Topologies on the Symmetric Inverse Monoid

Yann Péresse

University of Hertfordshire

North British Semigroups and Applications Network University of St Andrews, 12th of June, 2025

semigroup, inverse semigroup, and group topologies

• A semigroup topology for a semigroup (S,\cdot) is any topology on S under which the multiplication map

$$(a,b) \mapsto a \cdot b$$

is continuous.

• An inverse semigroup topology for an inverse semigroup (I,\cdot) is any topology on I under which the maps

$$(a,b)\mapsto a\cdot b$$
 and $a\mapsto a^{-1}$

are continuous.

 An inverse semigroup topology on a group is called a group topology.

Why Topological Algebra?

Some good ways of using Topology in Semigroup Theory:

- lacksquare Fix a semigroup S. What kind of topologies does S admit?
- Conversely, fix some topological properties (say compact & Hausdorff). What can you say about semigroups admitting such topologies?
- ullet Fix a semigroup S and a semigroup topology au for S. Study topologically-algebraic problems:
 - What are the subsemigroups of S which are closed (or open, compact, ...) under τ ?
 - What is the least number of elements of S that generates a subsemigroup of S which is dense under τ ? ("topologically generating S")

For point 3 to be interesting and meaningful, we need to agree on a τ which is (i) 'natural' for S and (ii) 'nice' in a topological sense.

Properties that make topologists happy

Part 1. Having many open sets

There are nine, increasingly stronger, "separation axioms"

$$T_0 \Leftarrow T_1 \Leftarrow T_2 \Leftarrow T_{2\frac{1}{2}} \Leftarrow T_3 \Leftarrow T_{3\frac{1}{2}} \Leftarrow T_4 \Leftarrow T_5 \Leftarrow T_6.$$

They describe ways in which points in the space may be separated by open sets. For example, a topological space S is. . .

- ... T_1 (Fréchet) if for all distinct $x, y \in S$, there exists an open neighbourhood of x which does not contain y;
- ... T_2 (Hausdorff) if all distinct $x,y \in S$ have disjoint open neighbourhoods.

 $U\subseteq S$ is a *neighbourhood* of $x\in S$ if $x\in V\subseteq U$ for some open $V\subseteq S$.

Properties that make topologists happy

Part 2. Having not too many open sets

A topological space S is. . .

- ... separable if S has a countable dense subset;
- ... compact if every open cover of S may be reduced to a finite subcover;
- ... connected if no open set (other than \emptyset and S) is also closed;

Properties that make topologists happy

Part 3. Being like the real numbers

A topological space (S, τ) is...

- ... second-countable if τ has a countable basis;
- ... metrizable if τ is induced by a metric on S;
- ... completely metrizable if τ is induced by a complete metric on S;
- ... Polish if S is completely metrizable and separable.
- ... locally compact if every point in S has a compact neighbourhood.

Natural topologies for a semigroup

 (S,\cdot) is a semigroup. What semigroup topology should we give S? Two approaches:

- From context: What kind of object is S? Does the set S already come with a topology we care about? Examples:
 - ullet the real numbers under addition $(\mathbb{R},+)$
 - general linear groups $GL_n(\mathbb{R})$
- ② Purely algebraic: Ignore the context (if any) of the set S as an object and consider topologies that may be defined on any abstract semigroup (S,\cdot) . Examples:
 - Minimal topologies which are T_1 , Hausdorff, ...
 - Maximal topologies which are compact, second-countable,...
 - Topologies defined via algebraic equations (Zariski topologies).

We will now consider some of these "purely algebraic" topologies in more detail.

Some minimal topologies on any semigroup S

Let S be a semigroup.

- semigroup Fréchet Markov topology on S:= intersection of all all T_1 semigroup topologies on S.
- semigroup Hausdorff Markov topology on S := intersection of all Hausdorff semigroup topologies on S.

Warning: Hausdorffness may be lost

The semigroup Markov topologies are both T_1 but neither is necessarily T_2 .

Warning: joint continuity may be lost

The semigroup Markov topologies may not be semigroup topologies! They may only be "shift continuous".

