Studying monoids that model concurrency

Sarah Rees

University of Newcastle

NBSAN, Durham, 15th December 2025

Introduction, plan for today

Joint work of mine with Ascencio-Martin, Britnell, Duncan, Francoeur,

Koutny (ABDFKR) to set up and study algebraic models of concurrent
computation. Today's plan:

® | Introduction, defn. of petri nets as models of concurrency, traces

and trace monoids. Generalising to comtraces, step traces, and
associated monoids.

The problems we'd like to solve.
® ||: Normal forms for traces, comtraces and step traces.

® |lI: Folding in free groups, finitely presented groups and monoids.
® |V: And where next? e.g.

® do we really have the right models? (Probably not)
® are we attacking the right problems?

|: Petri nets and trace monoids

Petri nets (Carl Petri, 1939-2010) model concurrent systems (computer
networks, rail networks, many biological systems). A net is a finite,
directed bipartite graph, with vertex classes S (the states/places), A (the
actions/transitions). Arrows (arcs) s — a — s’ indicates that a acts on
s, with result s'.
P2 P4 Example of a Petri net found on
T2 wikipedia, (©Msoos.
Rectangles depict transitions,
white circles places, black circles
input tokens (need to be in place
for a transition to fire).

For each a, we assume that in(a), out(a) # 0, and in(a) Nout(a) = 0. We
define lk(a) := in(a) U out(a). We call a sequence of actions that might
be performed within a system an action sequence.

T1

P1

In the example, we start with input in P1 only. Then any alternating
string of T1 and T2 is an action sequence.

Actions sequences, equivalence, traces, trace monoids

Example of a Petri net found on
wikipedia, (©Msoos.

Actions a, b € A are independent if Ik(a) N 1k(b) = @; then, action
sequences uabv and ubav have the same effect. The equiv. reln. on
action sequences A* induced by independence on A is called trace
equivalence, and its equivalence classes are called traces.

(Mazurkiewicz87,89) defined the trace monoid 7 := (A | R), where

R :={ab= ba: a,b € A are independent }; its elements are traces. As
an abstract monoid it has been well studied (eg CartierFoata69), has
many names, eg right-angled Artin monoid (RAAM). RAAMs embed in
right-angled Artin groups (RAAGs), very familiar to group theorists.

Generalising traces to comtraces and step traces

JanickiKoutny95 and JanickiEtAl16 defined models of combined traces
(comtraces) and step traces that recognise that two or more out of (i)
the simultaneous application of actions a and b, (ii) the sequence ab and
(iii) the sequence ba might have the same effect. For a,b € A, we write
a~gmb if a and b might be performed simultaneously, call the
(symmetric) relation sim simultaneity, and define A C 24 to be the set of
cliques of sim, which we call steps. We describe a computation as a
sequence of steps.

Irreflexive, binary relations ~j;; and ~ge on A naturally extend to A:

interleaving For a, b € A, a~ju1b if a, b have the same effect when
performed in either order, but not when performed
simultaneously (symmetric, by defn.),

serialisation For a, b € A, a~sge b if within a sequence ab and {a, b} are
interchangeable (so ser C sim). This is not nec. symmetric,
but it may be that a~ge b and b ~gera for certain pairs a, b.
For such pairs, a Zinb (by defn of ~j).

By defn. com- and step traces are the equiv. classes of ser and inl U ser

Definitions of comtrace and step trace monoids, C and S

Given a finite set A of actions, and simultaneity relation ~gj,, we define

A:={S CA: x~gny,Vx#y €S}

Given also a serialisation relation ser, we define the comtrace monoid
C:=(A|ST=S5SUTwhenS ~g,T").

Given both a serialisation relation ser and interleaving relation inl, where
ser Nser 1 Ninl =), we define the step trace monoid

S:=(A|ST=TSwhenS~imT,ST = SU T when S ~g, T').

So, elements of any trace, comtrace or step trace monoid correspond to
equivalence classes [w] of words w over the generating set A or A, with
equivalence determined by the defining relations.

But we can also describe elements graphically, as we shall describe later.

Problems relating to step trace monoids

In general, we want to develop geometric and algebraic/combinatorial
methods to study step trace monoids, their substructures, automorphisms
and homomorphisms, as well as related structures that might contain them
(note that step trace monoids embed in groups), also to study generalised
Petri nets that are modelled by com- and step traces. Some problems are
already solved for trace monoids, a few for comtrace monoids.

