

Relational depth of semigroups with chain-like \mathcal{T} -classes

Yayi Zhu

joint work with Nik Ruskuc

University of St Andrews

15 / 12 / 25

Green's \mathcal{T} -relation

> In a semigroup S ,

$$(x, y) \in \mathcal{T} \Leftrightarrow S'xS' = S'yS'.$$

> The \mathcal{T} -classes of S are of the form

$$\mathcal{T}_x = \{x' \in S : (x', x) \in \mathcal{T}\}.$$

> Some semigroups have \mathcal{T} -classes that form

$$\text{a chain } (\mathcal{T}_x \leq \mathcal{T}_y \Leftrightarrow S'xS' \subseteq S'yS').$$

Semigroups with chain-like \mathcal{T} -classes

> Transformation Semigroups

- PT_n - all partial transformations on $[n]$

e.g. $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & - & 2 & 5 & 6 \end{pmatrix} \in \text{PT}_6$

- I_n - all partial bijections on $[n]$

e.g. $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & - & 5 & 6 \end{pmatrix} \in \text{I}_6$

- T_n - all functions from $[n]$ into $[n]$

e.g. $\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 4 & 5 & 6 \end{pmatrix} \in \text{T}_6$

> Partition monoid, Brauer monoid, Temperley-Lieb monoid

> Matrix semigroups

\mathcal{T} -classes and ranks

> For $S \in \{T_n, I_n, PT_n\}$, $\alpha \mathcal{T} \beta \Leftrightarrow \text{rank } \alpha = \text{rank } \beta$.

- The \mathcal{T} -classes of S are of the form

$$J_i := \{\alpha \in S : \text{rank } \alpha = i\}$$

- The \mathcal{T} -classes of S form a chain,

$$J_\varepsilon < \dots < J_n \quad (\varepsilon \in \{0,1\})$$

\mathcal{T} -classes of the ideals of T_n, I_n, PT_n

- A subset I of semigroup S is an ideal of S if for all $s \in S, i \in I$, $si, is \in I$.
- The ideals of T_n, I_n, PT_n are of the form $I_m := \{\alpha \in S : \text{rank } \alpha \leq m\}$ ($0 \leq m \leq n$).

The \mathcal{T} -classes of I_m are $\mathcal{T}_0 < \dots < \mathcal{T}_m$.

Semigroup Presentations

$$\subseteq A^+ \times A^+$$

> $\langle A|R \rangle$ is a presentation for the semigroup

alphabet

$$S \text{ if } S \cong A^+ / R^\#,$$

where $R^\#$ is the smallest congruence on A^+

that contains R .

> The Cayley table presentation for a semigroup S is

$$C = \langle x_s \ (s \in S) \mid x_s x_t = x_{st} \ (s, t \in S) \rangle.$$

Semigroup presentation for S_n

Proposition (Moore, 1897)

The presentation

$$\langle a, b \mid a^2 = b^n = (ba)^{n-1} = (ab^{n-1}ab)^3 = (ab^{n-j}ab^j)^2 = 1 \quad (2 \leq j \leq n-2) \rangle$$

defines S_n in terms of generators $a = (1, 2)$
and $b = (1, 2, \dots, n)$.

Presentation for T_n

Proposition (Aryzenstat, 1958)

Suppose that $\langle a, b \mid R \rangle$ is a (semigroup) presentation for S_n , where a represents (12) , b represents $(12 \cdots n)$. let t represent the transformation

$$t = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 1 & 3 & \cdots & n \end{pmatrix} \in T_n.$$

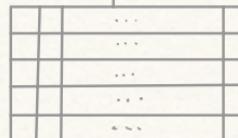
Then the presentation

$$\begin{aligned} \langle a, b, t \mid R, at = b^{n-2}ab^2 + b^{n-2}ab^2 = bab^{n-1}abtb^{n-1}abab^{n-1} = \\ = (tbab^{n-1})^2 = t, (b^{n-1}ab)^2 = tb^{n-1}abt = (tb^{n-1}ab)^2, \\ (tbab^{n-2}ab)^2 = (bab^{n-2}ata)^2 \rangle \end{aligned}$$

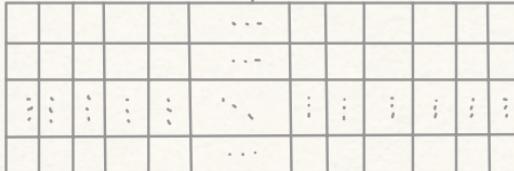
defines T_n .

Ayzenstat's presentation for T_6

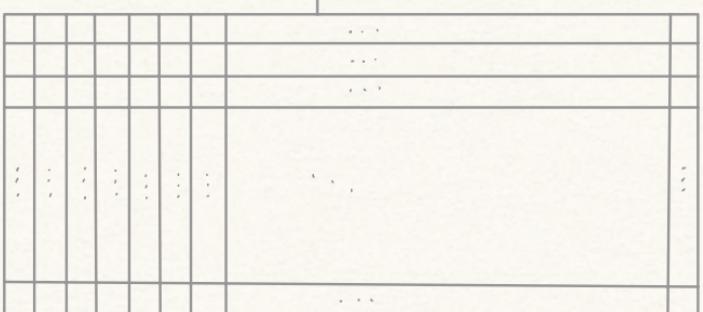
$S_6 = T_6$



T_5 (15×15)

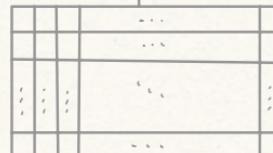


T_4
 (15×65)



T_3

(20×9)



T_2

(15×31)

T_1

(1×1)

AYzenstat's presentation for T_6

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 4 & 5 & 6 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$$

$$t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 3 & 4 & 5 & 6 \end{pmatrix}$$

Relations in Ayzenstat's presentation are:

$$R, \text{ at } \dots = t,$$

$$(b^{n-1}abt)^2 = \dots = (t b^{n-1}ab)^2,$$

$$(tba^{b^{n-2}}ab)^2 = (bab^{n-2}ata)^2.$$

yz201@st-andrews.ac.uk

Durham NBSAN 2025

$$\boxed{} \quad S_6 = T_6$$

1	2	3
4	5	6
7	8	9
10	11	12
13	14	15

J5 (5x5)

丁+
(15 x 65)

153
(20 x 90)

丁2
(15x31)

三

J₁

AYzenstat's presentation for T_6

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 4 & 5 & 6 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$$

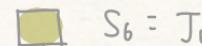
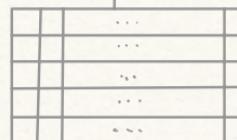
$$t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 3 & 4 & 5 & 6 \end{pmatrix}$$

Relations in Ayzenstat's presentation are:

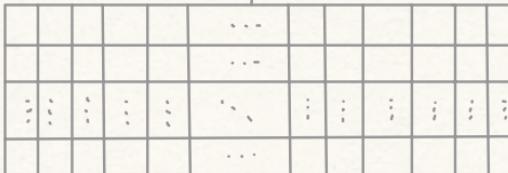
R, at = ... = t,

$$(b^{n-1}abt)^2 = \dots = (t b^{n-1}ab)^2,$$

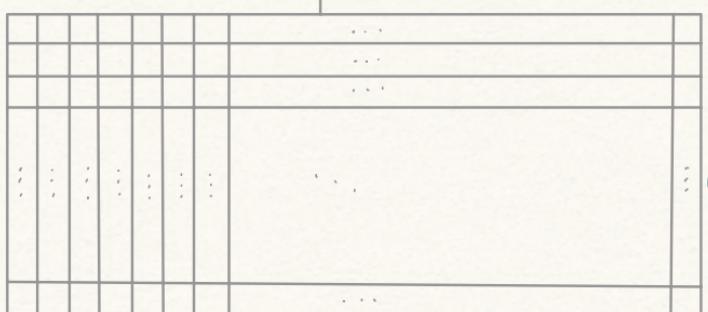
$$(tba^{b^{n-2}}ab)^2 = (bab^{n-2}ata)^2.$$