We analogously define inverse Markov topologies on a group or inverse semigroup G and the same warnings apply.

Universe Markov topologies on a group or inverse semigroup G and the same warnings apply.

Semigroup topologies vs shift continuous topologies

 \bullet Recall: under a semigroup topology on (S,\cdot) the multiplication map

$$(a,b) \mapsto a \cdot b$$

is continuous. (Multiplication is a function from $S \times S$ to S.)

• Under a *shift continuous* topology on S, for every fixed $s \in S$, the maps given by left or right "shifts by s"

$$a \mapsto s \cdot a \text{ and } a \mapsto a \cdot s$$

are continuous. (The shift maps are functions from S to S.)

semigroup topology
 ⇒ shift continuous topology (but the converse is false)

Zariski topologies

Semigroup and group polynomials

Semigroup polynomials

A semigroup polynomial over a semigroup (S,\cdot) is a function $P:S\to S$ of the form

$$(x)P = a_0 \cdot x \cdot a_1 \cdot x \cdot \dots \cdot a_{n-1} \cdot x \cdot a_n$$
 for all $x \in S$

where $a_0, a_1, ..., a_n \in S^1$.

Inverse semigroup (including group) polynomials

An inverse semigroup polynomial on an inverse semigroup ${\cal G}$ is of the form

$$(x)P = a_0 \cdot x^{\epsilon_1} \cdot a_1 \cdot x^{\epsilon_2} \cdot \dots \cdot a_{n-1} \cdot x^{\epsilon_n} \cdot a_n$$
 for all $x \in S$

where $a_0, a_1, \ldots, a_n \in G^1$ and $\epsilon_1, \ldots, \epsilon_n \in \{-1, 1\}$

Zariski topologies

The open sets

The semigroup Zariski topology on a semigroup S

The topology generated by the sets of the form

$$\{x \in S : (x)P \neq (x)Q\}$$

over all semigroup polynomials P and Q over S.

The inverse Zariski topology on an inverse semigroup G

The topology generated by the sets of the form

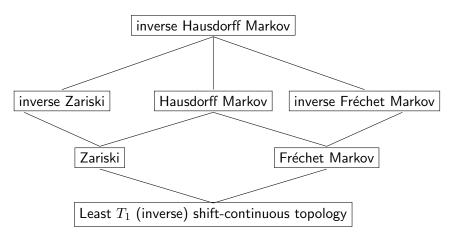
$$\{x \in G : (x)P \neq (x)Q\}$$

over all inverse semigroup polynomials P and Q over G.

The Zariski topology is always T_1 and shift-continuous and is contained in every Hausdorff semigroup topology on S. University of the Large Property of the Large Property

Properties of minimal topologies

The containment of the "minimal" topologies:



A maximal topology: automatic continuity

Recall: a topology is second-countable if it can be given by a countable basis (or sub-basis).

Definition

Let τ_{AC} be the **union** of all second-countable semigroup topologies on S.

Properties of τ_{AC} :

- τ_{AC} is always a semigroup topology for S.
- If τ_{AC} is itself second-countable, then τ_{AC} is the maximal second-countable semigroup topology on S.
- S has automatic continuity under τ_{AC} : every homomorphism from S to any second-countable topological semigroup is continuous.

Today's semigroups of interest (at least in this talk)

We will consider topologies on the following semigroups acting via (partial) functions on a set X.

- The full transformation semigroup X^X consisting of all functions $f: X \to X$;
- The symmetric group $\mathrm{Sym}(X)$ consisting of a bijections $f: X \to X$;
- The symmetric inverse monoid I_X consisting of all bijections between subsets of X.

The operation in each case is composition of (partial) functions. For simplicity, we will only consider the case when X is countably infinite. So we let $X=\mathbb{N}=\{0,1,2,3\dots\}.$

A topology for $\mathbb{N}^{\mathbb{N}}$

Is there context? Does the set $\mathbb{N}^\mathbb{N}$ already already have a natural topology? Yes!

