiag 1:
 E= -.289872255204197D+03 Delta-E=        -.000366299982
 DIIS: error= 1.48D-03 at cycle   3.
 Coeff:  .875D-01 -.293D+00 -.794D+00
 T=  181. Gap=  .417 NK=0 IS=    1 IE=   27
          NO(<0.9)=   0  NV(>0.1)=   0  12.00e < EF  .00e >EF  Err=0.0D+00
 RMSDP=3.24D-04 MaxDP=1.30D-03

 Cycle   4  Pass 1  IDiag 1:
 E= -.289872352775477D+03 Delta-E=        -.000097571280
 DIIS: error= 8.18D-04 at cycle   4.
 Coeff: -.269D-01  .363D+00 -.183D+00 -.115D+01
 RMSDP=3.52D-04 MaxDP=1.49D-03

 Cycle   5  Pass 1  IDiag 1:
 E= -.289872405828598D+03 Delta-E=        -.000053053122
 DIIS: error= 2.57D-04 at cycle   5.
 Coeff: -.188D-01  .712D-01  .144D+00 -.503D-01 -.115D+01
 RMSDP=1.43D-04 MaxDP=6.46D-04

 Cycle   6  Pass 1  IDiag 1:
 E= -.289872411800697D+03 Delta-E=        -.000005972099
 DIIS: error= 6.25D-05 at cycle   6.
 Coeff:  .647D-02 -.432D-01 -.279D-01  .103D+00  .269D+00 -.131D+01
 RMSDP=3.08D-05 MaxDP=1.58D-04

 Cycle   7  Pass 1  IDiag 1:
 E= -.289872412196018D+03 Delta-E=        -.000000395320
 DIIS: error= 2.83D-05 at cycle   7.
 Coeff: -.283D-02  .237D-01  .848D-03 -.496D-01 -.987D-01  .863D+00
 Coeff: -.174D+01
 RMSDP=1.44D-05 MaxDP=8.61D-05

 Cycle   8  Pass 1  IDiag 1:
 E= -.289872412282848D+03 Delta-E=        -.000000086831
 DIIS: error= 1.15D-05 at cycle   8.
 Coeff:  .105D-02 -.105D-01  .441D-03  .276D-01  .223D-01 -.430D+00
 Coeff:  .125D+01 -.186D+01
 RMSDP=6.14D-06 MaxDP=3.99D-05

 Cycle   9  Pass 1  IDiag 1:
 E= -.289872412296396D+03 Delta-E=        -.000000013548
 DIIS: error= 3.45D-06 at cycle   9.
 Coeff: -.271D-03  .326D-02 -.123D-02 -.797D-02 -.364D-02  .139D+00
 Coeff: -.469D+00  .954D+00 -.161D+01
 RMSDP=1.38D-06 MaxDP=9.39D-06

 Cycle  10  Pass 1  IDiag 1:
 E= -.289872412297026D+03 Delta-E=        -.000000000630
 DIIS: error= 1.81D-07 at cycle  10.
 Coeff:  .450D-04 -.574D-03  .347D-03  .126D-02  .327D-03 -.239D-01
 Coeff:  .846D-01 -.193D+00  .404D+00 -.127D+01
 RMSDP=8.55D-08 MaxDP=4.05D-07

 Cycle  11  Pass 1  IDiag 1:
 E= -.289872412297029D+03 Delta-E=        -.000000000003
 DIIS: error= 4.72D-08 at cycle  11.
 Coeff: -.624D-05  .866D-04 -.866D-04 -.138D-03 -.921D-05  .330D-02
 Coeff: -.120D-01  .286D-01 -.640D-01  .277D+00 -.123D+01
 RMSDP=9.74D-09 MaxDP=4.96D-08

