Solutions for Session 6

08/11/2022

. do solution.do
. global basedir http://personalpages.manchester.ac.uk/staff/mark.lunt

- global datadir \$basedir/stats/6_LinearModels2/data
. sysuse auto, clear
(1978 Automobile Data)
. regress weight foreign

1.1 foreign vehicles are, on average, 1000 lbs lighter than US vehicles The difference is significant, $p=0.000$

Group	Obs	Mean	Std. Err	Std. Dev.	[95\% Conf.	Interval]
Domestic	52	3317.115	96.4296	695.3637	3123.525	3510.706
Foreign	22	2315.909	92.31665	433.0035	2123.926	2507.892
combined	74	3019.459	90.34692	777.1936	2839.398	3199.521
diff		1001.206	160.2876		681.6788	1320.734
```diff = mean(Domestic) - mean(Foreign) Ho: diff = 0```				degrees of freedom		6.2463
				72		
Ha: did		Ha: diff ! $=0$			Ha: diff > 0	
$\operatorname{Pr}(\mathrm{T}<\mathrm{t}$	. 0000	$\operatorname{Pr}(\|T\|>\|t\|)=0.0000$			$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=0.0000$	

```
1.3 the mean difference and standard error are exactly the same
(except for the minus sign)
. graph box weight, over(foreign)
. graph export graph1.eps replace
(file graph1.eps written in EPS format)
```

1.4 There is a wider spread of weights for Domestic cars compared to Foreign cars, i.e. greater variance
. by foreign: summ weight

-> foreign = Domestic					
Variable	Obs	Mean	Std. Dev.	Min	Max
weight	52	3317.115	695.3637	1800	4840
-> foreign = Foreign					
Variable	Obs	Mean	Std. Dev.	Min	Max
weight	22	2315.909	433.0035	1760	3420



Figure 1: . graph box weight, over(foreign)