J5 (5x5)

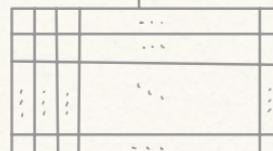


丁+
(15 x 65)



۳۵

J₂
(15x31)



104

yz201@st-andrews.ac.uk

Durham NBSAN 2025

AYzenstat's presentation for T_6

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 4 & 5 & 6 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$$

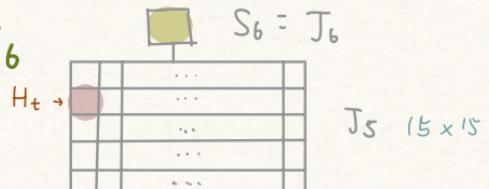
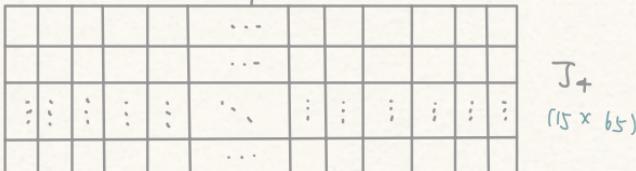
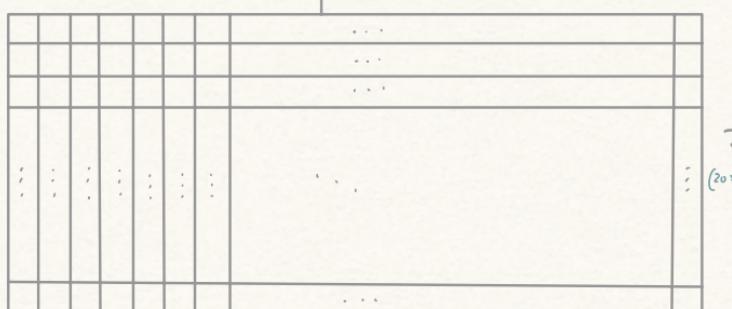
$$t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 3 & 4 & 5 & 6 \end{pmatrix}$$

Relations in Ayzenstat's presentation are:

R. $at = \dots = t$,

$$(b^{n-1}abt)^2 = \dots = (t b^{n-1}ab)^2,$$

$$(tba^{b^{n-2}}ab)^2 = (bab^{n-2}ata)^2.$$



AYzenstat's presentation for T_6

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 4 & 5 & 6 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$$

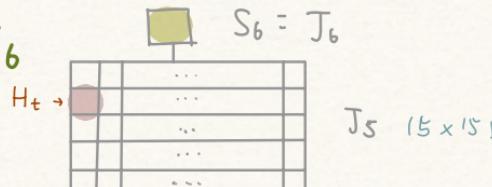
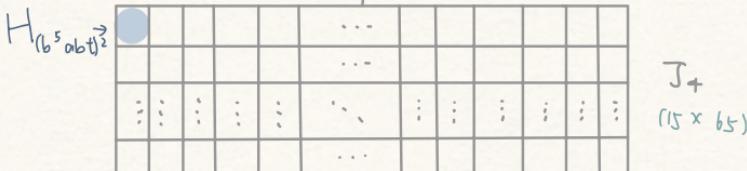
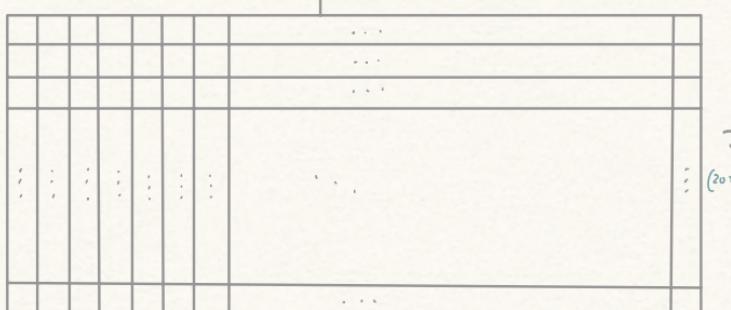
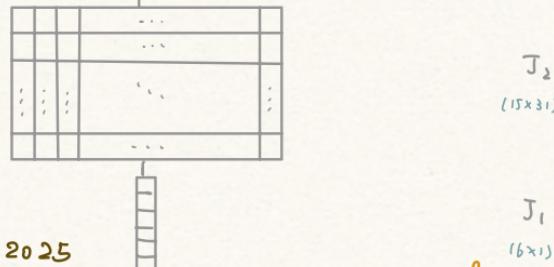
$$t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 3 & 4 & 5 & 6 \end{pmatrix}$$

Relations in Arzenstatis presentation are:

R, at = ... = t,

$$(b^{n-1}abt)^2 = \dots = (t b^{n-1}ab)^2,$$

$$(tba^{b^{n-2}}ab)^2 = (bab^{n-2}ata)^2.$$



Arzenstat's presentation for T_6

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 4 & 5 & 6 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$$

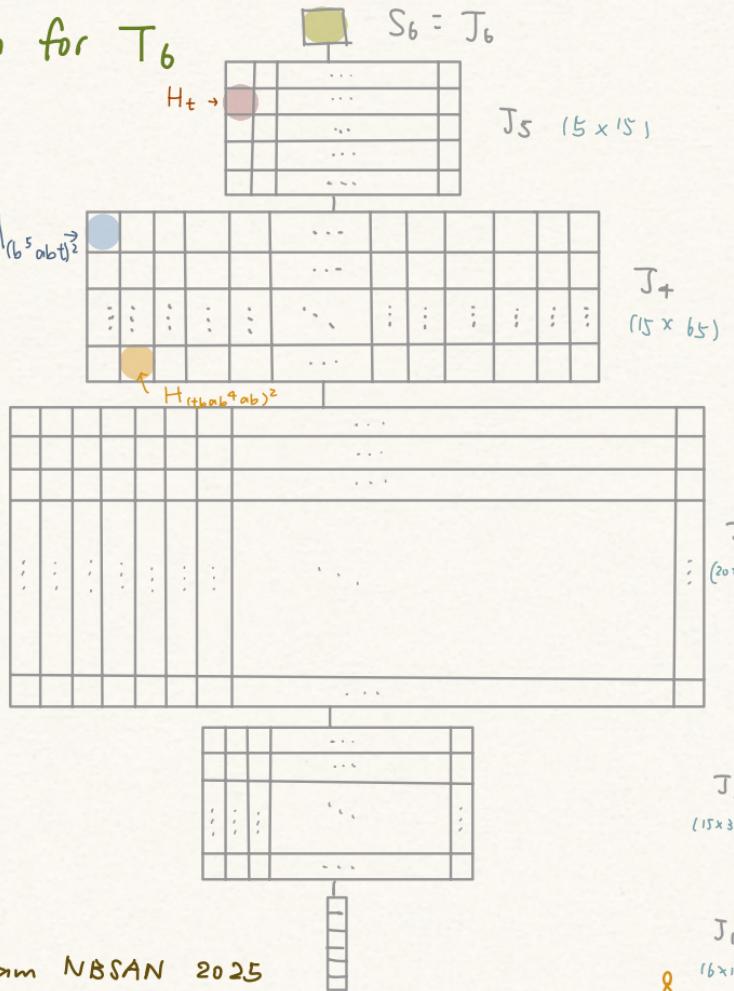
$$t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 3 & 4 & 5 & 6 \end{pmatrix}$$

Relations in Arzenstatis presentation are:

R, at $\dots = t$,

$$(b^{n-1}abt)^2 = \dots = (t b^{n-1}ab)^2,$$

$$(tba^{b^{n-2}}ab)^2 = (ba^{b^{n-2}}ata)^2.$$



Presentation for $T_n \setminus S_n$

Proposition (East, 2013)

Define maps α_{ij} ($1 \leq i, j \leq n$) by $x \alpha_{ij} = \begin{cases} x & \text{if } i < j \\ i & \text{if } x = j \\ x-1 & \text{if } j < x \leq n \end{cases}$ β_i ($1 \leq i \leq n-1$) by

$x \beta_i = \begin{cases} x & \text{if } x < i \text{ or } x = n \\ x+1 & \text{if } i \leq x < n \end{cases}$ γ_i ($1 \leq i \leq n-2$) by $x \gamma_i = \begin{cases} x & \text{if } x \neq i, i+1, n \\ i+1 & \text{if } x = i \\ i & \text{if } x = i+1 \\ (n-1)\beta_i & \text{if } x = n \end{cases}$.