 SCF Done:  E(RHF) =  -222.989182493     A.U. after   11 cycles
             Convg  =     .9741D-08             -V/T =  2.0044
             S**2   =    .0000
 KE= 2.220102711948D+02 PE=-6.614798552069D+02 EE= 1.495971717151D+02
 Leave Link  502 at Fri Aug 30 09:48:07 2002, MaxMem=    1000000 cpu:        .2
 (Enter /software/davinci/gaussian/g98a7/g98/l701.exe)
 Compute integral first derivatives.
 ... and contract with generalized density number  0.
 Leave Link  701 at Fri Aug 30 09:48:09 2002, MaxMem=    1000000 cpu:        .4
 (Enter /software/davinci/gaussian/g98a7/g98/l702.exe)
 L702 exits ... SP integral derivatives will be done elsewhere.
 Leave Link  702 at Fri Aug 30 09:48:09 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l703.exe)
 Compute integral first derivatives.
 Integral derivatives from FoFDir, PRISM(SPD) Scalar Rys(F).
 Petite list used in FoFDir.
 MinBra= 0 MaxBra= 2 Meth= 1.
 IRaf=       0 NMat=   1 IRICut=       1 DoRegI=T DoRafI=F ISym2E= 1 JSym2E=1.
 Leave Link  703 at Fri Aug 30 09:48:10 2002, MaxMem=    1000000 cpu:        .2
 (Enter /software/davinci/gaussian/g98a7/g98/l716.exe)
 ***** Axes restored to original set *****
 -------------------------------------------------------------------
 Center     Atomic                   Forces (Hartrees/Bohr)
 Number     Number              X              Y              Z
 -------------------------------------------------------------------
    1          8            .004419600     .000000000     .002761673
    2          8           -.001621519     .000000000    -.002322284
    3          8           -.002798082     .000000000    -.000439389
 -------------------------------------------------------------------
 Cartesian Forces:  Max      .004419600 RMS      .002191001
 Leave Link  716 at Fri Aug 30 09:48:10 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l103.exe)

 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
 Berny optimization.
 Internal  Forces:  Max      .004034084 RMS      .003000730
 Search for a local minimum.
 Step number   3 out of a maximum of  20
 All quantities printed in internal units (Hartrees-Bohrs-Radians)
 Update second derivatives using information from points  1  2  3
 Trust test= 8.30D-01 RLast= 9.39D-02 DXMaxT set to 4.24D-01
 The second derivative matrix:
                          R1        R2        A1
           R1            .74507
           R2           -.12537    .74507
           A1            .05355    .05355    .38262
     Eigenvalues ---     .36050    .64183    .87044
 RFO step:  Lambda=-5.82175407D-07.
 Quartic linear search produced a step of  -.14560.
 Iteration  1 RMS(Cart)=   .00784742 RMS(Int)=   .00003956
 Iteration  2 RMS(Cart)=   .00004411 RMS(Int)=   .00000000
 Iteration  3 RMS(Cart)=   .00000000 RMS(Int)=   .00000000
 Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
                                 (Linear)    (Quad)   (Total)
    R1        2.47687   -.00232   -.00535    .00050   -.00485   2.47202
    R2        2.47687   -.00232   -.00535    .00050   -.00485   2.47202
    A1        2.03078    .00403    .01140    .00071    .01211   2.04289
         Item               Value     Threshold  Converged?
 Maximum Force             .004034      .000450     NO
 RMS     Force             .003001      .000300     NO
 Maximum Displacement      .008648      .001800     NO
 RMS     Displacement      .007830      .001200     NO
 Predicted change in Energy=-3.632441D-05
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