```
 1.5 the SD is much higher for Domestic (~700) compared to Foreign (~430)
 . hettest
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: fitted values of weight
 chi2(1) = 4.51
 Prob > chi2 = 0.0337
```

    1.6 The difference in variance is significant. Therefore, a linear model is inappropriate
    . use \$datadir/soap, clear
    . graph box appearance, over(operator)
    

Figure 2: . graph box appearance, over(operator)
. graph export graph2.eps replace
(file graph2.eps written in EPS format)
1.7 Operator 3 has the highest scores: $25 \%$ of scores are above 9
. sort operator

1.9 Yes: Prob > $F=0.0000$ is testing the null hypothesis that all operators are the same.
$1.10 p=0.0000$
1.11 Operator 1 is the baseline: there is no line for operator 1
. lincom _cons + 2.operator
(1) 2 .operator + _cons $=0$

| appearance | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | 7.896667 | .0855162 | 92.34 | 0.000 | 7.726694 | 8.066639 |

1.12 This is the same as we have already seen

appearance	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf.	Interval]
(1)	-. 73	. 1209382	-6.04	0.000	-. 9703778	-. 4896222

1.13 Yes: $t=-6.04, p=0.000$
. use \$datadir/cadmium, clear
. scatter capacity age


Figure 3: . scatter capacity age

[^0]| Source | SS | df | MS |  |  | $\begin{array}{lr} \text { Number of obs } & = \\ F(1, & 82) \end{array}=474.37$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | 17.4445864 | 1 | 17. | 5864 |  |  |  |  |
| Residual | 30.1963679 | 82 | . 368 | 8388 |  | R-squared | $=$ | 0.3662 |
| Total | 47.6409543 | 83 | . 573 | 7401 |  | Adj R-squared <br> Root MSE |  | $\begin{aligned} & 0.3584 \\ & .60683 \end{aligned}$ |
| capacity | Coef. | Std. | Err. | t | $p>\|t\|$ | [95\% Conf. | In | nterval] |
| age | -. 0404781 | . 0058 |  | -6.88 | 0.000 | -. 0521776 |  | . 0287787 |
| _cons | 6.033316 | . 247 |  | 24.38 | 0.000 | 5.540986 |  | 6.525647 |

2.2 The regression coefficient for age is negative, showing that capacity decreases as age increases.

(40 missing values generated)						
. gen cap2 = capacity if exposure == 2 (56 missing values generated)						
. gen cap3 = capacity if exposure == 3   (72 missing values generated)						
. scatter cap1 cap2 cap3 age						
- graph export graph4.eps replace (file graph4.eps written in EPS format)						
. regress capacity i.exposure						
Source	SS	df	MS		Number of obs	$=84$
Model	2.74733751	21.37	368875		Prob > F	$=0.0902$
Residual	44.8936168	81.55	42182		R-squared	$=0.0577$
Total	47.6409543	83.573	887401		Adj R-squared Root MSE	$\begin{aligned} & =0.0344 \\ & =\quad .74447 \end{aligned}$
capacity	Coef.	Std. Err .	t	$P>\|t\|$	[95\% Conf.	Interval]
exposure						
< 10 years	. 0097403	. 1799744	0.05	0.957	-. 3483523	. 3678329
> 10 years	-. 5128788	. 2424526	-2.12	0.037	-. 9952834	-. 0304741
_cons	4.462045	. 1122337	39.76	0.000	4.238735	4.685355

[^1]

Figure 4: . scatter cap1 cap2 cap3 age

Source	SS	df MS			$\begin{array}{lr} \text { Number of obs } & = \\ F(3, & 80) \\ F(34 \end{array}$	
Model	17.6062849	35.86876164			$\begin{aligned} & \text { Prob > F } \\ & \text { R-squared } \end{aligned}$	$\begin{array}{rr} = & 15.63 \\ = & 0.0000 \end{array}$
Residual	30.0346693	80.375433367				$=0.3696$
		83.5			Adj R-squared Root MSE	0.3459
Total	47.6409543		. 573987401			$=.61273$
capacity	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
age	-. 0397752	. 0063224	-6.29	0.000	-. 0523572	-. 0271931
exposure						
< 10 years	-. 0701975	. 1486686	-0.47	0.638	-. 3660575	. 2256626
> 10 years	-. 1169349	. 2092361	-0.56	0.578	-. 5333281	. 2994582
_cons	6.044917	. 2680248	22.55	0.000	5.51153	6.578303

```
. testparm i.exposure
(1) 2.exposure = 0
(2) 3.exposure = 0
F(2, 80) = 0.22
Prob > F = 0.8067
```

    2.4 There are now no significant differences between groups
    . predict ppred, xb
. gen ppred1 = ppred if exposure == 1
( 40 missing values generated)
. gen ppred2 $=$ ppred if exposure $==2$
( 56 missing values generated)
. gen ppred3 $=$ ppred if exposure $==3$
( 72 missing values generated)
. scatter cap1 cap2 cap3 age || line ppred1 age || line ppred2 age || /* */
line ppred3 age

- graph export graph5.eps replace
(file graph5.eps written in EPS format)
. regress capacity i.exposure\#\#c.age

Source	SS	df	MS	Number of obs	84
				F( 5, 78)	11.39
Model	20.1057424	5	4.02114849	Prob > F	0.0000
Residual	27.5352118	78	. 353015536	R-squared	0.4220
				Adj R-squared	0.3850
Total	47.6409543	83	. 573987401	Root MSE	. 59415


capacity	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
exposure						
< 10 years	.5497403	.5758844	0.95	0.343	-.5967574	1.696238
$>10$ years	2.503148	1.041842	2.40	0.019	.4289997	4.577296
age	-.0306127	.0075475	-4.06	0.000	-.0456385	-.0155868
exposure\#c.age						
< 10 years   $>10$ years	-.0159193	.0145469	-1.09	0.277	-.0448799	.0130413
_cons	5.680291	.313426	18.12	0.000	5.056307	6.304274

[^2]

Figure 5: . scatter cap1 cap2 cap3 age __ line ppred1 age ___ line ppred2 age __ /*

