Survival Analysis

Mark Lunt

Centre for Epidemiology Versus Arthritis University of Manchester

13/12/2022

Introduction
Censoring
Describing Survival
omparing Survival

Plan of Talk

- Censoring
- Describing Survival
- Comparing Survival
- Modelling Survival

Introduction
Censoring
Describing Survival
Comparing Survival
Modelling Survival

Introduction

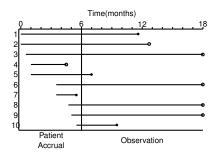
- Survival Analysis is concerned with the length of time before an event occurs.
- Initially, developed for events that can only occur once (e.g. death)
- Using time to event is more efficient that just whether or not the event has occured.
- It may be inconvenient to wait until the event occurs in all subjects.
- Need to include subjects whose time to event is not known (censored).

Introduction Censorin Describing Surviv Comparing Surviv Modelling Surviv

Censoring

- Exact time that event occured (or will occur) is unknown.
- Most commonly right-censored: we know the event has not occured yet.
- Maybe because the subject is lost to follow-up, or study is over
- Makes no difference provided loss to follow-up is unrelated to outcome.

Censoring Examples: Chronological Time

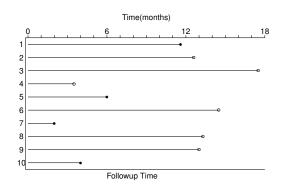


Introduction
Censoring
Describing Survival
Comparing Survival

Other types of censoring

- Left Censoring:
 - Event had already occured before the study started.
 - Subject cannot be included in study.
 - May lead to bias.
- Interval Censoring:
 - We know event occured between two fixed times, but not exactly when.
 - E.g. Radiological damage: only picked up when film is taken.

Censoring Examples: Followup Time



Introduction Censoring Describing Survival Comparing Survival

Survivor function Stata Commands

Describing Survival: Survival Curves

- Survivor function: S(t) probability of surviving to time t.
- If there are r_k subjects at risk during the k^{th} time-period, of whom f_k fail, probability of surviving this time-period for those who reach it is

 $\frac{r_k - f_k}{r_k}$

• Probability of surviving the end of the k^{th} time-period is the probability of surviving to the end of the $(k-1)^{th}$ time-period, times the probability of surviving the k^{th} time-period. i.e

$$S(k) = S(k-1) \times \frac{r_k - f_k}{r_k}$$

Motion Sickness Study Life-Table

Censored

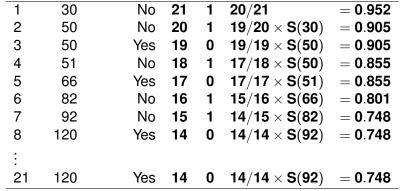
ID

Time

S(t)

Motion Sickness Study

- 21 subjects put in a cabin on a hydraulic piston,
- Bounced up and down for 2 hours, or until they vomited, whichever occured first.
- Time to vomiting is our survival time.
- Two subjects insisted on ending the experiment early, although they had not vomited (censored).
 - Is censoring independent of expected event time?
- 14 subjects completed the 2 hours without vomiting.
- 5 subjects failed



 f_k

 r_k

Introduction
Censoring
Describing Survival
Comparing Survival

Survivor function Stata Commands

Kaplan Meier Survival Curves

- Plot of S(t) against (t).
- Always start at (0, 1).
- Can only decrease.
- Drawn as a step function, with a downwards step at each failure time.

Introduction
Censoring
Describing Survival
Comparing Survival
Modelling Survival

Survivor function Stata Commands

Stata commands for Survival Analysis

- stset: sets data as survival
 - Takes one variable: followup time
 - Option failure = 1 if event occurred, 0 if censored
- sts list: produces life table
- sts graph: produces Kaplan Meier plot

Stata Output

sts list if group == 1

failure _d: fail analysis time _t: time

Time	Beg. Total	Fail	Net Lost	Survivor Function	Std. Error	[95% Con	f. Int.]
30	21	1	0	0.9524	0.0465	0.7072	0.9932
50	20	1	1	0.9048	0.0641	0.6700	0.9753
51	18	1	0	0.8545	0.0778	0.6133	0.9507
66	17	0	1	0.8545	0.0778	0.6133	0.9507
82	16	1	0	0.8011	0.0894	0.5519	0.9206
92	15	1	0	0.7477	0.0981	0.4946	0.8868
120	14	0	14	0.7477	0.0981	0.4946	0.8868

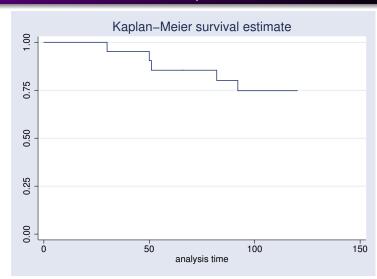
Introduction
Censoring
Describing Survival
Comparing Survival
Modelling Survival

Comparing Survivor Functions

- Null Hypothesis Survival in both groups is the same
- Alternative Hypothesis
 - Groups are different
 - One group is consistently better
 - One group is better at fixed time t
 - Groups are the same until time t, one group is better after
 - **1** One group is worse up to time *t*, better afterwards.
- No test is equally powerful against all alternatives.