- Note that $\mathbb{N}^{\mathbb{N}}$ is the infinite Cartesian product $\mathbb{N}^{\omega} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \cdots$, i.e. all sequences over \mathbb{N} . (Think of $f: \mathbb{N} \to \mathbb{N}$ as $(f(0), f(1), f(2), \dots)$.)
- The natural (from a topologist's point of view) topology on a Cartesian product of topological spaces is the (Tychonoff) product topology.
- If we give each copy of $\mathbb N$ the discrete topology (which seems natural), then $\mathbb N^\omega$ is the so-called *Baire space*.
- A sub-basis for the product topology is given by the sets $\{f\in\mathbb{N}^\mathbb{N}:(m)f=n\}$ over all $m,n\in\mathbb{N}.$
- This topology for $\mathbb{N}^{\mathbb{N}}$ is called the *pointwise topology*.

The pointwise topology is nice

The Baire space ($\mathbb{N}^{\mathbb{N}}$ under the pointwise topology) has the following properties:

- $\mathbb{N}^{\mathbb{N}}$ is Polish (completely metrizable and separable).
- In particular, $\mathbb{N}^{\mathbb{N}}$ satisfies all separation axioms T_0, \ldots, T_6 and is second-countable.
- \bullet $\mathbb{N}^{\mathbb{N}}$ is far from being (even locally) compact: it contains no compact neighbourhoods.
- \bullet $\mathbb{N}^\mathbb{N}$ is *totally disconnected*: the only connected subspaces are single points.
- Every Polish space is the continuous image of $\mathbb{N}^{\mathbb{N}}$.
- The subspace $\mathrm{Sym}(\mathbb{N})$ is homeomorphic to $\mathbb{N}^{\mathbb{N}}$.

The pointwise topology is natural for $\mathbb{N}^{\mathbb{N}}$ and $\mathrm{Sym}(\mathbb{N})$

Under the pointwise topology:

- $\mathbb{N}^{\mathbb{N}}$ is a topological semigroup;
- Sym(\mathbb{N}) is a topological group;
- A submonoid of $\mathbb{N}^{\mathbb{N}}$ is closed if and only if it is the endomorphism monoid of a relational structure on \mathbb{N} .
- A subgroup of $Sym(\mathbb{N})$ is closed if and only if it is the automorphism group of a relational structure on \mathbb{N} .

The pointwise topology for $\mathrm{Sym}(\mathbb{N})$ as an abstract group

Theorem (Gaughan 1967)

The pointwise topology is the least Hausdorff group topology on $\mathrm{Sym}(\mathbb{N}).$

Theorem (Kechris, Rosendal 2004)

The pointwise topology is the unique non-trivial separable group topology on $\mathrm{Sym}(\mathbb{N})$.

Corollary

- the pointwise topology is the unique Polish group topology on $Sym(\mathbb{N})$.
- the pointwise topology is the inverse Hausdorff Markov, inverse Fréchet Markov, and Zariski topology on Sym(N).
- Every homomorphism from $Sym(\mathbb{N})$ into any second-countable topological group is continuous (automatic continuity).

The pointwise topology on $\mathbb{N}^{\mathbb{N}}$ as an abstract semigroup

Theorem (L. Elliott, J. Jonušas, J.D. Mitchell, Z. Mesyan, M. Morayne, YP 2023)

The pointwise topology is

- the least T_1 and shift continuous topology on $\mathbb{N}^{\mathbb{N}}$.
- $oldsymbol{0}$ the maximal second-countable semigroup topology on $\mathbb{N}^{\mathbb{N}}$.

Corollary

- The pointwise topology on $\mathbb{N}^{\mathbb{N}}$ is
 - **1** the unique T_1 and second-countable semigroup topology;
 - 2 the unique Polish semigroup topology;
 - 3 the Fréchet Markov, Hausdorff Markov, and Zariski topology.
- If S is a second-countable topological semigroup, then every homomorphism $\phi: \mathbb{N}^{\mathbb{N}} \to S$ is continuous.
- No T_1 and shift-continuous topology on $\mathbb{N}^{\mathbb{N}}$ is connected or (locally) compact.

Proof Sketches Part 1

Claim 1: The pointwise topology is the least T_1 and shift continuous topology on $\mathbb{N}^{\mathbb{N}}$.