Define an alphabet $\Upsilon = A \cup B \cup S$, where

$$A = \{a_{ij} \mid 1 \leq i < j \leq n\}, \quad B = \{b_i \mid 1 \leq i \leq n-1\}, \quad S = \{s_i \mid 1 \leq i \leq n-2\}.$$

Let Q be the set of relations

$$a_{kl}a_{in} = a_{kl} \quad \text{for all } i, k, l \quad (\text{A1})$$

$$a_{jk}a_{ij} = a_{ik}a_{ij} = a_{ij}a_{i,k-1} \quad \text{if } i < j < k \quad (\text{A2})$$

$$a_{kl}a_{ij} = \begin{cases} a_{ij}a_{k-1,l-1} & \text{if } i < j < k < l \\ a_{ij}a_{k,l-1} & \text{if } i < k < j < l \\ a_{i,j+1}a_{kl} & \text{if } i < k < l \leq j < n; \end{cases} \quad (\text{A3})$$

$$a_{kl}a_{ij} = \begin{cases} a_{ij}a_{k,l-1} & \text{if } i < k < j < l \\ a_{i,j+1}a_{kl} & \text{if } i < k < l \leq j < n; \end{cases} \quad (\text{A4})$$

$$a_{kl}a_{ij} = \begin{cases} a_{ij}a_{k-1,l-1} & \text{if } i < j < k < l \\ a_{ij}a_{k,l-1} & \text{if } i < k < j < l \\ a_{i,j+1}a_{kl} & \text{if } i < k < l \leq j < n; \end{cases} \quad (\text{A5})$$

$$b_j b_i = b_i b_{j+1} \quad \text{if } 1 \leq i \leq j \leq n-2 \quad (\text{B1})$$

$$b_{n-1} b_i = b_i \quad \text{for all } i; \quad (\text{B2})$$

$$s_i a_{n-1,n} = a_{n-1,n} s_i = s_i \quad \text{for all } i \quad (\text{S1})$$

$$s_i^2 = a_{n-1,n} \quad \text{for all } i \quad (\text{S2})$$

$$s_i s_j = s_j s_i \quad \text{if } |i - j| > 1 \quad (\text{S3})$$

$$s_i s_j s_i = s_j s_i s_j \quad \text{if } |i - j| = 1; \quad (\text{S4})$$

$$a_{n-1,n} a_{i,j} s_r \quad \text{if } r \leq i-2 \text{ and } j < n \quad (\text{SA1})$$

$$a_{n-1,n} a_{i-1,j} s_r \quad \text{if } r = i-1 \text{ and } j < n \quad (\text{SA2})$$

$$a_{n-1,n} a_{i+1,j} s_r \quad \text{if } r = i < j-1 \text{ and } j < n \quad (\text{SA3})$$

$$a_{n-1,n} a_{ij} \quad \text{if } r = i = j-1 \quad (\text{SA4})$$

$$a_{n-1,n} a_{i,j} s_r \quad \text{if } i < r < j-1 \text{ and } j < n \quad (\text{SA5})$$

$$a_{n-1,n} a_{i,j-1} \quad \text{if } i < r = j-1 \quad (\text{SA6})$$

$$a_{n-1,n} a_{i,j+1} \quad \text{if } r = j \quad (\text{SA7})$$

$$a_{n-1,n} a_{ij} s_{r-1} \quad \text{if } j < r \quad (\text{SA8})$$

$$s_r \quad \text{if } j = n; \quad (\text{SA9})$$

$$a_{n-1,n} a_{n-2,n-1} s_r b_i \quad \text{if } r \leq i-2 \text{ and } i < n-1 \quad (\text{BS1})$$

$$s_r \quad \text{if } r \leq i-2 \text{ and } i = n-1 \quad (\text{BS2})$$

$$a_{n-1,n} a_{n-2,n-1} b_{i-1} \quad \text{if } r = i-1 \text{ and } i < n-1 \quad (\text{BS3})$$

$$s_r \quad \text{if } r = i-1 \text{ and } i = n-1 \quad (\text{BS4})$$

$$a_{n-1,n} a_{n-2,n-1} b_{i+1} \quad \text{if } r = i \quad (\text{BS5})$$

$$a_{n-1,n} a_{n-2,n-1} s_{i+1} \quad \text{if } r = i = n-3 \quad (\text{BS6})$$

$$a_{n-1,n} a_{n-2,n-1} \quad \text{if } r = i = n-2 \quad (\text{BS7})$$

$$a_{n-1,n} a_{n-2,n-1} s_{r-1} b_i \quad \text{if } i < r; \quad (\text{BS8})$$

$$a_{n-1,n} a_{i-1,j-1} b_r \quad \text{if } r < i \quad (\text{BA1})$$

$$s_{j-2} \cdots s_i \quad \text{if } r = i < j-1 \quad (\text{BA2})$$

$$a_{n-1,n} \quad \text{if } r = i = j-1 \quad (\text{BA3})$$

$$a_{n-1,n} a_{i,j-1} b_r \quad \text{if } i < r < j \quad (\text{BA4})$$

$$a_{n-1,n} \quad \text{if } r = j \quad (\text{BA5})$$

$$a_{n-1,n} a_{ij} b_{r-1} \quad \text{if } j < r; \quad (\text{BA6})$$

$$a_{n-1,n} a_{ij} b_{r-1} \quad (\text{BA7})$$

The semigroup $T_n \setminus S_n$ has

presentation $\langle \Upsilon \mid Q \rangle$.

East's presentation for $I_5 \sqsupseteq T_6 \setminus S_6$

$$a_{kl}a_{ln} = a_{kl} \quad \text{for all } i, k, l$$

(A1)

$$a_{jk}a_{ij} = a_{ik}a_{ij} = a_{ij}a_{i,k-1} \quad \text{if } i < j < k$$

(A2)

$$a_{kl}a_{ij} = \begin{cases} a_{ij}a_{k-1,l-1} & \text{if } i < j < k < l \\ a_{ij}a_{k,l-1} & \text{if } i < k < j < l \\ a_{i,j+1}a_{kl} & \text{if } i < k < l \leq j < n; \end{cases}$$

(A3)

(A4)

(A5)

$$b_jb_i = b_i b_{j+1} \quad \text{if } 1 \leq i \leq j \leq n-2$$

(B1)

$$b_{n-1}b_i = b_i \quad \text{for all } i;$$

(B2)

$$s_i a_{n-1,n} = a_{n-1,n} s_i = s_i \quad \text{for all } i$$

(S1)

$$s_i^2 = a_{n-1,n} \quad \text{for all } i$$

(S2)

$$s_i s_j = s_j s_i \quad \text{if } |i - j| > 1$$

(S3)

$$s_i s_j s_i = s_j s_i s_j \quad \text{if } |i - j| = 1;$$

(S4)

$$s_r a_{ij} = \begin{cases} a_{n-1,n} a_{ij} s_r & \text{if } r \leq i-2 \text{ and } j < n \\ a_{n-1,n} a_{i-1,j} s_r & \text{if } r = i-1 \text{ and } j < n \\ a_{n-1,n} a_{i+1,j} s_r & \text{if } r = i < j-1 \text{ and } j < n \\ a_{n-1,n} a_{ij} & \text{if } r = i = j-1 \\ a_{n-1,n} a_{ij} s_r & \text{if } i < r < j-1 \text{ and } j < n \\ a_{n-1,n} a_{i,j-1} & \text{if } i < r = j-1 \\ a_{n-1,n} a_{i,j+1} & \text{if } r = j \\ a_{n-1,n} a_{ij} s_{r-1} & \text{if } j < r \\ s_r & \text{if } j = n; \end{cases}$$