```
 2.5 Yes, the slopes in the different exposure groups are different
. predict ipred, xb
. gen ipred1 = ipred if exposure == 1
(40 missing values generated)
. gen ipred2 = ipred if exposure == 2
(56 missing values generated)
. gen ipred3 = ipred if exposure == 3
(72 missing values generated)
. scatter cap1 cap2 cap3 age || line ipred1 age || line ipred2 age || /* */
line ipred3 age
```



Figure 6: . scatter cap1 cap2 cap3 age ___ line ipred1 age ___ line ipred2 age ___/*

```
. graph export graph6.eps replace
(file graph6.eps written in EPS format)
```

    2.6 The least steep is in the baseline (least exposed group)
    The steepest is in the most exposed group
    . lincom age + 3.exposure\#c.age
( 1) age + 3.exposure\#c.age $=0$

capacity	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
$(1)$	-.085111	.0196716	-4.33	0.000	-.1242742	-.0459478

[^3]| . sw regress y x1 x2 x3 x4, pe(0.05)begin with empty model$p=0.0006<0.0500 \quad$adding $x 4$ <br> $p=0.0000<0.0500$ <br> adding $x 1$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | SS | df | MS |  | $\begin{array}{llr} \text { Number of obs } & = & 13 \\ F(2, & 10) & =176.63 \end{array}$ |  |
|  | 2641.00094 |  |  |  |  |  |
| Model |  | 213 | 320.50047 |  | Prob > F | $=0.0000$ |
| Residual | 74.7621108 | 107. | . 47621108 |  | R-squared | $=0.9725$ |
|  |  |  |  |  | Adj R-square | 0.9670 |
| Total | 2715.76305 | 1222 | 226.313587 |  | Root MSE | $=2.7343$ |
| y | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Conf | Interval] |
| x 4 | -. 6139536 | . 0486446 | -12.62 | 0.000 | -. 7223404 | -. 5055668 |
| x1 | 1.439958 | . 1384166 | 10.40 | 0.000 | 1.131547 | 1.74837 |
| _cons | 103.0974 | 2.123984 | 48.54 | 0.000 | 98.36485 | 107.8299 |


3.1 x1 \% $x 4$ are retained						
$\begin{aligned} & \text {. sw regress y x1 x2 x3 } x 4, \operatorname{pr}(0.05) \\ & \text { begin with full model } \\ & p=0.8959>=0.0500 \\ & \text { removing } x 3 \\ & p=0.2054>=0.0500 \end{aligned}$						
	SS	df	MS		Number of obs	13
					F ( 2, 10)	$=229.50$
Model   Residual	2657.85857	2132	92929		Prob > F	$=0.0000$
	57.9044793	$10 \quad 5.7$	44793		R -squared	$=0.9787$
					Adj R-squared	$=0.9744$
Total	2715.76305	12226	313587		Root MSE	$=2.4063$
y	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
x 1	1.468306	. 1213009	12.10	0.000	1.19803	1.738581
x2	. 6622505	. 0458547	14.44	0.000	. 5600798	. 7644212
_cons	52.57735	2.286174	23.00	0.000	47.48344	57.67126

3.2 This time $x 1$ \& $x 2$ are retained


### 3.3 This is the same as the backwards model

- corr x*
(obs=13)

	x 1	x 2	x 3	x 4
x1	1.0000			
x2	0.2286	1.0000		
x3	-0.8241	-0.1392	1.0000	
x4	-0.2454	-0.9730	0.0295	1.0000

3.4 Correlation between $x 2$ § $x 4$ is -0.97
3.5 x2 छ $x 4$ are very strongly correlated: they contain the same information, so they are largely interchangeable

Source	SS	df	MS		Number of obs $=13$	
Model	2667.89941	4666	74853		F( 4, 8) Prob > F	$=111.48$ $=0.0000$
Residual	47.863637	85.9	95463		R-squared	$=0.9824$
Total	2715.76305	12226	313587		Adj R-squared   Root MSE	$\begin{aligned} & =0.9736 \\ & =\quad 2.446 \end{aligned}$
y	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
x 1	1.551103	. 7447698	2.08	0.071	-. 1663395	3.268545
x 2	. 5101677	. 723788	0.70	0.501	-1.15889	2.179226
x3	. 1019096	. 754709	0.14	0.896	-1.638453	1.842272
x 4	-. 1440609	. 709052	-0.20	0.844	-1.779138	1.491016
_cons	62.40535	70.07096	0.89	0.399	-99.17856	223.9893

3.6 The $F$ statistic says that the model is very highly significant: the null hypothesis that all coefficients are 0 could not have given rise to this data
$3.798 \%$ of the variance is explained
3. 8 None of the coefficients are significant, due to the strong correlations between them
. use \$datadir/growth, clear
. scatter weight week


Figure 7: . scatter weight week

- graph export graph7.eps replace
(file graph7.eps written in EPS format)
4.1 The line does not look quite straight: there appears to be some curvature

Source	SS	df	MS			$\begin{array}{llr} \text { Number of obs } & = & 20 \\ F(1, & 18) & = \\ F(190.23 \end{array}$	
Model	25438.7504	1	254	7504		Prob > F	$=0.0000$
Residual	579.449624	18	32.	6458		R-squared	$=0.9777$
						Adj R-squared	$=0.9765$
Total	26018.2	19	1369			Root MSE	$=5.6738$
weight	Coef.	Std.	Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
week	6.184962	. 2200	193	28.11	0.000	5.722719	6.647206
_cons	125.3579	2.635	644	47.56	0.000	119.8206	130.8952

. cprplot week

4.2 There is definitely   gen week2 = week * week						
. regress weight week week2						
Source	SS	df	MS		$\begin{aligned} & \text { Number of obs }=r \\ & F(2, \\ & F(17)=2436.58 \end{aligned}$	
Model	25927.7513	2129	. 8756		Prob > F	$=0.0000$
Residual	90.4487127	175.3	51251		R -squared	$=0.9965$
					Adj R-squared	$=0.9961$
Total	26018.2	19136	37895		Root MSE	$=2.3066$
weight	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
week	2.680178	. 3763642	7.12	0.000	1.886119	3.474237
week2	. 1668945	. 0174086	9.59	0.000	. 1301656	. 2036235
_cons	138.2088	1.716086	80.54	0.000	134.5881	141.8294