Proof:

- Let τ be a shift continuous and T_1 topology for $\mathbb{N}^{\mathbb{N}}$ and $m,n\in\mathbb{N}$. We need to show that the sub-basic open set $\{f\in\mathbb{N}^{\mathbb{N}}:(m)f=n\}$ of the pointwise topology is open in τ .
- Let $c_m \in \mathbb{N}^{\mathbb{N}}$ be constant with image $m, k \neq n$, and $h \in \mathbb{N}^{\mathbb{N}}$ satisfy (m)h = n and (x)h = k for $x \neq m$.
- Since τ is T_1 , $\{c_k\}$ is closed.
- So $\{f \in \mathbb{N}^{\mathbb{N}} : c_m f h = c_k\}$ is closed since au is shift-continuous.
- But $\{f \in \mathbb{N}^{\mathbb{N}} : c_m f h = c_k\} = \{f \in \mathbb{N}^{\mathbb{N}} : (m)f \neq n\}.$
- So $\{f \in \mathbb{N}^{\mathbb{N}} : (m)f = n\}$ is open.

Proof Sketches Part 2

Claim 2: The pointwise topology is the maximal second-countable semigroup topology on $\mathbb{N}^{\mathbb{N}}$.

Property X

A topological semigroup S has property $\mathbf X$ with respect to $A\subseteq S$ if: for every $s\in S$ there exists $f_s,g_s\in S$ and $t_s\in A$ such that $s=f_st_sg_s$ and for every neighbourhood B of t_s the set $f_s(B\cap A)g_s$ is a neighbourhood of s.

Proof (Very Sketchy):

- Show that $\mathbb{N}^{\mathbb{N}}$ has "property X" with respect to $\mathrm{Sym}(\mathbb{N})$.
- Conclude that, since the pointwise topology is Polish and the maximal second-countable group topology on $\mathrm{Sym}(\mathbb{N})$, it is the maximal second-countable semigroup topology on $\mathbb{N}^{\mathbb{N}}$.

Finding a topology on $I_{\mathbb{N}}$: Extending from $\mathrm{Sym}(\mathbb{N})$

What is the right topology on $I_{\mathbb{N}}$?

- No obvious (to me) topology on $I_{\mathbb{N}}$ as a set.
- Try extending the pointwise topology from $\mathrm{Sym}(\mathbb{N})$ to $I_{\mathbb{N}}$?
- Recall: The pointwise topology on $\mathrm{Sym}(\mathbb{N})$ has sub-basic sets $\{f\in\mathrm{Sym}(\mathbb{N}):(m)f=n\}$ over all $m,n\in\mathbb{N}.$

Topology I_0 on $I_{\mathbb{N}}$

The topology with sub-basic sets $\{f\in I_{\mathbb{N}}:(m,n)\in f\}$ over all $m,n\in\mathbb{N}.$

The good: I_0 is an inverse semigroup topology for $I_{\mathbb{N}}$ and induces the pointwise topology on $\mathrm{Sym}(\mathbb{N})$.

The bad: I_0 is not T_1 . (If $f \subseteq g$, then every open neighbourhood of f contains g.)

Trying for a T_1 topology

Can we find the least T_1 shift-continuous topology for $I_{\mathbb{N}}$? (in the case of $\mathbb{N}^{\mathbb{N}}$, this was the pointwise topology).

- Suppose that τ is a shift-continuous and T_1 topology for $I_{\mathbb{N}}$ and let $m, n \in \mathbb{N}$. For any $x, y \in \mathbb{N}$, let $s_{x,y} = \{(x,y)\} \in I_{\mathbb{N}}$.
- Then

$$\{f \in I_{\mathbb{N}} : s_{m,m} f s_{n,n} = s_{m,n}\} = \{f \in I_{\mathbb{N}} : (m,n) \in f\}$$
$$\{f \in I_{\mathbb{N}} : s_{m,m} f s_{n,n} = \emptyset\} = \{f \in I_{\mathbb{N}} : (m,n) \notin f\}$$

are both closed.

• So $\{f \in I_{\mathbb{N}} : (m,n) \in f\}$ and $\{f \in I_{\mathbb{N}} : (m,n) \not\in f\}$ are open.