(SA1)

(SA2)

(SA3)

(SA4)

(SA5)

(SA6)

(SA7)

(SA8)

(SA9)

$$b_i s_r = \begin{cases} a_{n-1,n} a_{n-2,n-1} s_r b_i & \text{if } r \leq i-2 \text{ and } i < n-1 \\ s_r & \text{if } r \leq i-2 \text{ and } i = n-1 \\ a_{n-1,n} a_{n-2,n-1} b_{i-1} & \text{if } r = i-1 \text{ and } i < n-1 \\ s_r & \text{if } r = i-1 \text{ and } i = n-1 \\ a_{n-1,n} a_{n-2,n-1} b_{i+1} & \text{if } r = i \\ a_{n-1,n} a_{n-2,n-1} s_{i+1} & \text{if } r = i = n-3 \\ a_{n-1,n} a_{n-2,n-1} & \text{if } r = i = n-2 \\ a_{n-1,n} a_{n-2,n-1} s_{r-1} b_i & \text{if } i < r; \end{cases}$$

(BS1)

(BS2)

(BS3)

(BS4)

(BS5)

(BS6)

(BS7)

(BS8)

(BS9)

$$b_r a_{ij} = \begin{cases} a_{n-1,n} a_{i-1,j-1} b_r & \text{if } r < i \\ s_{j-2} \cdots s_i & \text{if } r = i < j-1 \\ a_{n-1,n} & \text{if } r = i = j-1 \\ a_{n-1,n} a_{i,j-1} b_r & \text{if } i < r < j \\ a_{n-1,n} & \text{if } r = j \\ a_{n-1,n} a_{ij} b_{r-1} & \text{if } j < r; \\ a_{n-1,n} a_{ij} b_{r-1} & \text{if } r > j; \end{cases}$$

(BA1)

(BA2)

(BA3)

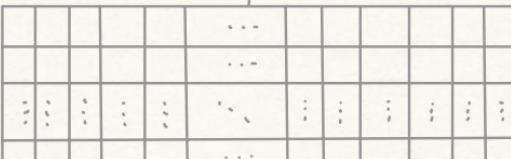
(BA4)

(BA5)

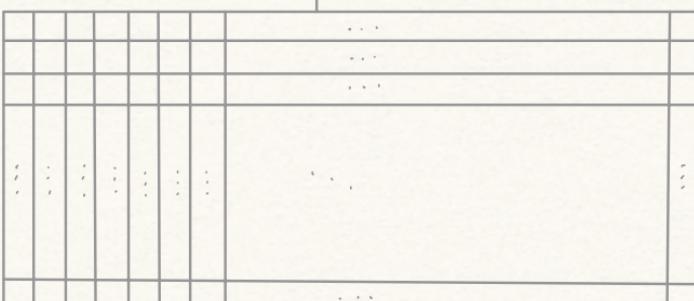
(BA6)

(BA7)

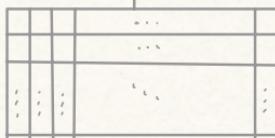
$I_5 \ (5 \times 15)$



$T_6 \ (15 \times 65)$



(20×60)



J_1

J_2

East's presentation for $I_5 = T_6 \setminus S_6$

- $a_{12} a_{16} = a_{12}$ is a relation

in $(A1)$, where a_{12} represents

$$\alpha_{12} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 2 & 3 & 4 & 5 \end{pmatrix}.$$

- $S_3 S_1 = S_1 S_3$ is a relation

in $(S3)$, where S_3 represents

$$6_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 3 & 5 & 5 \end{pmatrix}, \text{ and } S_1$$

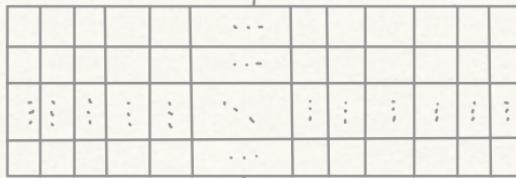
represents $6_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 4 & 5 & 5 \end{pmatrix}.$

- $S_3 a_{34} = a_{56} a_{34}$ is a relation in $(SA4)$,

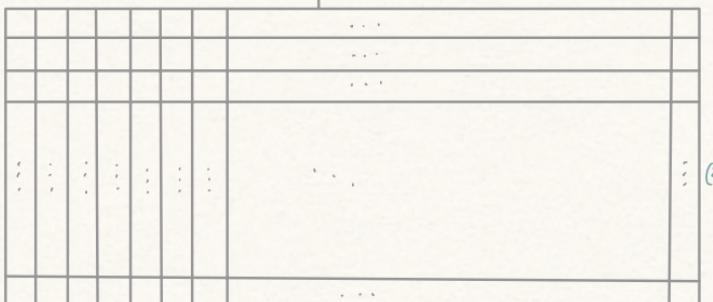
where a_{34} represents $\alpha_{34} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 3 & 4 & 5 \end{pmatrix},$

a_{56} represents $\alpha_{56} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 5 \end{pmatrix}.$

$J_5 (5 \times 15)$

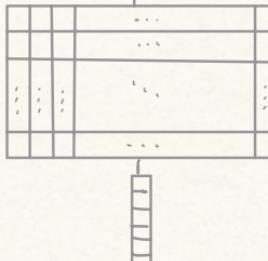


$J_4 (15 \times 65)$



J_3

(20×96)



J_2

(15×31)

J_1

(6×1)

East's presentation for $I_5 = T_6 \setminus S_6$

- $\alpha_{12} \alpha_{16} = \alpha_{12}$ is a relation

in $(A1)$, where α_{12} represents

$$\alpha_{12} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 2 & 3 & 4 & 5 \end{pmatrix}.$$

- $S_3 S_1 = S_1 S_3$ is a relation

in $(S3)$, where S_3 represents

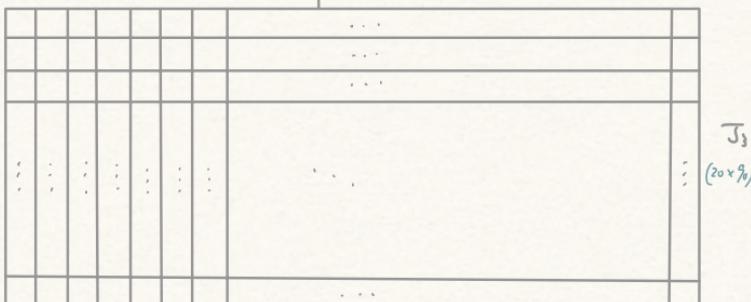
$$6_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 3 & 5 & 5 \end{pmatrix}, \text{ and } S_1$$

represents $6_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 4 & 5 & 5 \end{pmatrix}.$

- $S_3 \alpha_{34} = \alpha_{56} \alpha_{34}$ is a relation in $(SA4)$,

where α_{34} represents $\alpha_{34} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 3 & 4 & 5 \end{pmatrix},$

α_{56} represents $\alpha_{56} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 5 \end{pmatrix}.$



J₁
(6x1)

East's presentation for $I_5 = T_6 \setminus S_6$

- $\alpha_{12} \alpha_{16} = \alpha_{12}$ is a relation

in $(A1)$, where α_{12} represents

$$\alpha_{12} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 2 & 3 & 4 & 5 \end{pmatrix}.$$

