
Merging Files of Time-varying Covariates

Mark Lunt
Arthritis Research UK Epidemiology Unit, University of Manchester,

Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.

Abstract.

This insert describes a new command, tvc_merge, which can be used merge
two datasets containing variables whose values, for a given individual, change over
time. If the time points at which the variables change differ between the two
datasets, a simple merge will not be sufficient: each record in the first dataset will
need to be split into two records at each timepoint that the variables change in
the second dataset, and the appropriate values from the second dataset merged
to each of these records. Equally, records from the second dataset may also need
to be split at times that the variables in the first dataset change. The use of
the tvc_merge command is illustrated using an example from a drug surveillance
system, in which adverse events need to be matched to the particular drug being
taken at the time the event occured.

Keywords: time-varying covariates, merging

1 Introduction

The ado-file tvc_merge is used to merge two datasets of time-varying covariates, when
the end-points of the time intervals in the two datasets are different (if the time inter-
vals were the same, merge could be used). Intervals in the first dataset will be split
whenever a change in covariates occurs in the second dataset, and vice versa. This is
best understood by means of an example.

2 Example

The example below is based on analyses of the British Society for Rheumatology Bi-
ologics Register (BSRBR). This is a register of patients taking biologic therapies for
arthritic conditions, and an important purpose of the register is to monitor the ther-
apies for safety. To this end, consultants are sent a questionnaire every six months
ascertain any adverse events the patient may have suffered. There may be (and often
are) multiple records for each subject, since a subject may have several adverse events.
There are a number of different types of adverse events (infections, cancers, death etc.)
in which we have an interest.

Since we are interested in whether the rate of adverse events differs between the
different biologic therapies in use, the dates on which the subject starts, stops and
changes treatment are also recorded. Therefore, the total followup time for an individual
can be divided into separate intervals in which they were taking a particular drug. There



2 Merging Files of Time-varying Covariates

may be gaps in this history, in which subjects were not taking any medication.

As an example, consider the data in Figure 1. This shows the experience of 2 subjects
in this study. Subject 1 entered the study at time 0, and their last followup was at time
240. They took treatment 1 from time 0 until 120, and treatment 2 from time 180 to
230. They suffered two adverse events, one of type 1 at time 100 and one of type 2 at
time 210. Subject 2 entered at time 20 and their last followup was at time 260. They
started taking treatment 1 at time 150 and were still taking it at the time of their last
followup. They suffered a single adverse event, of type 2, at time 120.

Time-scale

0 50 100 150 200 250 300

Subject 2 Treatment 1

Adverse Event type 1
6

Subject 1 Treatment 1 Treatment 2

Adverse Event type 1

?

Adverse Event type 2

?

Figure 1: Example data

Given these histories, we wish to create a number of records for each subject, such
that each record ends with either an adverse event or a change in treatment. The
data should then look like Table 1. This data can then be stset and used for survival
analysis.

ID start stop treatment event type
1 0 100 1 1
1 100 120 1 0
1 120 180 0 0
1 180 210 2 2
1 210 230 2 0
1 230 240 0 0
2 20 120 0 2
2 120 150 0 0
2 150 260 1 0

Table 1: Data in final form for analysis



Mark Lunt 3

3 Preparing the data for the tvc_merge command

It is fairly straightforward to produce a complete history of treatments, given the start
and stop dates of each treatment. For the two subjects in Figure 1, we would have the
data in Table 2, stored in a dataset called treatment.dta. Note that there is no stop
data for subject 2, since they were still on treatment 1 at the end of their followup.

ID start stop treatment
1 0 120 1
1 180 230 2
2 150 . 1

Table 2: Treatment Data

In order to divide the followup period into intervals according to which drug was
being taken, we need to know know the date that each subject entered the study, and
the date of their last followup. This data is stored in a table called dates.dta and
would be as listed in Table 3

ID entry date last fup date
1 0 240
2 20 260

Table 3: Start and End of Followup

In order to divide the complete followup time into separate intervals in which one
treatment was given, we need to

1. Merge treatment.dta and dates.dta

2. Replace missing stop dates with the date of the last followup (we know that on
this date, they had not stopped taking the treatment, but we do not know what
happened after this date)

3. If the stop date of one treatment interval is not equal to the start date of the next,
add a new interval to cover the time between them, with the treatment set to 0
(For example, for subject 1, treatment 1 stops at time 120, but treatment 2 only
began at time 180, so we need an addtional interval between them).