® Find good (geodesic?) normal forms for step trace monoids. Known
geodesic normal forms over A for trace monoids are not geodesic over

A using standard word length, so not for step trace monoids.
® Find good descriptions of substructures, eg :
® good generating sets for submonoids (folding?),
® rational subset membership (in restricted situations, where we have a
chance of success).

® Find step trace analogues of big theorems for trace monoids.
® Examine reachability in Petri nets, verificatn. in (extended) Petri nets.

Some problems can be solved for step trace monoids by considering them
as trace monoids, since in fact every step trace monoid is a trace monoid.

In fact, every step trace monoid is a trace monoid

Given a monoid presentation (S|R), we define Tietze transformations:

(T1) adding to R a relation u = v that is a consequence of R,

(T2) deleting from R a relation u = v that is a consequence of
R\ {u=v},

(T3) adding to S a new generator s, and to R a new relation
s = w, for some w € S§*,

(T4) deleting from S a generator s, and from R a relation s = w,
and replacing all other occurrences of s within relations in R
by the word w.

Proposition (ABDFKR23)

Any step trace monoid can be transformed to a trace monoid by a
sequence of Tietze transformations.

So step trace monoids embed in RAAMs, and hence in RAAGs. But note
that during the transformation from step trace monoid to trace monoid
the generating set is changed.

Subrelations

The four binary relations sim \ ser, inl, ser N ser~1 =: con, and ser \ ser—!

are pairwise disjoint on A and A. (Notn: ser™! := {(b, a) : (3, b) € ser}.)

We note that the relation sim \ (ser User—!) holds between a and b iff
{a, b} is not equivalent to either ab or ba; ie iff {a, b} cannot be split as a
generator.

The union of the remaining three relations on A is the relation defining the
step trace monoid.

We are interested in situations where one or more of those four relations is
empty (never holds for a, b € A), and hence the associated step trace
monoids lie in a subclass, which we might be better able to understand. In
particular we get traces when sim = (), comtraces when inl =).

Different monoids may provide slightly restricted models of concurrency.
But some of the related monoids may be more tractable for computation
than others.

lI: Dependence graphs for elts of trace monoids

We defined elts of trace, com- and step trace monoids to be equiv. classes
of action seq. But dependence graphs describe elts graphically, help us
to find normal forms. Mazurkiewicz defined dependence graphs for trace
monoids, associating an acyclic labelled digraph on {1,..., n} to each
sequence W = a1 ... a.

Vertex i has label a;, and for i < j, (i,j) is an edge <= a; = a;j or

a;jaj # aja;. Equivalent sequences define isomorphic labelled digraphs.

e.g: Where A={a, b,c,d}, R={ab = ba, bc = cb, cd = dc}, the
dependence graph of aacbdb is shown; it's also associated with sequences
aabcdb, abacdba, with vertices in orders 1,2,4,3,5,6 and 1,4,2,3,5,6.
Left greedy algorithm uses dependence graph to find ac-
tion sequence in normal form for associated trace. Max
set of vertices with no IN arrows is selected and deleted,
associated letters moved to left of word, in a preferred
order, process repeated on remaining graph and word
until graph is empty. Here first we select two vertices
ringed black, then one red, two blue, one remaining vertex, to get abacdb.

Graphical rep. of relations, dep. graphs for products

We can use a commutation graph to display the trace monoid relations.

. a,b
& c,d

And we can join together the dependence graphs of monoid elements to
get the dependence graph of their products. In this case it makes a lot of
sense to order the vertices of a dependence graph roughly left to right.

e b

ab=ba, bc=ch \ NS COn:]rTluta—
’ cd = de tion graph:

de {C

Example: dependence graph for
the product of abacdb and b.
Edges between the two sub-
graphs are shown in red.

Dependence graphs for elts of com- and step trace monoids

We consider an element of a comtrace or step trace monoid to be an
equivalence class [w] of action sequences w = ay ... ap, a; € A.
Modifying ideas of KoutnyEtAl, we define the dependence graph associated
to w (and [w]) to be the acyclic labelled digraph with X ;|«;| vertices, each
with a label from A. For each a,b € A, each i < j with a € o, b € ¢,
labelling vertices u, v resp., if (u, v) is an edge, it has one of four types:

type 1 ¢« — e when i < j & (a, b) & ser Uinl (precedence),
type 2 @ — — — @ when (a, b) € ser \ ser ! (weak
precedence),

type 3 ¢ — e when (a, b) € inl.

type 4 e — — — e when i = j & (a, b) € sim \ (ser User~1).
No edge when (a, b) € ser Nser—?