- $S_3 S_1 = S_1 S_3$ is a relation

in $(S3)$, where S_3 represents

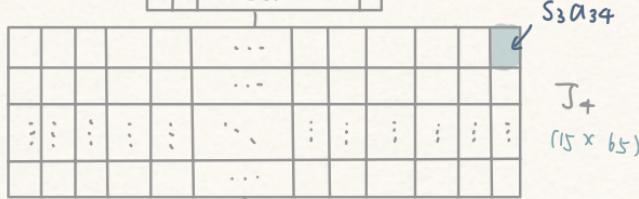
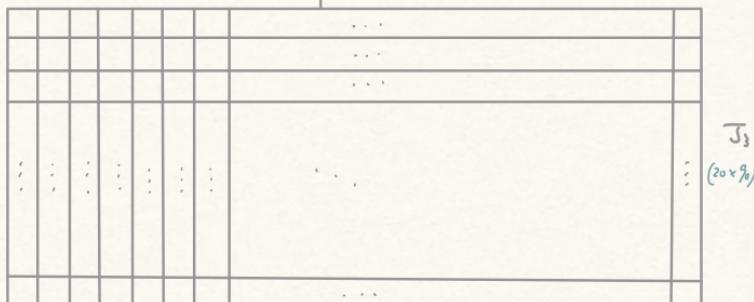
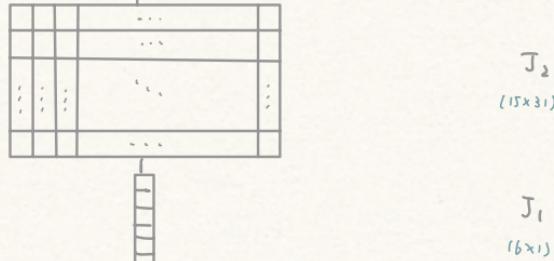
$$6_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 3 & 5 & 5 \end{pmatrix}, \text{ and } S_1$$

represents $6_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 4 & 5 & 5 \end{pmatrix}.$

- $S_3 \alpha_{34} = \alpha_{56} \alpha_{34}$ is a relation in $(SA4)$,

where α_{34} represents $\alpha_{34} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 3 & 4 & 5 \end{pmatrix},$

α_{56} represents $\alpha_{56} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 5 \end{pmatrix}.$



Presentation for I_n

Proposition (Meakin, 1993)

Let $\langle a_1, \dots, a_{n-1} \mid R \rangle$ be a (semigroup) presentation for S_n , where a_i represents the transposition $\alpha_i = (i \ i+1)$ for $i=1, \dots, n-1$. Let t represent the partial bijection

$$t = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ 1 & 2 & \dots & n-1 & - \end{pmatrix} \in I_n.$$

Then the presentation

$$\begin{aligned} & \langle a_1, \dots, a_{n-1}, t \mid R, t^2 = t, t a_{n-1} t = t a_{n-1} t = a_{n-1} t a_{n-1} t, \\ & \quad t a_i = a_i t \ (1 \leq i \leq n-2) \rangle \end{aligned}$$

defines I_n .

Meakin's presentation for I_6

For $1 \leq i \leq 5$, a_i represents

$$a_i = (i \ i+1), \quad t \text{ represents}$$

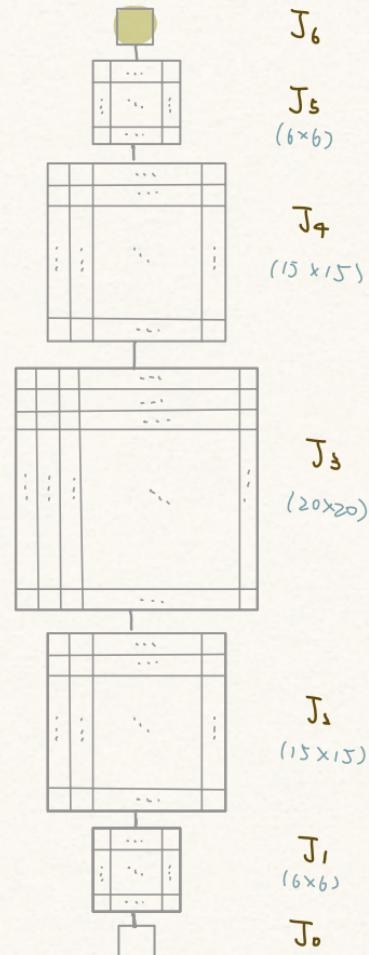
$$t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & - \end{pmatrix}.$$

The relations in the presentation are:

$$R, \quad t^2 = t.$$

$$ta_5t = \dots = a_5ta_5,$$

$$ta_i = a_i t \quad (1 \leq i \leq n-2).$$



Meakin's presentation for I_6

For $1 \leq i \leq 5$, a_i represents

$$a_i = (i \ i+1), \quad t \text{ represents}$$

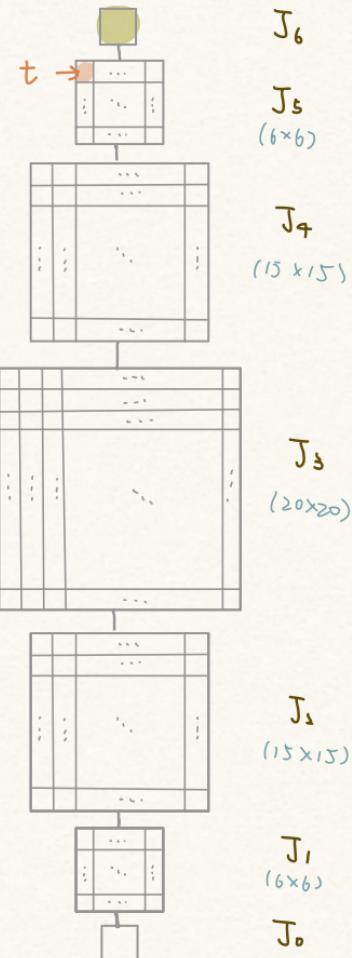
$$t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & - \end{pmatrix}.$$

The relations in the presentation are:

$$R, \quad t^2 = t.$$

$$ta_5t = \dots = a_5ta_5,$$

$$ta_i = a_i t \quad (1 \leq i \leq n-2).$$



Meakin's presentation for I_6

For $1 \leq i \leq 5$, a_i represents

$$a_i = (i \ i+1), \ t \text{ represents}$$

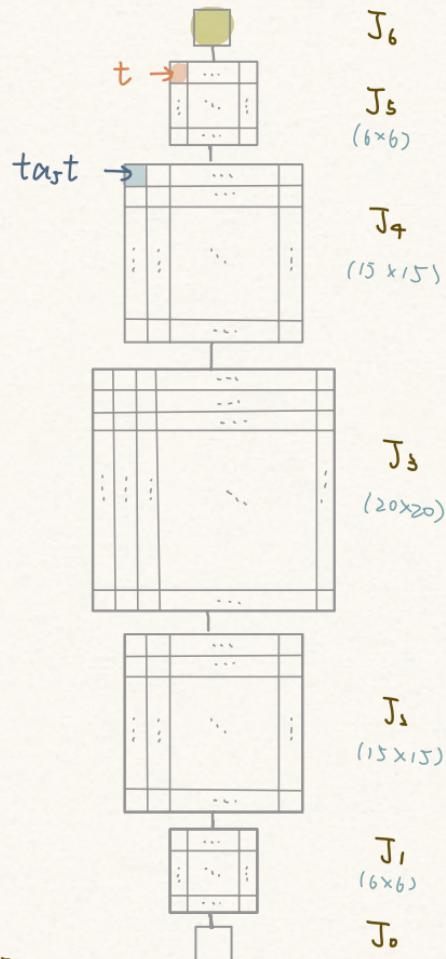
$$t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & - \end{pmatrix}.$$