```
 4.3 week2 is very highly significant (}p=0.000\mathrm{)
. predict pred2, xb
. twoway scatter weight week || line pred2 week
. graph export graph8.eps replace
(file graph8.eps written in EPS format)
```

    4.4 Curved predictor fits the data very well
    

Figure 8: . twoway scatter weight week _- line pred2 week


[^4]| . corr week* <br> (obs=20) |  |  |  |
| :--- | ---: | ---: | ---: |
|  | week | week2 | week3 |
| week | 1.0000 |  |  |
| week2 | 0.9713 | 1.0000 |  |
| week3 | 0.9221 | 0.9865 | 1.0000 |

4.6 Correlation between week and week2 is 0.97 end of do-file


[^0]:    - graph export graph3.eps replace
    (file graph3.eps written in EPS format)

[^1]:    2.3 Its borderline, $p=0.09$

[^2]:    . testparm i.exposure\#c.age
    ( 1) 2.exposure\#c.age $=0$
    (2) 3.exposure\#c.age $=0$

    $$
    \begin{array}{rll}
    \mathrm{F}(\quad 2, \quad 78) & = & 3.54 \\
    \text { Prob }>\mathrm{F} & = & 0.0338
    \end{array}
    $$

[^3]:    . use \$datadir/hald, clear

[^4]:    4.5 week3 is not significant