Edges of types 1,2 and 4 (but not 3) occur in comtraces. Types 1-4 can
all occur in step trace monoids. NB: independence and hence non-edges
are defined slightly differently here from their defs. in trace monoids.

Example for a comtrace monoid

In the comtrace monoid

vl b, c,d,{a, b}, ab={a, b} = ba,
- < {a,d},{b,d},{a,b,d},{c,d} | ad = {a,d},cd = {c,d} >

the dependence graphs don't have type 3 edges. For cbad{b,d} we have
dependence graph:

A left greedy algorithm finds an action sequence

b in normal form for the associated comtrace. The
set of vertices for the first step of the normal form

is selected as a maximal sim clique of vertices into

(3) @ which there is no directed incoming path contain-
/ ing a type 1 arrow (type 4 edges can be traversed
b \ '/d in either direction). We select first ¢, then b, a to
O—® get the step {a, b}, then d, then b, d, and so get
the comtrace c{a, b}d{b,d}. This LG algorithm

gives geodesic words for comtraces, but doesn't work for all step traces; in
fact no LG algorithm for step traces can give a geodesic normal form.

A bad example in a step trace monoid

In a com- or step trace monoid a step trace is geodesic iff it contains a
minimal number of steps. The LG algorithm described for comtraces
chooses a leftmost step of maximal size.

The dependence graph of a step trace may contain type 3 edges, which
must also be considered in the search for a leftmost step of maximal size.
But however leftmost steps are found,there are examples of step trace
monoids in which an LG algorithm cannot give a geodesic normal form.

Example

@b M = (a, b, c,{b,c} | ab= ba,bc = {b,c})
/ l The set {abc, bac,a{b,c}} is a step trace, whose

| dependence graph is shown, in which a{b,c} is

a I
© I geodesic.
\ | But an LG algorithm might select either a or b as a
®c first step, and b is not the first step of a geodesic.

Graphical rep. of relations, dep. graphs for products

For com- and step trace monoids, we can display relations graphically.

eg In our comtrace monoid M,

sima , b ser ae.. ,ob
we have: l

d. c dle _,cC

In a step trace monoid, since ser Nser ! Ninl = (), we can put ser & inl
on the same graph, with inl edge undirected.

As in trace monoids we can also represent products graphically.

e.g. the dependence graph for c{a, b}d{b, d}, also found as the product
of graphs for c{a, b} and d{a, b}:

On left, red edges join
the two factors. De-
pendence graphs can
be big; we can save
space by using Hasse
diagrams (excluding edges implied by transitivity of the partial order
associated with precedence).

Searching for normal forms for step traces:

(1) abelian monoids

Our example of a step trace monoid for which the LG algorithm cannot
find a geodesic normal form already suggests that step trace monoids must
present more challenges than com trace monoids.

In particular,

let M be a commutative step trace monoid, for which any two actions
a,b € A commute. Let n:=|A|, and let w be a word of length 2n in
which every element of A occurs twice. Then the problem of finding a
normal form for w reduces to the graph clique problem, which is NP-hard
in general (in terms of n).

However, we believe that, for a word written over the generators of an
abelian submonoid (B), we can find a (close to) minimal length word over
B in polynomial time.

Searching for normal forms for step traces:

(2) a polynomial time reduction

Suppose we have a step trace system on an alphabet A, and suppose that
we are given a element w in the step trace monoid, together with a a
sequence sy, ..., S, of steps, and we know that w is equal to the product
of s1,...,s, in some order. Can we find that order in polynomial time?

If so, then we can find a geodesic normal form for a step trace in
polynomial time.

II1: Stallings folding algorithm

Given a set Y of words in F(X) (|X|,]Y]| < o), the algorithm constructs
the Stallings graph M for the subgp H = (Y'), by defn. the minimal
reversible FSA over X accepting freely reduced w iff w € H. The directed
graph M has start vertex/state sp, and accepts w if w labels a path from
sp to sp. Knowledge of M is effective for computation with H.

Algorithm (Stallings folding)

Initially: Directed edge-labelled rose graph My, with | Y| petals attached
to a single vertex sp, each petal a cycle labelled by an element of Y.

Fold by identifying any pair of directed edges with the same label that
have common source or common target, until no more folding is possible.
Trim by deleting any edge not in a cycle. Resulting graph defines FSA M.