4. If the stop date of the last treatment interval is less than the last followup date,
add a new interval from the end of treatment to the end of followup. (E.g. subject
1, time 230–240).

5. If the start date of the first treatment interval is greater than the date of entry to
the study, add a new interval. (E.g. subject 2, time 20–150).

The stata code for steps one and two is given below. Note that tvc_merge (just like
merge) cannot work if there is already a variable called _merge in either dataset, so this
variable is dropped before proceeding.



4 Merging Files of Time-varying Covariates

use treatment.dta

sort ID

merge ID using dates.dta

replace stop = last_fup_date if stop == .

drop _merge

For step 3, we can use the expand function to create a new record if necessary, then
replace the variables start, stop and treat in the new record.

sort ID start

// if stop for this record is less than start of the next, we need a

// new record to fill the gap between them

by ID: gen to_expand = 1 + (stop < start[_n+1])*(start[_n+1] ~= .)

expand to_expand

sort ID start

// set new_record to 1 for the records we’ve just added

by ID start: gen new_record = _n == 2

// change the values in the new record to those appropriate for a gap

// in treatment

replace treat = 0 if new_record == 1

replace stop = start[_n + 1] if new_record == 1

replace start = stop[_n - 1] if new_record == 1

drop to_expand new_record

The code for steps 4 and 5 is almost the same, only the conditions for creating a
new record and the replacement values differ.



Mark Lunt 5

sort ID start

// If the last record ends before the end of followup, add a new record

by ID: gen to_expand = 1 + (stop < last_fup_date)*(_n == _N)

expand to_expand

sort ID start

// set new_record to 1 for the records we’ve just added

by ID start: gen new_record = _n == 2

// change the values in the new record to those appropriate for a

// period of no treatment at the end of the followup

replace treat = 0 if new_record == 1

replace stop = last_fup_date if new_record == 1

replace start = stop[_n - 1] if new_record == 1

drop to_expand new_record

sort ID start

// If the first record begins after the start of followup, add a new

// record to fill the gap at the beginning of followup

by ID: gen to_expand = 1 + (start > entry_date)*(_n == 1)

expand to_expand

sort ID start

// set new_record to 1 for the records we’ve just added

by ID start: gen new_record = _n == 2

// change the values in the new record to those appropriate for a

// period of no treatment at the end of the followup

replace treat = 0 if new_record == 1

replace start = entry_date if new_record == 1

sort ID start

replace stop = start[_n + 1] if new_record == 1

drop to_expand new_record

// save the modified file

save treat_expand, replace

The treatment data should now look like Table 4.

Next, we prepare the adverse events data. The adverse events data for these two



6 Merging Files of Time-varying Covariates

ID start stop treatment
1 0 120 1
1 120 180 0
1 180 230 2
1 230 240 0
2 20 150 0
2 150 260 1

Table 4: Expanded Treatment Data

subjects are given in Table 5. We record the date of the event and the type of event.

ID Date event type
1 100 1
1 210 2
2 120 2

Table 5: Adverse Events Data

In order to use tvc_merge, the adverse events data also needs to be divided into
into intervals, with an adverse event at the end of each interval. However, we do not
need to ensure that these intervals cover the entire followup period, since we are only
concerned with the time the events occur. So we need to:

1. Merge adverse_events.dta and dates.dta

2. Rename event_date as stop

3. Create a start variable equal to the value of stop for the previous interval.

4. Set start to entry_date for the first interval for each subject.

The stata code to do this is:

use adverse_events.dta

sort ID

merge ID using dates

drop _merge

rename date stop

sort ID

by ID: gen start = stop[_n - 1]

by ID: replace start = entry_date if _n == 1

save adverse_expand, replace



Mark Lunt 7

The adverse events data should now look like Table 6. Both datasets are now in a
suitable form to be merged by tvc_merge.

ID start stop event type
1 0 100 1
1 100 210 2
2 20 120 2

Table 6: Adjusted Adverse Events Data

4 Use of the tvc_merge command

The syntax for the tvc_merge command is

tvc_merge startvar stopvar using filename, id(idvar)
[
failure(failure vars)

merge(merge var)
]

The program needs to know the names of the variables which define the start and
end of each interval, and these names need to be the same in both files being merged.
Since there will be several records for each subject, it needs to know the variable that
identifies each subject, which is passed in the option id.