The relations in the presentation are:

$$R, \quad t^2 = t.$$

$$ta_5t = \dots = a_5ta_5,$$

$$ta_i = a_i t \quad (1 \leq i \leq n-2).$$



Meakin's presentation for I_6

For $1 \leq i \leq 5$, a_i represents

$$a_i = (i \ i+1), \quad t \text{ represents}$$

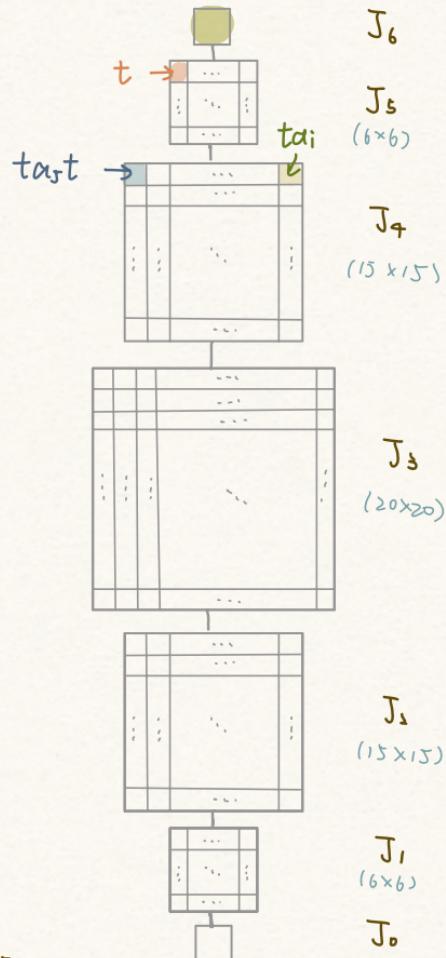
$$t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & - \end{pmatrix}.$$

The relations in the presentation are:

$$R, \quad t^2 = t,$$

$$ta_5t = \dots = a_5ta_5,$$

$$ta_i = a_i t \quad (1 \leq i \leq n-2).$$



Presentation for $I_n \setminus S_n$

Proposition (East, 2006)

For $1 \leq i \leq n$, define λ_i by $\lambda_i x = \begin{cases} x & \text{if } x < i \\ x+1 & \text{if } i \leq x < n \end{cases}$, and ρ_i by

$\rho_i x = \begin{cases} x & \text{if } x < i \\ x-1 & \text{if } i \leq x \leq n. \end{cases}$ For $1 \leq j \leq n-2$,

define s_i by $s_i x = \begin{cases} x & \text{if } x \neq i, i+1, n \\ i+1 & \text{if } k=j \\ i & \text{if } k=i+1 \end{cases}$

$$\lambda_i \lambda_j = \lambda_{j+1} \lambda_i \quad \text{if } 1 \leq i \leq j \leq n-1 \quad (\text{L1})$$

$$\lambda_i \lambda_n = \lambda_i \quad \text{if } 1 \leq i \leq n \quad (\text{L2})$$

$$\rho_j \rho_i = \rho_i \rho_{j+1} \quad \text{if } 1 \leq i \leq j \leq n-1 \quad (\text{R1})$$

$$\rho_n \rho_i = \rho_i \quad \text{if } 1 \leq i \leq n. \quad (\text{R2})$$

Define an alphabet $LUSUR$ where the elements in L, S, R are in one-one correspondence with λ_i 's, s_i 's, ρ_i 's respectively. Then $I_n \setminus S_n$ has presentation

$\langle LUSUR \mid (L1-L2), (R1-R2), (RL1-RL3), (S1-S4), (SL1-SL4), (RS1-RS4) \rangle.$

$$\rho_i \lambda_j = \begin{cases} \lambda_n \lambda_{j-1} \rho_i & \text{if } 1 \leq i < j \leq n \\ \lambda_n = \rho_n & \text{if } 1 \leq i = j \leq n \\ \lambda_n \lambda_j \rho_{i-1} & \text{if } 1 \leq j < i \leq n. \end{cases} \quad (\text{RL1-RL3})$$

$$s_i \lambda_n = \lambda_n s_i = s_i \quad \text{for all } i \quad (\text{S1})$$

$$s_i^2 = \lambda_n \quad \text{for all } i \quad (\text{S2})$$

$$s_i s_j = s_j s_i \quad \text{if } |i-j| > 1 \quad (\text{S3})$$

$$s_i s_j s_i = s_j s_i s_j \quad \text{if } |i-j| = 1. \quad (\text{S4})$$

$$s_i \lambda_j = \begin{cases} \lambda_n \lambda_j s_i & \text{if } 1 \leq i < j-1 \leq n-2 \\ \lambda_n \lambda_{j-1} & \text{if } 1 \leq i = j-1 \leq n-2 \\ \lambda_n \lambda_{j+1} & \text{if } 1 \leq i = j \leq n-2 \\ \lambda_n \lambda_j s_{i-1} & \text{if } 1 \leq j < i \leq n-2 \end{cases} \quad (\text{SL1-SL4})$$

$$\rho_j s_i = \begin{cases} s_i \rho_j \rho_n & \text{if } 1 \leq i < j-1 \leq n-2 \\ \rho_{j-1} \rho_n & \text{if } 1 \leq i = j-1 \leq n-2 \\ \rho_{j+1} \rho_n & \text{if } 1 \leq i = j \leq n-2 \\ s_{i-1} \rho_j \rho_n & \text{if } 1 \leq j < i \leq n-2. \end{cases} \quad (\text{RS1-RS4})$$

East's presentation for $I_5 = I_6 \setminus S_6$

- $S_4 \lambda_4 = \lambda_6 \lambda_5$ is a relation in $(SL3)$, where

$$\lambda_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 4 & - \end{pmatrix}, \quad \begin{array}{|c|c|c|c|c|c|} \hline & | & | & | & \text{X} & | \\ \hline \end{array} \dots$$

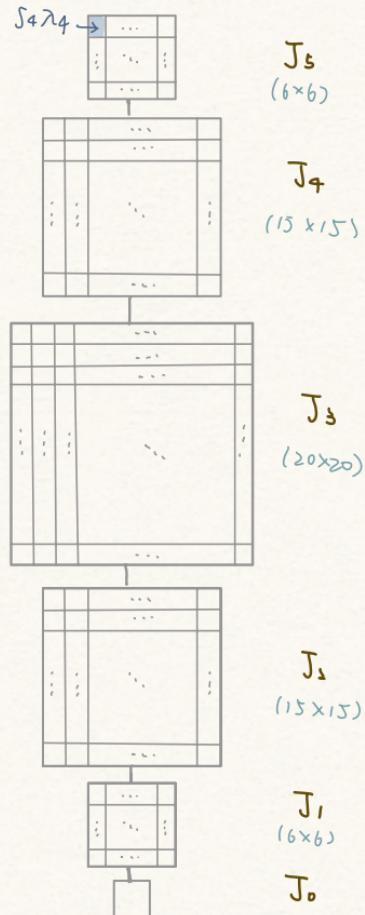
$$\lambda_5 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 6 & - \end{pmatrix}. \quad \begin{array}{|c|c|c|c|c|c|} \hline & | & | & | & \text{X} & | \\ \hline \end{array} \dots$$

- $P_4 S_2 = S_2 P_4 P_n$ is a relation in $(RS1)$, where

$$P_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & - & 4 & 5 \end{pmatrix}. \quad \begin{array}{|c|c|c|c|c|c|} \hline & | & | & | & / & / \\ \hline \end{array} \dots$$

$$S_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 2 & 4 & 5 & - \end{pmatrix}.$$

- $P_4^2 = P_4 P_5$ is a relation in $(R1)$.



East's presentation for $I_5 = I_6 \setminus S_6$

- $S_4 \lambda_4 = \lambda_6 \lambda_5$ is a relation in $(SL3)$, where

$$\lambda_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 4 & - \end{pmatrix}, \quad \begin{array}{|c|c|c|c|c|c|} \hline & | & | & | & \text{X} & | \\ \hline \end{array} \dots$$

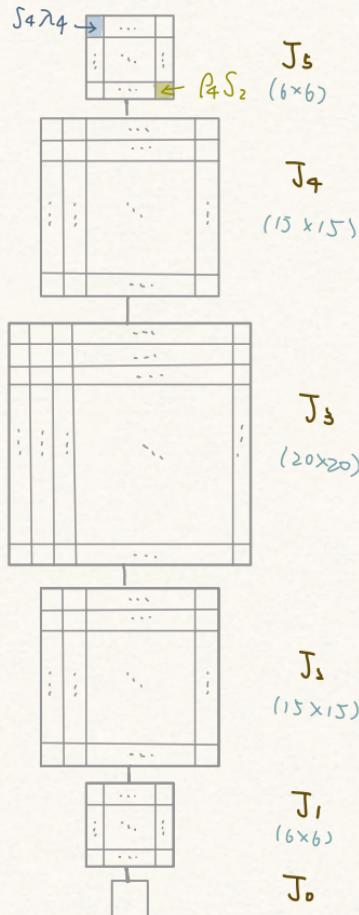
$$\lambda_5 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 6 & - \end{pmatrix}. \quad \begin{array}{|c|c|c|c|c|c|} \hline & | & | & | & \text{X} & | \\ \hline \end{array} \dots$$

- $P_4 S_2 = S_2 P_4 P_n$ is a relation in (RSI) , where

$$P_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & - & 4 & 5 \end{pmatrix}. \quad \begin{array}{|c|c|c|c|c|c|} \hline & | & | & | & / & / \\ \hline \end{array} \dots$$

$$S_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 2 & 4 & 5 & - \end{pmatrix}.$$

- $P_4^2 = P_4 P_5$ is a relation in (RI) .



