
Contents

1 Refinements 3
1.1 Graphs . 3

1.1.1 A simple scatterplot . 3
1.1.2 Labelling Graphs . 3
1.1.3 Overlaying Graphs . 4
1.1.4 Graph Schemes . 5
1.1.5 Saving Graphs . 7
1.1.6 Naming Graphs . 8
1.1.7 Other Graph Types . 8

1.2 Summarizing Data . 9
1.2.1 describe . 9
1.2.2 codebook . 9
1.2.3 summarize . 9
1.2.4 tabulate . 10

1.3 More Command Syntax . 10
1.3.1 The if clause . 10
1.3.2 The by: construct . 11
1.3.3 Subscripting . 12

1.4 Looping . 13
1.5 Wide Form vs. Long Form . 14

1.5.1 Converting from long to wide . 14
1.5.2 Converting from wide to long . 15

1.6 Other Useful Commands . 16
1.6.1 display . 16
1.6.2 expand . 16
1.6.3 cmdlog . 16

2 Practical on Refinements of Stata 19
2.1 Graphs . 19
2.2 Summarizing Data . 19
2.3 Further Syntax . 20

2.3.1 if . 20
2.3.2 by . 20

2.4 Looping . 21
2.5 Reshaping Data . 22

2.5.1 Long to Wide . 22
2.5.2 Wide to Long . 22

1

Contents

2

1 Refinements

1.1 Graphs

The graphical capabilities of stata were massively improved for version 8.0. However, the addi-
tional power means that the graphics system is slightly more complicated to use than previously,
and also slower: it can take several seconds for the first graph in a session to appear. Subsequent
commands of the same type are less slow.

All graph commands start with the word graph. In some cases, this can be omitted, but not
always.

1.1.1 A simple scatterplot

Very commonly, you will want to plot one variable against another. This is achieved using the
command graph twoway, or simply twoway. There are a number of subcommands to twoway,
to give different types of plot. We will meet many of them later, but the simplest is scatter, to
give a scatter plot. The effect of twoway scatter mpg weight using the auto data is given in
Figure 1.1. Note that the horizontal axis (x-axis) is the second variable, and the first variable
is plotted on the vertical (y) axis.

1.1.2 Labelling Graphs

Stata makes sensible guesses as to what titles and labels you want on your graph, but they can
be changed easily if required. The options most commonly used relate to giving the graph a
titlea or labelling and setting tick-marks on the axes.

The title options most commonly used are:

title The overall title, which by default appears centred at the top of the graph

subtitle A subtitle appearing centred above the graph below the overall title by default

note A note about the graph appearing left-justified below the graph

caption A caption for the graph appearing left-justified below the note, if any.

Each of these options needs to be given one or more strings (i.e. contained in inverted
commas). If more than one string is given, the two strings appear on separate lines. So, for
example, title("Life Expectancy" "1900-2000") would create the title

Life Expectancy
1900-2000

aor several: there is scope for 12 differently placed titles altogether, although many of them are used very rarely

3

1 Refinements

10
20

30
40

M
ile

ag
e

(m
pg

)

2,000 3,000 4,000 5,000
Weight (lbs.)

Figure 1.1: Simple Scatterplot

The titles for the axes are generally taken from the corresponding variable’s label, or if it
has no label, its name. Hence the labels “Weight (lbs)” and “Mileage (mpg)” in the Figure 1.1.
However, they can be changed using the options xtitle() and ytitle().

There are a vast number of options to control the scale, tick-marks and values labelled on
the axes: see help axis scale options and help axis label options. The most important
ones are [x|y]scale(log) to produce a log-scale for the x or y-axis, and [x|y]label to define
the values of the axis that are to be labelled. You can use a numlist (which we met in session
1) to define the values, or you can use the form xlabel(#n), where n is an integer, which means
“create about n labels at reasonable values for me”.

1.1.3 Overlaying Graphs

It is very common to want to overlay graphs. For example, you may wish to add a regression
line to a scatter plot. Producing graphs of parameter estimates with confidence intervals also
requires overlaying graphs.