Properties of I_1

Topology I_1 on $I_{\mathbb{N}}$

The topology with the sub-basic sets

$$U_{m,n}=\{f\in I_{\mathbb{N}}:(m,n)\in f\} \text{ and } V_{m,n}=\{f\in I_{\mathbb{N}}:(m,n)\not\in f\}.$$

Theorem (L. Elliott, J. Jonušas, J.D. Mitchell, Z. Mesyan, M. Morayne, YP 2023)

The topology I_1 on $I_{\mathbb{N}}$ is

- Polish and compact(!?);
- **2** the least T_1 and shift continuous topology;
- **3** not a semigroup topology but inversion is continuous.

Can we find a T_1 (or higher) semigroup topology for $I_{\mathbb{N}}$?

Inheriting from $\mathbb{N}^{\mathbb{N}}$

Since $I_{\mathbb{N}}$ embeds in a full transformation semigroup, we can try to inherit a semigroup topology from the pointwise topology:

- Let $\mathbb{N}' = \mathbb{N} \cup \{\diamondsuit\}$ where \diamondsuit represents "undefined".
- ullet For $f\in I_{\mathbb{N}}$ define $f'\in \mathbb{N}'^{\mathbb{N}'}$ by

$$(x)f' = \begin{cases} (x)f & \text{if } x \in \text{dom}(f) \\ \diamondsuit & \text{otherwise} \end{cases}$$

Then the map $f \mapsto f'$ embeds $I_{\mathbb{N}}$ in $\mathbb{N}'^{\mathbb{N}'}$.

• The pointwise topology on $\mathbb{N}'^{\mathbb{N}'}$ induces a semigroup topology I_2 on $I_{\mathbb{N}}$ via this embedding.

Topology I_2 on $I_{\mathbb{N}}$

The topology with sub-basic sets

$$U_{m,n}=\{f\in I_{\mathbb{N}}:(m,n)\in f\}$$
 and $W_m=\{f\in I_{\mathbb{N}}:m
otinional constant $M_m=\{f\in I_{\mathbb{N}}:m
otinional constant \}\}$$$$$$$$$$$

Properties of I_2

Topology I_2 on $I_{\mathbb{N}}$

The topology with sub-basic sets

$$U_{m,n} = \{ f \in I_{\mathbb{N}} : (m,n) \in f \} \text{ and } W_m = \{ f \in I_{\mathbb{N}} : m \not\in \text{dom}(f) \}.$$

By construction of I_2 , we automatically get:

- I_2 is a semigroup topology for I_N ;
- I_2 is Polish (since I_N is closed in $\mathbb{N}^{\prime \mathbb{N}^{\prime}}$).

But inversion is not continuous! Embedding $I_{\mathbb{N}}$ into $\mathbb{N}^{\prime\mathbb{N}^{\prime}}$ has broken symmetry.

$$I_2$$
 has a dual $I_3 = I_2^{-1} = \{U^{-1} : U \in I_2\}$ where $U^{-1} = \{f^{-1} : f \in U\}.$

Topology I_3 on I_N

The topology with sub-basic sets

$$U_{m,n} = \{ f \in I_{\mathbb{N}} : (m,n) \in f \} \text{ and } W_m = \{ f \in I_{\mathbb{N}} : m \notin \operatorname{im}(f) \}.$$

Properties of I_2 and I_3

Topologies I_2 and I_3 on $I_{\mathbb N}$

 I_2 is the topology with sub-basic sets

$$U_{m,n} = \{ f \in I_{\mathbb{N}} : (m,n) \in f \} \text{ and } W_m = \{ f \in I_{\mathbb{N}} : m \not\in \text{dom}(f) \}.$$

 I_3 is the topology with sub-basic sets

$$U_{m,n} = \{ f \in I_{\mathbb{N}} : (m,n) \in f \} \text{ and } W_m^{-1} = \{ f \in I_{\mathbb{N}} : m \notin \operatorname{im}(f) \}.$$

Theorem (L. Elliott, J. Jonušas, J.D. Mitchell, Z. Mesyan, M. Morayne, YP 2023)

- I_2 and I_3 are Polish semigroup topologies for $I_{\mathbb{N}}$;
- every T_1 semigroup topology for $I_{\mathbb{N}}$ contains I_2 or I_3 ;
- $I_1 \subsetneq I_2 \cap I_3$ and $I_2 \cap I_3$ is the semigroup Hausdorff Markov and semigroup Fréchet Markov topology for $I_{\mathbb{N}}$.