Survivor function Stata Commands

Kaplan Meier Curve: example



Introduction
Censoring
Describing Survival
Comparing Survival
Modelling Survival

Comparing Survivor Functions

- Can use
 - Logrank test
 - Most powerful against consistent difference
 - Modified Wilcoxon Test
 - Most powerful against early differences
 - Regression
- Should decide which one to use beforehand.

Motion Sickness Revisited

- Less than 1/3 of subjects experienced an endpoint in first study.
- Further 28 subjects recruited
- Frequency and amplitude of vibration both doubled
- Intention was to induce vomiting sooner
- Were they successful?

Introduction
Censoring
Describing Survival
Comparing Survival
Modelling Survival

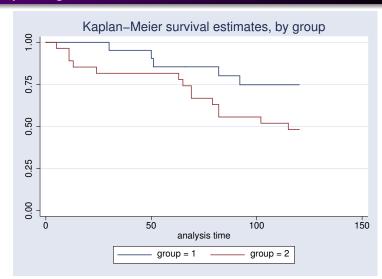
Comparison of Survivor Functions

- sts test group gives logrank test for differences between groups
- sts test group, wilcoxon gives Wilcoxon test

Test	χ^2	р
Logrank	3.21	0.073
Wilcoxon	3.18	0.075

Introduction
Censoring
Describing Survival
Comparing Survival
Modelling Survival

Comparing Survival Curves



Introduction
Censoring
Describing Survive
Comparing Survive
Modelling Survive

What to avoid

- Compare mean survival in each group.
 - Censoring makes this meaningless
- Overinterpret the tail of a survival curve.
 - There are generally few subjects in tails
- Compare proportion surviving in each group at a fixed time.
 - Depends on arbitrary choice of time
 - Lacks power compared to survival analysis
 - Fine for description, not for hypothesis testing

Modelling Survival

The hazard function

Modelling Survival

- Cannot often simply compare groups, must adjust for other prognostic factors.
- Predicting survival function *S* is tricky.
- Easier to predict the hazard function.
 - Hazard function h(t) is the risk of dying at time t, given that you've survived until then.
 - Can be calculated from the survival function.
 - Survival function can be calculated from the hazard function.
 - Hazard function easier to model

The hazard function

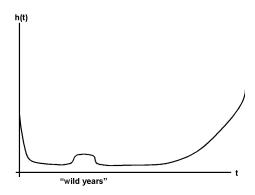
Options for Modelling Hazard Function

- Parametric Model
- Semi-parametric models
 - Cox Regression (unrestricted baseline hazard)
 - Smoothed baseline hazard

Modelling Survival

The hazard function

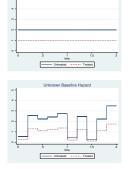
The Hazard Function



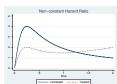
Hazard for all cause mortality for time since birth

The hazard function

Comparing Hazard Functions







- Assumes that the shape of the hazard function is known.
- Estimates parameters that define the hazard function.
- Need to test that the hazard function is the correct shape.
- Was only option at one time.
- Now that semi-parametric regression is available, not used unless there are strong a priori grounds to assume a particular distribution.
- More powerful than semi-parametric if distribution is known

Introduction Censoring Describing Survival Comparing Survival

The hazard function Cox Regression

Proportional Hazards Assumption

Cox Regression: Interpretation

Suppose x_1 increases from x_0 to $x_0 + 1$,

$$h(t, x_0) = h_0(t) \times e^{(\beta_1 x_0)}$$

$$h(t, x_0 + 1) = h_0(t) \times e^{(\beta_1 (x_0 + 1))}$$

$$= h_0(t) \times e^{(\beta_1 x_0)} \times e^{\beta_1}$$

$$= h(t, x_0) \times e^{\beta_1}$$

$$h(t, x_0 + 1) = e^{\beta_1}$$

i.e. the **Hazard Ratio** is e^{β_1}

Cox (Proportional Hazards) Regression

- Assumes shape of hazard function is unknown
- Given covariates \mathbf{x} , assumes that the hazard at time t,

$$h(t,x) = h_0(t) \times \Psi(\mathbf{x})$$

where $\Psi = \exp(\beta_1 x_1 + \beta_2 x_2 + ...)$.

- Semi-parametric: h_0 is non-parametric, Ψ is parametric.
- t affects h_0 , not Ψ
- \mathbf{x} affects Ψ , not h_0

Introduction
Censorir
Describing Surviv
Comparing Surviv
Modelling Surviv

The hazard function

Cox Regression

Proportional Hazards Assi

- Results may be presented as β or e^{β}
- $\beta > 0 \Rightarrow e^{\beta} > 1 \Rightarrow \text{risk increased}$
- $\beta < 0 \Rightarrow e^{\beta} < 1 \Rightarrow \text{risk decreased}$
- Should include a confidence interval.