There are two different syntaxes for combining graphs: you can either list each plot within
parentheses, or separate them with two “pipe” symbols "||". For example, suppose we want to
plot both mpg and length against weight: we could use either

twoway (scatter mpg weight) (scatter length weight, yaxis(2))

or

twoway scatter mpg weight || scatter length weight, yaxis(2)

4

1.1 Graphs

Both would produce the graph in Figure 1.2. The yaxis(2) option tell stata to use a different
Y-axis for the two variables: as you can see, they cover very different ranges.

14
0

16
0

18
0

20
0

22
0

24
0

Le
ng

th
 (

in
.)

10
20

30
40

M
ile

ag
e

(m
pg

)

2,000 3,000 4,000 5,000
Weight (lbs.)

Mileage (mpg) Length (in.)

Figure 1.2: Overlaid Scatterplots

Although overlaying graphs in that way is possible, it is more useful to be able to overlay
graphs of different types. For example, to overlay a regression line on the scatter-plot of mpg
against weight, together with a 95% confidence region, the command would be

twoway lfitci mpg weight || scatter mpg weight

The results are shown in Figure 1.3. Note that plots are overlayed from left to right, so
we give the lfitci (Linear FIT with Confidence Interval) plot first. If it were given second,
the points lying within the confidence region would be hidden by the shading of the confidence
region.

1.1.4 Graph Schemes

You often want to present exactly the same data in exactly the same way, but with slight
differences in presentation. For example, a simple black graph on a white background would be
suitable for a journal, but if you were presenting the same data in a Powerpoint presentation,
you may wish to use a coloured background, make the lines bolder, increase the size of the
lettering relative to the overall size of the graph etc. This can be achieved very simply with
schemes.

There are a number of schemes delivered with stata, and it is also possible to define your

5

1 Refinements

10
20

30
40

95
%

 C
I/F

itt
ed

 v
al

ue
s/

M
ile

ag
e

(m
pg

)

2000 3000 4000 5000
Weight (lbs.)

95% CI Fitted values
Mileage (mpg)

Figure 1.3: Scatterplot with overlaid regression line and confidence interval

ownb. Some of the available schemes are listed in Table 1.1. In general, the s1 family are simpler
than the s2 family.

Family Scheme Foreground Background Description

s1 s1color coloured white colour on white
s1rcolor coloured black colour on black
s1mono monochrome white grey on white
s1manual monochrome white s1mono, but smaller

s2 s2color coloured white default
s2mono monochrome white grey on white
s2manual monochrome white s2mono, but smaller

others sj monochrome white Used in Stata Journal
economist colour white copied from The Economist

Table 1.1: Available Graphics Schemes

To set a scheme for the rest of your stata session, the command is

set scheme scheme name

If you want that scheme as your default scheme for all your stata sessions, use

set scheme scheme name, permanently

bBasically, copy an existing scheme to your own do-file directory (C:/ado/personal in most cases), save it with
a new name, and edit it to achieve the effects you want.

6

1.1 Graphs

Alternatively, you set set a scheme for a single graph by adding the scheme name as the scheme

option, e.g.

twoway scatter mpg weight, schemesj

To give an example of how the scheme can affect the appearance of a graph, Figure 1.4 was
created using the commands

set scheme economist

twoway lfitci mpg weight || scatter mpg weight

10

20

30

40

95
%

 C
I/F

itt
ed

 v
al

ue
s/

M
ile

ag
e

(m
pg

)

2000 3000 4000 5000
Weight (lbs.)

95% CI Fitted values Mileage (mpg)

Figure 1.4: Simple scatterplot in Economist scheme

1.1.5 Saving Graphs

Graphs can be saved in stata’s own graphical format with the command graph save. Graphs
can be saved either “live”, which is the default, or “as-is” using the option asis. A live graph
can be recalled to stata and its appearance altered by using a different scheme, whilst an as-is
graph will always look exactly as it did when it was saved.

It is also possible to save graphs in other formats using the command graph export. The
format of the graph is determined by the file suffix, but this can be overriden by using an option
to the command if an unusual file suffix is required. The file formats available are listed in Table
1.2.