 Leave Link  103 at Fri Aug 30 09:48:10 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l202.exe)
                          Input orientation:                         
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          8             0        -.386159     .000000    -.241299
    2          8             0        -.398131     .000000    1.066784
    3          8             0         .784290     .000000    -.825485
 ---------------------------------------------------------------------
                    Distance matrix (angstroms):
                    1          2          3
     1  O     .000000
     2  O    1.308138    .000000
     3  O    1.308138   2.231323    .000000
 Stoichiometry    O3
 Framework group  C2V[C2(O),SGV(O2)]
 Deg. of freedom    2
 Full point group                 C2V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C2      NOp   2
                         Standard orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          8             0         .000000     .000000     .455351
    2          8             0         .000000    1.115662    -.227675
    3          8             0         .000000   -1.115662    -.227675
 ---------------------------------------------------------------------
 Rotational constants (GHZ):    101.5902427     12.6923012     11.2826851
 Isotopes: O-16,O-16,O-16
 Leave Link  202 at Fri Aug 30 09:48:11 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l301.exe)
 Standard basis: 3-21G (6D, 7F)
 There are    12 symmetry adapted basis functions of A1  symmetry.
 There are     2 symmetry adapted basis functions of A2  symmetry.
 There are     4 symmetry adapted basis functions of B1  symmetry.
 There are     9 symmetry adapted basis functions of B2  symmetry.
 Crude estimate of integral set expansion from redundant integrals=1.014.
 Integral buffers will be    262144 words long.
 Raffenetti 1 integral format.
 Two-electron integral symmetry is turned on.
    27 basis functions       45 primitive gaussians
    12 alpha electrons       12 beta electrons
       nuclear repulsion energy        66.9576043992 Hartrees.
 Leave Link  301 at Fri Aug 30 09:48:11 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l302.exe)
 One-electron integrals computed using PRISM.
 One-electron integral symmetry used in STVInt
 NBasis=    27 RedAO= T  NBF=    12     2     4     9
 NBsUse=    27 1.00D-04 NBFU=    12     2     4     9
 Leave Link  302 at Fri Aug 30 09:48:12 2002, MaxMem=    1000000 cpu:        .3
 (Enter /software/davinci/gaussian/g98a7/g98/l303.exe)
 DipDrv:  MaxL=1.
 Leave Link  303 at Fri Aug 30 09:48:13 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l401.exe)
 Initial guess read from the read-write file:
 Guess basis functions will be translated to current atomic coordinates.
 Initial guess orbital symmetries:
       Occupied  (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (B1) (B2)
                 (A1) (A2)
       Virtual   (B1) (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (B1)
                 (A1) (B2) (A1) (B2) (A1)
 Leave Link  401 at Fri Aug 30 09:48:13 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l502.exe)
 IExCor=   0 DFT=F Ex=HF Corr=None ScaHFX= 1.0000
 ScaDFX=   .0000   .0000   .0000   .0000
 IRadAn=      0 IRanWt=     -1 IRanGd=            0 ICorTp=0
 Using DIIS extrapolation.
 Closed shell SCF:
 Requested convergence on RMS density matrix=1.00D-08 within  64 cycles.
 Requested convergence on MAX density matrix=1.00D-06.
 Integral symmetry usage will be decided dynamically.
 Keep R1 integrals in memory in canonical form, NReq=      478586.
 IEnd=      6941 IEndB=      6941 NGot=   1000000 MDV=    926395
 LenX=    926395
 Symmetry not used in FoFDir.
 MinBra= 0 MaxBra= 1 Meth= 1.
 IRaf=       0 NMat=   1 IRICut=       1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0.

 Cycle   1  Pass 1  IDiag 1:
 E= -.289946765511511D+03
 DIIS: error= 8.69D-04 at cycle   1.
 RMSDP=2.14D-04 MaxDP=1.02D-03

 Cycle   2  Pass 1  IDiag 1:
 E= -.289946809708837D+03 Delta-E=        -.000044197325
 DIIS: error= 4.05D-04 at cycle   2.
 Coeff:  .144D+00 -.114D+01
 RMSDP=1.12D-04 MaxDP=4.89D-04

 Cycle   3  Pass 1  IDiag 1:
 E= -.289946818805983D+03 Delta-E=        -.000009097146
 DIIS: error= 2.21D-04 at cycle   3.
 Coeff:  .720D-01 -.131D+00 -.941D+00
 RMSDP=5.55D-05 MaxDP=2.32D-04

 Cycle   4  Pass 1  IDiag 1:
 E= -.289946821091308D+03 Delta-E=        -.000002285325
 DIIS: error= 1.21D-04 at cycle   4.
 Coeff: -.381D-01  .425D+00 -.348D+00 -.104D+01
 RMSDP=5.19D-05 MaxDP=2.19D-04

 Cycle   5  Pass 1  IDiag 1:
 E= -.289946822180586D+03 Delta-E=        -.000001089278
 DIIS: error= 3.17D-05 at cycle   5.
 Coeff: -.166D-01  .616D-01  .122D+00 -.905D-01 -.108D+01
 RMSDP=1.76D-05 MaxDP=8.07D-05