East's presentation for $I_5 = I_6 \setminus S_6$

- $S_4 \lambda_4 = \lambda_6 \lambda_5$ is a relation in $(SL3)$, where

$$\lambda_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 4 & - \end{pmatrix}, \quad \begin{array}{|c|c|c|c|c|c|} \hline & | & | & | & \text{X} & | \\ \hline \end{array} \dots$$

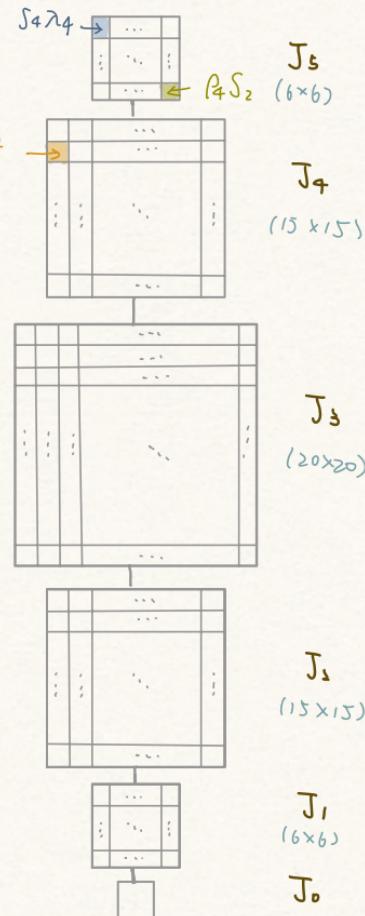
$$\lambda_5 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 6 & - \end{pmatrix}. \quad \begin{array}{|c|c|c|c|c|c|} \hline & | & | & | & | & \diagdown \\ \hline \end{array} \dots$$

- $P_4 S_2 = S_2 P_4 P_n$ is a relation in (RSI) , where

$$P_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & - & 4 & 5 \end{pmatrix}, \quad \begin{array}{|c|c|c|c|c|c|} \hline & | & | & | & | & | \\ \hline \end{array} \dots$$

$$S_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 2 & 4 & 5 & - \end{pmatrix}.$$

- $P_4^2 = P_4 P_5$ is a relation in (RI) .



Some other presentations for the transformation semigroups and the singular part

- O. Ganyushkin, V. Mazorchuk. Classical Finite Transformation Semigroups (2008) (presentation for PT_n)
- J. East, Defining relations for idempotent generators in finite partial transformation semigroups (2013) ($PT_n \setminus S_n$)
- J. D. Mitchell, M. T. Whyte, Short presentations for transformation monoids (2024) (short presentations for I_n, T_n, PT_n)
- J. East, A symmetrical presentation for the singular part of the symmetric inverse monoid (2015) ($I_n \setminus S_n$)

Some other presentations for the transformation semigroups and the singular part

- O. Ganyushkin, V. Mazorchuk. Classical Finite Transformation Semigroups (2008) (presentation for PT_n)
- J. East, Defining relations for idempotent generators in finite partial transformation semigroups (2013) ($PT_n \setminus S_n$)
- J. D. Mitchell, M. T. Whyte, Short presentations for transformation monoids (2024) (short presentations for I_n, T_n, PT_n)
- J. East, A symmetrical presentation for the singular part of the symmetric inverse monoid (2015) ($I_n \setminus S_n$)

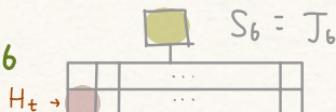
Question: How about a general ideal I_k of T_n, I_n, PT_n ?

Relational depth

- > Consider a finite semigroup S whose J -classes form a chain. Let $P = \langle A \mid R \rangle$ be a presentation for S . Let $w \in A^+$, and $(u=v) \in R$.
- **depth (J)** is the minimal length d of a maximal chain of J -classes $J = J_1 < J_2 < \dots < J_d$ in S .
- **depth (s)** := **depth (J_s)**
- **depth (w)** is the depth of the element it represents in S
- **depth ($u=v$)** := **depth (u)** ($= \text{depth} (v)$)
- **depth (P)** is the maximal depth of a defining relation in P
- > The relational depth of S is
$$\text{depth} (S) := \min \{ \text{depth} (P) : P \text{ is a presentation for } S \}.$$

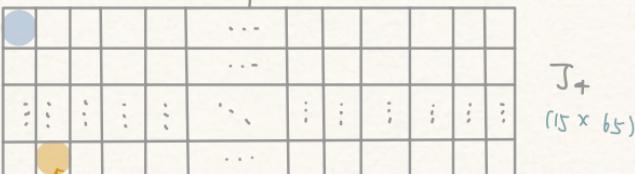
Ayzenstat's presentation for T_6

Relations in Ayzenstat's presentation are in the top 3 T -classes, so has depth 3, and depth $(T_n) \leq 3$.



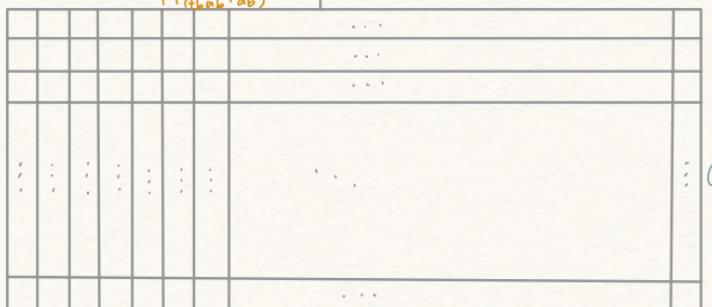
$T_5 \ (15 \times 15)$

$$H_{(b^5 ab)^2}$$



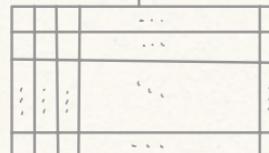
T_4

(15×65)



T_3

(20×9)



T_2

(15×31)

T_1

(6×1)

Depth (of the Cayley table presentation)

- > Recall: $\text{depth}(S) = \min \{ \text{depth}(P) : P \text{ is a presentation for } S \}$.
- > Suppose that $S = J_1 \cup \dots \cup J_k$ is a semigroup with chain-like J -classes. Let $U = J_1 \cup \dots \cup J_k$. The Cayley table presentation restricted to U is

$$C_i = \langle x_\alpha : \alpha \in J_i \cup \dots \cup J_k \mid x_\alpha x_\beta = x_{\alpha\beta} : \alpha, \beta, \alpha\beta \in J_i \cup \dots \cup J_k \rangle.$$

Depth (of the Cayley table presentation)

- > Recall: $\text{depth}(S) = \min \{ \text{depth}(P) : P \text{ is a presentation for } S \}$.
- > Suppose that $S = J_1 \cup \dots \cup J_k$ is a semigroup with chain-like J -classes. Let $U = J_1 \cup \dots \cup J_k$. The Cayley table presentation restricted to U is

$$C_i = \langle x_\alpha : \alpha \in J_i \cup \dots \cup J_k \mid x_\alpha x_\beta = x_{\alpha\beta} : \alpha, \beta, \alpha\beta \in J_i \cup \dots \cup J_k \rangle.$$

Theorem

Let S be a semigroup whose J -classes form a chain $J_1 \cup \dots \cup J_k$. The depth of S is $k-i+1$ where i is the largest number for which C_i defines S .