Output format file suffix option

PostScript .ps as(ps)
Encapsulated PostScript .eps as(eps)
Windows Metafile .wmf as(wmf)
Windows Enhanced Metafile .emf as(emf)
PDF .pdf as(pdf)
Macintosh PICT Format .pict as(pict)

Table 1.2: Available graph export options

7

1 Refinements

For inclusion in any sensible software, the format of choice is Encapsulated PostScript. How-
ever, Powerpoint can’t handle PostScript, so you need to use Metafiles or Enhanced Metafiles.

1.1.6 Naming Graphs

As well as storing a graph as a file, it is possible to store it in memory, so that stata can recall
it quickly, rather than having to replot it. This is done by giving the graph a name. This can
be done by using the name option in the graph command:

twoway scatter mpg weight, name(scat)

The graph can then be reviewed using the command

graph display scat

By default, every graph is given the name Graph. It is also possible to change the name of
a graph using the graph rename command. So

graph rename Graph scat

will change the name of the currently displayed graph to scat, so that it is not overwritten by
the next graph to be displayed.

1.1.7 Other Graph Types

This is not meant to be a complete list of all graph types in stata, but an introduction to the
most commonly used ones. See help graph for (lots) more information

graph bar Bar charts

graph box Box and whisker plots

graph matrix Given n variables, creates an n by n matrix of scatterplots, plotting every variable
against every other variable.

twoway histogram Histograms

twoway lfit Linear regression fit to a scatter plot

twoway qfit Quadratic regression fit to a scatter plot

twoway fpfit Fractional polynomial fit to a scatter plot

twoway lowess Non-parametric smoothed fit to a scatter plot

twoway rcap Given two y-values for each x-value, plots a line between the two y-values, with
“caps” at each end. Useful for showing confidence intervals if overlaid.

kdensity Can be thought of as a smoothed histogram. Very useful for comparing 2 or more
distributions: see Figure 1.5

8

1.2 Summarizing Data

0.0

0.1

0.2

0.3

0.4

P
ro

po
rt

io
n

of
 S

ub
je

ct
s

−10 −5 0 5 10
Linear predictor of Propensity Score

Figure 1.5: Example kernel density plot

1.2 Summarizing Data

1.2.1 describe

To find out what is in a dataset, you can use the command describe. This gives some informa-
tion as to the size of the dataset, and the number of variables and observations. It also gives,
for every variable, the name, type, display formatc and any labels assigned to the variable. If
you are only interested in a subset of the variables, you can use describe varlist .

1.2.2 codebook

The codebook command gives a little more detail about each variable. This gives, for each
variable, the type, range, number of unique values, number of missing values and the units used
(the minimum distance between values of the variable). In addition, it gives the mean, standard
deviation and various percentiles for continous variables, and a freqency table for categorical
variables (or typical values if there are too many for a full table). This command is particularly
useful when data-cleaning: it makes implausible values obvious.

1.2.3 summarize

Another command that can be useful when inspecting data is summarize. In its simple form,
summarize varlist gives the mean, standard deviation, minimum, maximum and number of
non-missing values for each variable in varlist , in a very compact form. The option detail

cthis controls how many decimal places are shown for each variable, for details type help format

9

1 Refinements

gives a fuller summary, including various percentiles, the 5 largest and 5 smallest values, the
skewness and kurtosis.

1.2.4 tabulate

Whilst summarize is useful for numerical variables, the command for finding out about categor-
ical variables is tabulate. The command tabulate varname , with a single variable, produces
a freqency table for that variable. Beware: if the variable is continuous, the frequency table can
be extremely long !

Another use for tabulate is to produce cross-tabulations of two variables. The syntax for
this is

tabulate varname1 varname2

1.3 More Command Syntax

In session 1 we saw a simplified version of the syntax that (almost) all stata commands follow.
However, there are some additional optional parts that we will consider this week. The full
syntax we will consider is

[by varlist]: command varlist [if expression][, options]

1.3.1 The if clause

It is possible to restrict a command to run on only a subset of your data using an “if” clause.
For example, in the auto data

summarize weight if foreign == 1

will produce a summary of weight only for the foreign cars, and

summarize weight if foreign == 0

will produce a summary only for the domestic cars.