• stcox varlist performs regression using varlist as

Option nohr gives coefficients in place of hazard ratios

predictors

Cox Regression: Testing Assumptions

- We assume hazard ratio is constant over time: should test.
- Possible tests:
 - Plot observed and predicted survival curves: should be similar.
 - Plot $-\log(-\log(S(t)))$ against $\log(t)$ for each group: should give parallel lines.
 - Formal statistical test:
 - Overall
 - Each variable
- May need to fit interaction between time period and predictor: assume constant hazard ratio on short intervals, not over entire period.

Introduction
Censoring
Describing Survival
Comparing Survival
Modelling Survival

The hazard function

Cox Regression

Proportional Hazards Assumption

Testing Proportional Hazards

- stcoxkm produced plots of observed and predicted survival curves
- stphplot produces $-\log(-\log(S(t)))$ against $\log(t)$ (log-log plot)
- estat phtest gives overall test of proportional hazards
- estat phtest, detail gives test of proportional hazards for each variable.

Introduction Censoring Describing Survival Comparing Survival

The hazard function
Cox Regression
Proportional Hazards Assumption

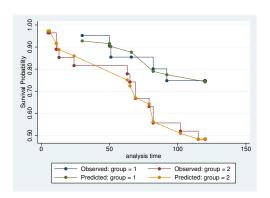
Cox Regression: Example

. stcox i.group

. occon rigroup							
Cox regression	Breslow n	method for ti	es				
No. of subjects	=	49		Number	of obs	s =	49
No. of failures	=	19					
Time at risk	= 4	1457					
				LR chi	2(1)	-	3.32
Log likelihood	= -67.296	5458		Prob >	chi2	-	0.0685
-							
_t :		Std. Err.				Conf.	<pre>Interval]</pre>
		1.277744				 678	6.809087

The hazard function
Cox Regression
Proportional Hazards Assumption

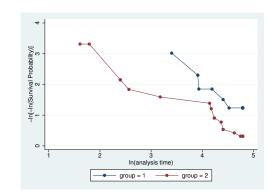
Testing Assumptions: Kaplan-Meier Plot



Censoring
Describing Survival
Comparing Survival
Modelling Survival

Cox Regression
Proportional Hazards Assumption

Testing Assumptions: log-log plot



Introduction Censoring Describing Survival Comparing Survival Modelling Survival

The hazard function

Cox Regression

Proportional Hazards Assumption

Testing Assumptions: Formal Test

. estat phtest

Test of proportional hazards assumption

	chi2	df	Prob>chi2
	+		
global test	0.03	1	0.8585

Introduction Censoring Describing Survival Comparing Survival

The hazard function
Cox Regression
Proportional Hazards Assumption

Allowing for Non-Proportional Hazards

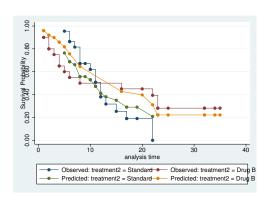
- Effect of covariate varies with time
- Need to produce different estimates of effects at different times
- Use stsplit to split one record per person into several
- Fit covariate of interest in each time period separately

The hazard function

Cox Regression

Proportional Hazards Assumption

Non-Proportional Hazards Example



Censoring
Describing Survival
Comparing Survival
Modelling Survival

Cox Regression
Proportional Hazards Assumption

Non-Proportional Hazards Example

Introduction Censoring Describing Survival Comparing Survival Modelling Survival

The hazard function
Cox Regression
Proportional Hazards Assumption

Non-Proportional Hazards Example: Fitting time-varying effect

stsplit period, at(10) gen t1 - treatment2*(period -- 0) gen t2 - treatment2*(period -- 10)

. stcox t1 t2

_t Haz. Ratio Std. Err. z P> z [95% Conf. Interval]							
	_t	Haz. Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
t1 1.836938 .8737408 1.28 0.201 .7231357 4.666262	t1	1.836938	.8737408	1.28	0.201	.7231357	4.666262
t2 .1020612 .0853529 -2.73 0.006 .0198156 .5256703	t2	.1020612	.0853529	-2.73	0.006	.0198156	.5256703

. estat phtes

Test of proportional hazards assumption

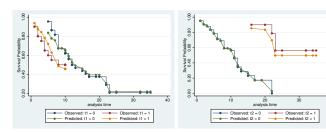
Time: Time

1	chi2	df	Prob>chi2
global test	1.34	2	0.5114

Introduction
Censoring
Describing Survival
Comparing Survival
Modelling Survival

The hazard function
Cox Regression
Proportional Hazards Assumption

Non-Proportional Hazards Example



The hazard function
Cox Regression
Proportional Hazards Assumption

Time varying covariates

- Normally, survival predicted by baseline covariates
- Covariates may change over time
- Can have several records for each subject, with different covariates
- Each record ends with a censoring event, unless the event of interest occurred at that time
- Need to have unique identifier for each individual so that stata knows which observations belong together
- Option tvc() is for variables that increase linearly with time