Relational depth of transformation semigroups & ideals

Theorem

Let $n \geq 3$, let $S \in \{T_n, I_n, PT_n\}$. Define $\Sigma = \begin{cases} 0 & (S = I_n, PT_n) \\ 1 & (S = T_n) \end{cases}$.

For $m \in [\Sigma, n]$, let I_m be the ideal of all (partial) maps in S of rank at most m . Then

$$\text{depth}(I_m) = \begin{cases} m - \max(\Sigma, 2m-n) + 1 & \text{if } m < n \\ 3 & \text{if } m = n. \end{cases}$$

Relational depth of (ideals of) \mathbb{I}_n

Theorem

Let $n \geq 3$, and for $m \in [0, n]$, let \mathbb{I}_m be the ideal of all partial bijections in \mathbb{I}_n of rank at most m . Then

$$\text{depth}(\mathbb{I}_m) = \begin{cases} m - \max(0, 2m-n) + 1 & \text{if } m < n \\ 3 & \text{if } m = n. \end{cases}$$

- ▶ In other words, when $m \leq \frac{n}{2}$, C_i defines \mathbb{I}_m if and only if $i=0$.
- ▶ If $m > \frac{n}{2}$, C_i defines \mathbb{I}_m if and only if $i \leq 2m-n$.

Idea of the proof

let $m < n$. and let I_m be an ideal of I_n .

► Find a lower bound for the depth:

Lemma.

If $m > r > \max(2m-n, 0)$, then $C_r = \langle X_{r,m} | R_{r,m} \rangle$ does not define I_m .

Idea of the proof

let $m < n$. and let I_m be an ideal of I_n .

► Find a lower bound for the depth:

Lemma.

If $m > r > \max(2m-n, 0)$, then $C_r = \langle x_{r,m} | R_{r,m} \rangle$ does not define I_m .

(sketch proof). Suppose $r > \max(2m-n, 0)$. Choose $\alpha, \beta, \gamma \in J_m$ such that $\alpha\beta, \beta\gamma = \alpha\beta\gamma \in J_r$. Show that the relation $x_\alpha x_\beta x_\gamma = x_\beta x_\gamma$ is not a consequence of $R_{r,m}$.

Multiplication depth

let $S = J_1 \cup \dots \cup J_k$ be a semigroup whose J -classes form a chain.

- ▶ The multiplication depth of S is defined to be

$$m. \text{depth}(S) := k - i + 1$$

where i is the smallest number such that there exist $\alpha, \beta \in J_k$ with $\alpha\beta \in J_i$.

Multiplication depth

let $S = J_1 \cup \dots \cup J_k$ be a semigroup whose J -classes form a chain.

- ▶ The multiplication depth of S is defined to be

$$m.\text{depth}(S) := k - i + 1$$

where i is the smallest number such that there exist $\alpha, \beta \in J_k$ with $\alpha\beta \in J_i$.

- ▶ Following from the lemma, if there exists $\alpha, \beta, \gamma \in J_m$ s.t. $\alpha\beta, \beta\gamma = \alpha\gamma \in J_r$, then

$$\text{depth}(J_m) \geq m.\text{depth}(J_m).$$

Idea of the proof (continued)

let $m < n$. and let I_m be an ideal of I_n .

► Find an upper bound for the depth:

Lemma.

let $r = 2m - n$. Then $C_r = \langle X_{r,m} | R_{r,m} \rangle$ defines a presentation for I_m .

(sketch proof). We show that some important relations can be deduced from the relations in $R_{r,m}$.

Idea of the proof (continued)

Show that relations of the form:

i). $x_\alpha x_\beta = x_\gamma x_\delta$ ($\alpha, \beta, \gamma, \delta \in J_r, \alpha\beta = \gamma\delta \in J_{r-1}$)

ii). $x_\alpha x_\beta = x_\gamma x_\delta$ (rank γ , rank $\delta > r$,
 $\alpha, \beta \in J_r, \alpha\beta = \gamma\delta \in J_{r-1}$)

iii). $x_\alpha x_\beta x_\gamma = x_{\alpha'} x_{\gamma'}$ ($\alpha, \beta, \gamma, \alpha', \gamma' \in J_r,$
 $\alpha\beta\gamma = \alpha'\gamma' \in J_{r-1}$)

are consequences of $R_{r,m}$.

Idea of the proof (continued)

Show that relations of the form:

i). $\chi_\alpha \chi_\beta = \chi_\gamma \chi_\delta$ ($\alpha, \beta, \gamma, \delta \in J_r, \alpha\beta = \gamma\delta \in J_{r-1}$)

ii). $\chi_\alpha \chi_\beta = \chi_\gamma \chi_\delta$ (rank $\gamma, \delta > r$,

replace subwords of the same length of the $\alpha, \beta \in J_r, \alpha\beta = \gamma\delta \in J_{r-1}$)

iii). $\chi_\alpha \chi_\beta \chi_\gamma = \chi_{\alpha'} \chi_{\gamma'}$ ($\alpha, \beta, \gamma, \alpha', \gamma' \in J_r, \alpha\beta\gamma = \alpha'\gamma' \in J_{r-1}$)

change the length

are consequences of $R_{r,m}$.

$$\blacktriangleright w = \chi_{\alpha_1} \chi_{\alpha_2} \chi_{\alpha_3} \dots \chi_{\alpha_k} \rightarrow w' = \chi_{\beta_1} \chi_{\beta_2} \dots \chi_{\beta_m}$$

$(\alpha_i \in J_r \cup J_{r+1} \cup \dots \cup J_m)$ $(\beta_1, \beta_2 \in J_r)$

Example : Relational depth of I_9 and its ideals

	relational depth	C_i where i is the largest
I_0	1	C_0
I_1	2	C_0
I_2	3	C_0
I_3	4	C_0
I_4	5	C_0
I_5	5	C_1
I_6	4	C_3
I_7	3	C_5
I_8	2	C_7
I_9	3	C_7

Relational & multiplication depth

- ▶ For the ideals of T_n , I_n , and PT_n ,
relational depth = multiplication depth.
- Is this always true?

Relational depth = multiplication depth? NO.

Example. let I_m be a proper ideal of T_n , where $m > \frac{n+1}{2}$.

and $\text{depth}(I_m) = m-r+1$ where $r = 2m-n$.

Define the Rees quotient semigroup

$$I_m' = I_m \setminus I_{r-1}.$$

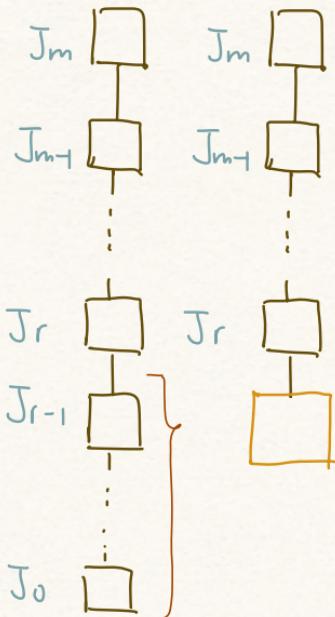
• multiplication depth is the same

$$m \cdot \text{depth}(I_m') = m-r+1.$$

• $\langle x_{r,m} | R_{r,m} \rangle$ does not define I_m'

In particular,

$$\text{depth}(I_m') = m-r+2 = m \cdot \text{depth}(I_m') + 1.$$



I_m

I_m'

Other interesting semigroups

- ▶ the semigroup of order preserving maps (\vee)
- ▶ diagram monoids - Partition monoid,
Brauer monoid (\vee) . Temperley-Lieb monoid

↑
odd &
even cases
- ▶ Semigroup of $n \times n$ matrices

Thank you =)