Note that two equals signs are required: this is a hangover from the “C” programming
language (used by the programmers who wrote stata), in which "=" is used to assign a value
and "==" is used when comparing two values. This is probably the most irritating “feature” of
stata, and one that causes a huge amount of wasted time. If you put a single equals sign by
mistake, the error message is simply invalid syntax which is not a great help.

The operators that can be used in logical expressions are listed in Table 1.3

For example

if (foreign==0) | (rep78 != 3)

will select any cars that are either U.S. made or have a repair history score other than 3.

A very important thing to remember when using logical expressions is that the missing value
is larger than any non-missing value. Hence the expression

if price > 15000

10

1.3 More Command Syntax

Operator Meaning

& and
| or
== equal
~= not equal
!= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal

Table 1.3: Operators for logical expressions

would pick out any cars which had missing prices, as well as cars with price over $15000. If you
only want to select cars with prices known to be over $15000, you must use

if (price > 15000) & (price != .)

This odd behaviour of the missing value is particularly important when dividing a continuous
variable into categories. For example, in the first practical, you divided cars into long and short
using the code

generate short = 0

replace short = 1 if length < 190

This was fine because there was no missing data in length. However, any cars who did have
missing lengths would be given a 0 for short, which is not what we want. It would be better to
use the code

generate short = 0 if length = .

replace short = 1 if length < 190

1.3.2 The by: construct

You may want to process different subgroups of your data differently. For example, you may
want to calculate the mean value of a variable in men and women separately, or in cases and
controls separately. This can be done using the by: part of the command.

The important thing to remember with the by: construct is that the data needs to be sorted
before it is processed. Suppose that we wish to know the mean weight of foreign and domestic
cars separately. The commands to use would be

sort foreign

by foreign: summarize weight

However, there is a command bysort which will, if used in place of by both sort the data and
produce output for each subgroup separately.

These commands should produce the same results as

summarize weight if foreign == 0

summarize weight if foreign == 1

11

1 Refinements

Which method is preferable depends on

1. How many groups there are: by is better than if if there are large numbers of groups

2. Whether you need results for all groups or not

3. Whether the command is “byable”: although by can be used with most official stata
commands, there are a few, and some user-written add-ons, which do not accept it.

4. If you need a complex expression to identify the group you are interested in, only an if

clause will do.

1.3.3 Subscripting

A finer subdivision of your data is possible using subscripting, which effectively treats each ob-
servation as a separate group. Subscripting is achieved by putting the number of the observation
that you want in square brackets after the variable name: e.g. weight[7] means the weight of
the 7th car in the dataset.

Two macros that are commonly used in subscripting are " n" and " N". The macro " n"

represents the number of the current observation, whilst " N" represents the total number of
observations.

Two particular uses of subscripting are to create “lagged” differences and to find the number
of subjects in a particular subgroup.

Lagged Differences

You may wish to calculate the difference between one measurement and the next. For example,
consider the blood pressure data we have seen previously. With the data in wide form (one
observation and two variables per subject, see section 1.5) this can be done easily. However, if
there are a large number of observations per subject, it may be easier an more efficient to leave
the data in long form (several observations per subject). In this case, you want to subtract from
each observation, the value of the previous observation.

patient sex agegroup when bp

1 0 1 1 143
1 0 1 2 153
2 0 1 1 163
2 0 1 2 170
3 0 1 1 153
3 0 1 2 168

Table 1.4: Extract from bplong

Consider the data in Table 1.4. The change in blood pressure is given by subtracting the bp

when when is 1 from the value of bp when when is 2. This can be calculated as follows:

sort patient when

by patient: gen bpdiff = bp - bp[n-1]