 Cycle   6  Pass 1  IDiag 1:
 E= -.289946822276650D+03 Delta-E=        -.000000096064
 DIIS: error= 9.21D-06 at cycle   6.
 Coeff:  .634D-02 -.458D-01 -.357D-02  .108D+00  .214D+00 -.128D+01
 RMSDP=4.35D-06 MaxDP=2.26D-05

 Cycle   7  Pass 1  IDiag 1:
 E= -.289946822284979D+03 Delta-E=        -.000000008329
 DIIS: error= 3.98D-06 at cycle   7.
 Coeff: -.271D-02  .245D-01 -.126D-01 -.480D-01 -.601D-01  .836D+00
 Coeff: -.174D+01
 RMSDP=2.21D-06 MaxDP=1.28D-05

 Cycle   8  Pass 1  IDiag 1:
 E= -.289946822286973D+03 Delta-E=        -.000000001994
 DIIS: error= 1.81D-06 at cycle   8.
 Coeff:  .999D-03 -.107D-01  .558D-02  .276D-01  .257D-02 -.418D+00
 Coeff:  .126D+01 -.186D+01
 RMSDP=9.29D-07 MaxDP=5.88D-06

 Cycle   9  Pass 1  IDiag 1:
 E= -.289946822287274D+03 Delta-E=        -.000000000302
 DIIS: error= 4.48D-07 at cycle   9.
 Coeff: -.259D-03  .324D-02 -.222D-02 -.858D-02  .192D-02  .139D+00
 Coeff: -.480D+00  .949D+00 -.160D+01
 RMSDP=1.88D-07 MaxDP=1.28D-06

 Cycle  10  Pass 1  IDiag 1:
 E= -.289946822287286D+03 Delta-E=        -.000000000012
 DIIS: error= 3.09D-08 at cycle  10.
 Coeff:  .450D-04 -.573D-03  .385D-03  .160D-02 -.473D-03 -.257D-01
 Coeff:  .918D-01 -.199D+00  .403D+00 -.127D+01
 RMSDP=1.01D-08 MaxDP=5.98D-08

 Cycle  11  Pass 1  IDiag 1:
 E= -.289946822287287D+03 Delta-E=         .000000000000
 DIIS: error= 2.75D-09 at cycle  11.
 Coeff: -.695D-05  .919D-04 -.692D-04 -.248D-03  .844D-04  .417D-02
 Coeff: -.152D-01  .337D-01 -.712D-01  .282D+00 -.123D+01
 RMSDP=1.07D-09 MaxDP=5.65D-09

 SCF Done:  E(RHF) =  -222.989217888     A.U. after   11 cycles
             Convg  =     .1071D-08             -V/T =  2.0043
             S**2   =    .0000
 KE= 2.220236671826D+02 PE=-6.616272213256D+02 EE= 1.496567318556D+02
 Leave Link  502 at Fri Aug 30 09:48:15 2002, MaxMem=    1000000 cpu:        .2
 (Enter /software/davinci/gaussian/g98a7/g98/l701.exe)
 Compute integral first derivatives.
 ... and contract with generalized density number  0.
 Leave Link  701 at Fri Aug 30 09:48:15 2002, MaxMem=    1000000 cpu:        .4
 (Enter /software/davinci/gaussian/g98a7/g98/l702.exe)
 L702 exits ... SP integral derivatives will be done elsewhere.
 Leave Link  702 at Fri Aug 30 09:48:15 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l703.exe)
 Compute integral first derivatives.
 Integral derivatives from FoFDir, PRISM(SPD) Scalar Rys(F).
 Petite list used in FoFDir.
 MinBra= 0 MaxBra= 2 Meth= 1.
 IRaf=       0 NMat=   1 IRICut=       1 DoRegI=T DoRafI=F ISym2E= 1 JSym2E=1.
 Leave Link  703 at Fri Aug 30 09:48:16 2002, MaxMem=    1000000 cpu:        .2
 (Enter /software/davinci/gaussian/g98a7/g98/l716.exe)
 ***** Axes restored to original set *****
 -------------------------------------------------------------------
 Center     Atomic                   Forces (Hartrees/Bohr)
 Number     Number              X              Y              Z
 -------------------------------------------------------------------
    1          8            .000033344     .000000000     .000020836
    2          8            .000064975     .000000000    -.000141081
    3          8           -.000098319     .000000000     .000120245
 -------------------------------------------------------------------
 Cartesian Forces:  Max      .000141081 RMS      .000074384
 Leave Link  716 at Fri Aug 30 09:48:16 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l103.exe)