Stallings folding: why it works, why it's useful

Stallings folding computes M as the unique minimal FSA with language
the free reduction of L(My). By Myhill-Nerode(1957,8), the minimal
FsA M’ for the language L(Mjy) of an Fsa My is found by identifying all
vertices of Mg with the same future; the future of a vertex/state s is the
set of words labelling paths from s to acceptance by Mj.
Since My is invertible, two vertices of M have (modulo free reduction)
the same future <= they are identified by a sequence of foldings. (*)
And hence Stallings folding must terminate for any fg subgroup of a free
group. But the statement (*) isn't valid for submonoids of the free
monoid, when we don’t have inverses and the corresponding FSa My is
not invertible.; and (as in gp. case, not det.).
The Stallings graph of fg subgroups Hi, H» of a free group allows

e identification of Nielsen gens. as cycles (correp. max. subtree),

® soln. of membership and finiteness problems for H;,

® answers to gns. about finite index, normality

® computation of Stallings graph for Hy N Ho.

and more.

Kharlampovich et al. 2017, folding for automatic groups

For G = (X), H=(Y) C G, |X|,|Y| < o0, the Schreier graph
Schreierx (G, H) has the right cosets of H in G as vertices, directed edges
(Hg, Hgx); aword wis in H <= w labels a circuit based at vtx H.

Let L be a regular language of representatives of G. The Stallings graph
wrt L, Stallings; (H), is the subgraph of Schreier(G, H) spanned by loops
at H labelled by words in L N H. In general, Stallings; (G) is not finite.

H is [-quasi-convex if 3k st , for w € LN H, the path from 1 in Cay(G)
labelled by w stays within distance k of H.

Theorem (KharlampovichEtAl2017, aka KMW)

Let G be automatic, with rational reps. L. Then 3 partial algorithm that
computes Stallings, (H), halting iff H is L-quasi-convex.

NB: in particular this result applies to quasi-convex subgroups of
hyperbolic groups and RAAGs.

KMW 2017, folding for automatic groups, (2)

The proof of KMW proof adapted Stallings’ methods with a multi-stage
procedure constructing a sequence Mo, M1, Mo, ..., M;,....
Stage i runs as follows, where R is cyclic closure of R.

Attach a loop labelled by r at v, for each r € RU {xx1: x € X},
each vertex v of M;_1, yielding /\/lf-J

Fold M? to get M, by identifying any pair of directed edges in
MY with the same label that have common source or
common target, until no more folding is possible.

All the FSA in this process are invertible, ie every edge can be traversed in
two directions. So folding of M yields the unique deterministic minimal
FSA accepting the same language.

Further modifications to deal with monoids and their

submonoids

We (ABDFKR) use a construction modelled on KMW to extend that
result to rational subsets of automatic groups that satisfy an asynchronous
quasi-convexity property.

For rational subsets the algorithm always terminates in a finite no. of
steps. But we don’t yet know how to see when it has terminated,

For submonoids we can use the test of KMW to see that the algorithm has
terminated. For RAAGs we have our own test.

We use the same basic construction, variants of both attachment and
folding. But everything is complicated by absence of inverses. We need

® to be able to replace an FSA by another one accepting the same
language up to free reduction.

® to adjust folding to replace our FSA with a deterministic FSA, in the
absence of inverses

® 3 variant of L-quasiconvexity to ensure termination.

Termination in surface groups

Let G := m1(Sg) for a surface of genus g, which is a hyperbolic group,
with a Dehn algorithm. Let L be the set of geodesics in G.

We have identified a set of constraints on a finite subset T C G which are
sufficient to ensure that the submonoid < T > is L-quasiconvex, and
hence that our algorithm terminates, given input T, to find an automaton
recognising geodesic representatives of the elements of < T >,.

Given a finite subset U C G, can we construct T satisfying those
constraints such that < T >, =< U >, 7 If so, we can test, for any finite
U C G, whether < U > is quasiconvex.

IV: A model based on intervals

Koutny et al. are developing a new model for concurrency, where actions
(which take time) are represented as intervals rather than vertices (of a
dependence graph).

Two different notions of precedence of actions must be considered:

strong precedence a < b, if a finishes before b starts,

weak precedence a CC b, if a starts before b starts, and a ends before b
ends, but a does not finish before b starts (so a £ b).

In this setup, finding an analogue of steps is tricky. So there’s still a lot to
do to interpret these models algebraically.