12

1.4 Looping

Subgroup size

The size of a subgroup is given by N directly, with by: being used to define the subgroups. So,
if we consider the bpwide dataset, we can generate a variable containing the the number of men
and women with the code

sort sex

by sex: gen count = N

1.4 Looping

You often want to perform the same command repeatedly, with only slight changes. The com-
mand foreach can help to do this. In its simplest form, the syntax is

foreach macname in list {
list of stata commands

}

For example, using the bplong

foreach visit in 1 2 {
summarize bp if when == ‘visit’

}

will produce
Variable | Obs Mean Std. Dev. Min Max

-------------+--

bp | 120 156.45 11.38985 138 185

Variable | Obs Mean Std. Dev. Min Max

-------------+--

bp | 120 151.3583 14.17762 125 185

There are more specialised forms of foreach, but they are all very similar. For example,

foreach varname of varlist list

will check that each varname in list is the name of an existing variable before performing the
commands. It can also expand a varlist , which foreach ... in ... cannot. Notice that all
of the specialised forms use foreach ...of listtype ..., rather than foreach ...in ...

The varlist form of foreach can be particularly useful when labelling variables. Suppose
that there are a series of variables, all called site pain, and all taking the value 0 for no and 1
for yes. Rather than label each variable individually, you can simplify with the following code:

label define yesno 0 "No" 1 "Yes"

foreach x of varlist * pain {
label values ‘x’ yesno

}

Thus four lines of code can label as many variables as necessary.

13

1 Refinements

1.5 Wide Form vs. Long Form

We saw in session 1 that when the data consists of several observations on each subject, the data
can be stored either as several observations per subject (long form) or as a single observation
with several variables per subject (wide form). Either form may be needed for analysis, so it
is important to be able to change between them freely. This can be done with the reshape

command.

There are two forms of the reshape command: reshape wide converts from long form to
wide form, and reshape long converts from wide form to long form.

1.5.1 Converting from long to wide

First, we will see how to convert from long form to wide form. We will use the data listed in
Table 1.5. This data consists of ID number and gender for each of three subjects, and their
x-ray score at 1 year, 2 years and possibly 5 years after registration in the study.

ID Gender Anniversary Score

900108 1 1 7
900108 1 2 15
900108 1 5 19
900113 2 1 0
900113 2 2 18
900114 1 1 0
900114 1 2 0

Table 1.5: X-Ray data in long form

In order to be able to reshape the data, stata needs to know:

• How to recognise which observations belong to the same subject

• How to recognise which visit a particular observation relates to

• Which variables should change between visits

In this case, we have ID to show which observations belong together, and anniversary to
show which visit the observation belongs to. The only variable that should change between
anniversaries is the x-ray score.

The basic syntax for the reshape wide command is

reshape wide changing vars, i(ID var(s)) j(visit vars)

Both of the options i() and j() must be given. So in our case, we would type

reshape wide score, i(id) j(anniversary)

and the resulting dataset would look like Table 1.6

Notice that there are now 3 variables for score, since it changes between visits, but only one
variable for sex, because it does not. If there is a variable that changes between visits, but it is
not included in the list of variables to reshape, that is an error and stata will refuse to continue.
Notice also that there are now missing values for the score at 5 years for the second and third
subjects, since this data was not in the original (long) dataset.

14

1.5 Wide Form vs. Long Form

ID Gender Score1 Score2 Score5

900108 1 7 15 19
900113 2 0 18 .
900114 1 0 0 .

Table 1.6: X-Ray data converted to wide form

1.5.2 Converting from wide to long

Now suppose that we have the data in Table 1.6, and need to get to long form (Table 1.5). We
need to tell stata

• Which variable is a unique identifier for our subjects

• The name of a variable for it to create to contain the visit number (anniversary in Table
1.5

• Which of the variables are in wide form, and need to be converted. Strictly, we give the
name that the variable will take when it is in long form

So, the command we need will start

reshape long score

Stata will then look for all variables that begin with score, and therefore know that we want
score1, score2 and score5 converted to score. Again, our identifier is id and the option j

will can be given the name anniversary, to match that in Table 1.5. So the entire command is

reshape long score, i(id) j(anniversary)

and the result is shown in Table 1.7. This is almost identical to that in Table 1.5, but contains
two extra records for 5th anniversary visits for subjects 900113 and 900114. These visits did not
take place, so the data is missing.