 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
 Berny optimization.
 Internal  Forces:  Max      .000157422 RMS      .000147108
 Search for a local minimum.
 Step number   4 out of a maximum of  20
 All quantities printed in internal units (Hartrees-Bohrs-Radians)
 Update second derivatives using information from points  1  2  3  4
 Trust test= 9.74D-01 RLast= 1.39D-02 DXMaxT set to 4.24D-01
 The second derivative matrix:
                          R1        R2        A1
           R1            .74778
           R2           -.12265    .74778
           A1            .07053    .07053    .40259
     Eigenvalues ---     .36443    .66329    .87044
 RFO step:  Lambda=-1.00956474D-07.
 Quartic linear search produced a step of  -.00742.
 Iteration  1 RMS(Cart)=   .00032414 RMS(Int)=   .00000003
 Iteration  2 RMS(Cart)=   .00000002 RMS(Int)=   .00000000
 Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
                                 (Linear)    (Quad)   (Total)
    R1        2.47202   -.00014    .00004   -.00023   -.00019   2.47183
    R2        2.47202   -.00014    .00004   -.00023   -.00019   2.47183
    A1        2.04289   -.00016   -.00009   -.00023   -.00032   2.04256
         Item               Value     Threshold  Converged?
 Maximum Force             .000157      .000450     YES
 RMS     Force             .000147      .000300     YES
 Maximum Displacement      .000358      .001800     YES
 RMS     Displacement      .000324      .001200     YES
 Predicted change in Energy=-5.245417D-08
 Optimization completed.
    -- Stationary point found.

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 Note this time it has decided at minimum energy point has been
 reached, the the calculation terminates. It also prints out
 stationary point found.
 Below it prints out the final geometry.
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

                         ----------------------------
                         !   Optimized Parameters   !
                         ! (Angstroms and Degrees)  !
 ------------------------                            -------------------------
 ! Name  Definition              Value          Derivative Info.             !
 -----------------------------------------------------------------------------
 ! R1    R(1,2)                  1.3081         -DE/DX =   -0.0001           !
 ! R2    R(1,3)                  1.3081         -DE/DX =   -0.0001           !
 ! A1    A(2,1,3)              117.0487         -DE/DX =   -0.0002           !
 -----------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

 Leave Link  103 at Fri Aug 30 09:48:16 2002, MaxMem=    1000000 cpu:        .0
 (Enter /software/davinci/gaussian/g98a7/g98/l202.exe)
                          Input orientation:                          
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          8             0        -.386159     .000000    -.241299
    2          8             0        -.398131     .000000    1.066784
    3          8             0         .784290     .000000    -.825485
 ---------------------------------------------------------------------
                    Distance matrix (angstroms):
                    1          2          3
     1  O     .000000
     2  O    1.308138    .000000
     3  O    1.308138   2.231323    .000000
 Stoichiometry    O3
 Framework group  C2V[C2(O),SGV(O2)]
 Deg. of freedom    2
 Full point group                 C2V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C2      NOp   2
                         Standard orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic     Atomic              Coordinates (Angstroms)
 Number     Number      Type              X           Y           Z
 ---------------------------------------------------------------------
    1          8             0         .000000     .000000     .455351
    2          8             0         .000000    1.115662    -.227675
    3          8             0         .000000   -1.115662    -.227675
 ---------------------------------------------------------------------
 Rotational constants (GHZ):    101.5902427     12.6923012     11.2826851
 Isotopes: O-16,O-16,O-16
 Leave Link  202 at Fri Aug 30 09:48:16 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l601.exe)
 Copying SCF densities to generalized density rwf, ISCF=0 IROHF=0.