The program also needs to be able to distinguish between variables that take their
value througout the interval (in our case the treatment variable) and those representing
the events in which we are interested, which only take their value at the end of the
interval (in our case event_type). A complete list of all such failure-type variables
needs to be given to tvc_merge, using the option failure.

The option merge produces a variable which says, in the same way as the variable
_merge with the merge command, whether there was data in the master file, the using
file or both for this particular record. However, in this instance, it will not be very
informative: any time periods after the last event will be treated as having missing
event data. Also, any subjects without events will be treated as missing from the event
data file. Since it is far less useful in this case than in the standard merge case, this
variable has been made optional.

So, for the data we have looked at above, the stata code to merge the two files would
be:

use treat_expand

tvc_merge start stop using adverse_expand, id(ID) failure(event_type)

sort ID start stop

After running this command, the dataset should look like Table 1. The treatment
intervals have been split each time an adverse event occured, and the adverse event
intervals have been split each time a treatment changed. The data is now in a form



8 Merging Files of Time-varying Covariates

that can be stset for analysis, using the command:

stset stop, id(ID) fail(event_type) exit(time .) origin(time start)

if you are interested in the rate of any adverse events, or

stset stop, id(ID) fail(event_type==1) exit(time .) origin(time start)

if you are only interested in the rate of adverse events of type 1.

5 Discussion

When dividing the treatment up into intervals, we made the implicit assumption that
only one treatment could be in use at a time. This may not be the case: sometimes a
new drug will be added to the original drug, rather than replacing it. This situation
can be handled by tvc_merge in the following way:

1. Create n files of treatment data, each one containing records for treatment with
only one of the n treatments.

2. In the ith file, rename treatment treatmenti.

3. Expand each of the n files so that they each span the entire followup period as
above.

4. Use tvc_merge n− 1 times to merge each of these n files.

This will result in a dataset of separate intervals spanning the entire followup period,
with n variables indicating which treatments, if any, were taken during that interval.
Note that this process does not involve the adverse event data, only covariate data: you
are not obliged to use the failure option.

It is convenient if all of the events occur within the time period for which the
treatments are known, but this is not essential. If an event occurs outside the followup
time, and extra interval will will be added on, and all of the treatment covariates set
to missing in this interval. It will therefore not be possible to include this event in any
analysis involving the covariates, but this does mean that no events are thrown away in
the merging process, and it is easy to see from the final dataset which events are not
included in the analysis and why they are excluded.

6 How the tvc_merge command works

The ado file first preserves the current data set, then drops all variables except ID,
start and stop. It then reshapes the data so that there are only two variables: ID and
the date of an interval endpoint. It then repeats this with the using file, and appends



Mark Lunt 9

the two lists of dates. This gives a single file containing all of the interval endpoints
from both datasets.

By renaming the date variable as _X_start and then generating a new variable
_X_stop as _X_start[_n+1], we now have a file consisting of intervals small enough
to lie completely within any interval in either the master file or the using file. The
master and using files are then merged with this interval file using joinby1, so that
all of the intervals in the original file match up to every interval in the new file. Any
observations with start > _X_start or stop < _X_stop are dropped, so that only one
observation is retained for every interval in the sub-divided intervals file. This ensures
that appropriate covariates for the time period from _X_start to _X_stop are used.

Next, we need to set the variables in the failure option to 0 if the end of the interval
is not the time that the event took place: i.e if stop is not equal to _X_stop. Finally,
the variables start and stop are dropped, and _X_start and _X_stop are renamed
start and stop. This gives a dataset divided as finely as necessary, with the covariates
and failure variables taking the correct values for each interval.

7 Acknowledgements

The funding for this work was provided by the Arthritis Research Campaign.

1In fact, this is done in two stages: joinby is used to merge the interval file with a file consisting
only of ID, start and stop date, and the superfluous records dropped from this file. It is then merged
with the master file by ID, start and stop, to include all of the information in the master file. Using
joinby with the entire master file may have been quicker, but it could require many times as much
memory as doing it in this two-stage way.