ID Gender Anniversary Score

900108 1 1 7
900108 1 2 15
900108 1 5 19
900113 2 1 0
900113 2 2 18
900113 2 5 .
900114 1 1 0
900114 1 2 0
900114 1 5 .

Table 1.7: X-Ray data converted to long form

It is important to notice that in the above example, the variables being reshaped all consisted
of the prefix (score) followed by a numerical suffix (1, 2 or 5). The variable anniversary is
therefore numeric. If any of the suffixes are non-numeric, you must use the option string so
that stata uses a string variable for j. We will see an example in the practical.

15

1 Refinements

1.6 Other Useful Commands

1.6.1 display

The command display simply causes its argument to appear in the results window. This can
have a number of uses. For example, it can function as a simple calculator:

display 2+2

It can also be useful to check the contents of a macro, if you are not sure what it contains:

display "$mydir"

will show what the macro $mydir contains, or simply a blank line if $mydir is not defined.

1.6.2 expand

The command expand creates additional observations in your dataset. The command itself is
followed by an expression which says how many identical copies of each record should be created.
For example,

expand 2

will create 1 new identical copy of each existing record in the dataset.

This can be useful if you wish to recreate a dataset from a summary table in a paper. Suppose
the paper contained the following table:

Exposed Cases Controls

No 20 40
Yes 30 10

Table 1.8: expand example data

Then you can enter the following data into stata:

exposed case frequency
0 0 40
0 1 20
1 0 10
1 1 30

If you then type

expand frequency

you will end up with a dataset containing 100 observations, and the command

tab exposed case

will recreate Table 1.8.

1.6.3 cmdlog

As well as being able to start a log file for your output, it is possible to start a command-log
file, which contains only the commands that you have entered. This can be done at the same

16

1.6 Other Useful Commands

time as a log file, and I recommend doing so everytime that you start stata. I have the following
commands in my profile.do to achieve this:

local logname "$S DATE $S TIME"

local newname : subinstr local logname " " " ", all

local newname : subinstr local newname ":" " ", all

local logname "C:/cmdlogs/‘newname’.txt"

cmdlog using "‘logname’"

The first line gets the current date and time to use as the name for the log-file. The second
line changes spaces to underscores, and the third line changes colons to underscores. The fourth
line defines a macro to use as the name of the logfile, and the last line starts the log-file.

17

1 Refinements

18

2 Practical on Refinements of Stata

Start stata.

2.1 Graphs

Type

sysuse uslifeexp

to load up a dataset concerning life expectancy in various subgroups in the U.S. from 1900 -
2000. Produce a simple scatterplot of life-expectancy against year with the command

twoway scatter le year

You should see life expectancy increasing steadily, with a blip of very low life expectancy in
1918. Now we will add a title to this graph. Press PageUp to recall the previous command, and
add the title() option:

twoway scatter le year, title("U.S. Life Expectancy")

Now we are going to extend the y-axis back to 0, rather than starting at 40. The option to
do this is ylabel(0(20)80): this will produce labels every 20 years from 0 to 80.

Now we will practice overlaying graphs, using the same dataset. We can compare male and
female life-expectancy with the command

twoway scatter le male year || scatter le female year

You should see that life-expectancy is increasing over time in both sexes, but consistently higher
in females. You can add regression lines to the plot with:

twoway scatter le male year || scatter le female year || lfit le male year || lfit

le female year

(The above command must all be entered on a single line)

You should notice that the label on the y-axis is silly, consisting simply of the names of the
four variables being plotted. A more sensible label would be given by the option ytitle("Life

Expectancy").

2.2 Summarizing Data

Read the cancer dataset into stata with the command

sysuse cancer, clear

Find out what the dataset is about with the command describe

19

2 Practical on Refinements of Stata

2.1 How many observations are there in the dataset
Now use the command codebook to get some idea of the values taken by the different

variables.