 **********************************************************************

            Population analysis using the SCF density.

 **********************************************************************

 Orbital Symmetries:
       Occupied  (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (B1) (B2)
                 (A1) (A2)
       Virtual   (B1) (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (B1)
                 (A1) (B2) (A1) (B2) (A1)
  The electronic state is 1-A1.
 Alpha  occ. eigenvalues --  -20.80571 -20.61353 -20.61310  -1.72332  -1.40981
 Alpha  occ. eigenvalues --   -1.08599   -.80548   -.76273   -.75768   -.55690
 Alpha  occ. eigenvalues --    -.53842   -.47237
 Alpha virt. eigenvalues --    -.05385    .26758    .37553   1.57366   1.58132
 Alpha virt. eigenvalues --    1.64961   1.67869   1.73772   1.78652   1.83147
 Alpha virt. eigenvalues --    1.88581   2.09303   2.52447   2.90467   3.23404
          Condensed to atoms (all electrons):
              1          2          3
  1  O    7.729539    .068777    .068777
  2  O     .068777   8.044293   -.046616
  3  O     .068777   -.046616   8.044293
 Total atomic charges:
              1
  1  O     .132908
  2  O    -.066454
  3  O    -.066454
 Sum of Mulliken charges=    .00000
 Atomic charges with hydrogens summed into heavy atoms:
              1
  1  O     .132908
  2  O    -.066454
  3  O    -.066454
 Sum of Mulliken charges=    .00000
 Electronic spatial extent (au):  <R**2>=   115.1133
 Charge=      .0000 electrons
 Dipole moment (Debye):
    X=      .0000    Y=      .0000    Z=      .5160  Tot=      .5160
 Quadrupole moment (Debye-Ang):
   XX=   -14.3847   YY=   -17.0840   ZZ=   -15.7552
   XY=      .0000   XZ=      .0000   YZ=      .0000
 Octapole moment (Debye-Ang**2):
  XXX=      .0000  YYY=      .0000  ZZZ=      .2181  XYY=      .0000
  XXY=      .0000  XXZ=      .1692  XZZ=      .0000  YZZ=      .0000
  YYZ=     -.4456  XYZ=      .0000
 Hexadecapole moment (Debye-Ang**3):
 XXXX=    -8.3727 YYYY=   -84.7524 ZZZZ=   -18.8545 XXXY=      .0000
 XXXZ=      .0000 YYYX=      .0000 YYYZ=      .0000 ZZZX=      .0000
 ZZZY=      .0000 XXYY=   -15.1564 XXZZ=    -4.3669 YYZZ=   -16.6440
 XXYZ=      .0000 YYXZ=      .0000 ZZXY=      .0000
 N-N= 6.695760439922D+01 E-N=-6.616272213350D+02  KE= 2.220236671826D+02
 Symmetry A1   KE= 1.386309448700D+02
 Symmetry A2   KE= 4.757375707667D+00
 Symmetry B1   KE= 4.188474742018D+00
 Symmetry B2   KE= 7.444687186293D+01
 Leave Link  601 at Fri Aug 30 09:48:16 2002, MaxMem=    1000000 cpu:        .1
 (Enter /software/davinci/gaussian/g98a7/g98/l9999.exe)
 1\1\GINC-DAVINCI05\FOpt\RHF\3-21G\O3\MBDTSMV\30-Aug-2002\0\\#P HF/3-21
 G OPT\\title\\0,1\O,-0.3861593178,0.,-0.2412991226\O,-0.3981309089,0.,
 1.0667842469\O,0.7842902267,0.,-0.8254851243\\Version=IBM-RS6000-G98Re
 vA.7\State=1-A1\HF=-222.9892179\RMSD=1.071e-09\RMSF=7.438e-05\Dipole=-
 0.1721541,0.,-0.1075738\PG=C02V [C2(O1),SGV(O2)]\\@


 It takes a long time to grow an old friend.
                            -- John Leonard
 Job cpu time:  0 days  0 hours  0 minutes  8.8 seconds.
 File lengths (MBytes):  RWF=    6 Int=    0 D2E=    0 Chk=    3 Scr=    1
 Normal termination of Gaussian 98.