2.2 What was the longest follow-up time ?

2.3 How many different treatments were in the study ?

2.4 How old were the oldest and youngest subjects in the study ?
Use the command summarize age studytime, det to obtain details about the ages and

lengths of follow-up in the study.

2.5 What was the mean age at the start of the study ?

2.6 What was the standard deviation of the follow-up time ?
Use the command tab drug died, row to produce a cross-tabulation of the number, and

percentage, of subjects who died on each treatment.

2.7 How many subjects on placebo died ?

2.8 What percentage of subjects on treatment 2 died ?

2.3 Further Syntax

2.3.1 if

3.1 What is the mean age of subjects in the cancer study who died ?
The command you need is summarize age if died == 1

3.2 Again using an if clause, find the mean followup time among subjects on placebo.

3.3 What was the mean age among subjects who died after being treated on placebo ?.

2.3.2 by

Use by clauses to verify the answers to the previous three questions. Hint: for the last one, you
need to use by drug died:

Now load the cancer dataset with

sysuse cancer

Create a variable called agegrp, dividing subjects into 2 more-or-less equal sized age groups:

egen agegrp = cut(age), group(2)

20

2.4 Looping

To find out at what age the groups were split, enter

bysort agegrp: summarize age

3.4 How could you have found out the age at which the split would have occured before

making agegrp

Create a label for agegrp so that you know the actual age-range in each age-group appears
in any printout. Assign this label to agegrp. Check that you were successful with

tabulate agegrp died

Create a new variable containing the number of subjects in each age-group using the com-
mand

bysort agegrp: gen group size = N

You can check that this has worked correctly with

tab group size

Save this dataset as mycancer, as we will need to use it later.

2.4 Looping

For a simple illustration of looping, type

foreach x in one two three {
display " ‘x’ "

}

(The opening single inverted comma is at the top left of the keyboard, the closing one at the
right hand end of the “asdf” row).

You should see the words “one”, “two” and “three” appear, one on each line.
You should still have the dataset called mycancer in stata. If not, load it using

use mycancer

You can now enter the following code:

foreach x in drug agegrp {
tab ‘x’ died, row

}

This should produce two cross-tabulations, one for drug against died, and the other for
agegrp against died.

For a more complex example of using foreach, load the life-expectancy data with

sysuse uslifeexp

21

2 Practical on Refinements of Stata

We will create graphs for all of the variables with the code

foreach x of varlist le* {
twoway scatter ‘x’ year, name("‘x’")

}

In the name option, you must put inverted commas around the local macro ‘x’ so that stata
knows that it is a string. This will produce a series of scatterplots called le, le male etc. You
can recall one of these graphs with, for example

graph display le female

2.5 Reshaping Data

2.5.1 Long to Wide

Read the bplong dataset into stata with the command

sysuse bplong

Use a by clause to get the mean and standard deviation of the blood pressure when when == 1

and when == 2 separately. Record these you that you can check later that your reshaping was
successful.

To reshape this data into wide form, the unique identifier is patient and j is when. Therefore,
the command you need is

reshape wide bp, i(patient) j(when)

Now use the command

summarize bp1 bp2

to ensure that the data has been transformed correctly.

2.5.2 Wide to Long

Load the life-expectancy data into stata, using the command

sysuse uslifeexp, clear

There are series of variables giving the life-expectancy in different subgroups of the U.S. pop-
ulation over the years, and a variable le containing the overall life-expectancy. We will change
this to have several observations for each year, a single variable le containing the life-expectancy
and a variable group saying which subgroup the life-expectancy applies to.

First, we need to change the name of the variable le to le total, so that there is something
to put in the group variable for the overall life-expectancy. The command to do this is

rename le le total

Now, unique observations are identified by the variable year, the variable we want to have in
the long data is le, and the variable we want to identify which variable in wide form corresponds
to an observation in long form is called group, so the reshape command we need is

reshape long le, i(year) j(group) string

22

2.5 Reshaping Data

The string part is because the parts that follow le in the variable names are not numbers, but
strings, so group must be a string variable.

If you now enter

twoway scatter le year if group == " male" || scatter le year if group == " female"

you should get the same graph as we have seen earlier.

23