The Polish inverse semigroup topology for $I_{\mathbb{N}}$

Topology I_4 on $I_{\mathbb{N}}$

 I_4 is generated by $I_2 \cup I_3$ and has sub-basic sets $U_{m,n} = \{f \in I_\mathbb{N} : (m,n) \in f\}, \ W_m = \{f \in I_\mathbb{N} : m \not\in \mathrm{dom}(f)\},$ and $W_m^{-1} = \{f \in I_\mathbb{N} : m \not\in \mathrm{im}(f)\}.$

Theorem (L. Elliott, J. Jonušas, J.D. Mitchell, Z. Mesyan, M. Morayne, YP 2023)

The topology I_4 on $I_{\mathbb{N}}$ is

- a Polish inverse semigroup topology;
- the inverse Hausdorff Markov, inverse Fréchet markov, and inverse Zariski topology;
- the maximal second-countable semigroup topology;
- the unique T_1 and second-countable inverse semigroup topology.

Overview

$$I_4 = \boxed{\text{generated by } I_2 \cup I_3}$$

$$I_2 = \boxed{\begin{cases} \text{generated by } I_1 \text{ and} \\ \{f \in I_\mathbb{N} : x \not\in \text{dom}(f)\} \end{cases}} = I_3$$

$$\boxed{I_2 \cap I_3}$$

$$\boxed{I_2 \cap I_3}$$

$$\boxed{I_2 \cap I_3}$$

$$\boxed{I_1 = \begin{cases} \{f \in I_\mathbb{N} : (x,y) \in f\}, \\ \{f \in I_\mathbb{N} : (x,y) \not\in f\} \end{cases}}$$

Are there any other Polish semigroup topologies for $I_{\mathbb{N}}$?

Classifying Polish semigroup topologies on $I_{\mathbb{N}}$

Theorem (S. Bardyla, L. Elliott, J.D. Mitchell, YP 2024)

The semigroup $I_{\mathbb{N}}$ has countably infinitely many Polish semigroup topologies. The partial order of the Polish semigroup topologies on $I_{\mathbb{N}}$ contains every finite partial order, has infinite descending chains, but only finite ascending chains and anti-chains.

- The partial order of Polish semigroup topologies on $I_{\mathbb{N}}$ consists two dual intervals: $[I_2,I_4]$ and $[I_3,I_4]$.
- Topologies in $[I_2,I_4]$ are characterised by "waning" (in some sense decreasing) functions $f:\mathbb{N}\cup\{\infty\}\to\mathbb{N}\cup\{\infty\}$.
- For each waning function f, we get a Polish semigroup topology generated by the sets:

$$\{g \in I_{\mathbb{N}} : |\operatorname{im}(g) \setminus X| \ge n \text{ and } |X \cap \operatorname{im}(g)| \le (n)f\}$$

over all $n \in \mathbb{N}$ and finite $X \subseteq \mathbb{N}$.

Topologies on $I_{\mathbb{N}}$ and relational structures.

Recall the connection between the pointwise topology and relational structures:

- A submonoid of $\mathbb{N}^{\mathbb{N}}$ is closed if and only if it is the endomorphism monoid of a relational structure on \mathbb{N} .
- A subgroup of $Sym(\mathbb{N})$ is closed if and only if it is the automorphism group of a relational structure on \mathbb{N} .

Theorem (M. Hampenberg, YP 2024)

Let M be an inverse submonoid of $I_{\mathbb{N}}$ which contains all idempotents of $I_{\mathbb{N}}$. Then the following are equivalent:

- M is closed in some Polish semigroup topology on $I_{\mathbb{N}}$;
- M is closed in every shift-continuous T_1 topology on $I_{\mathbb{N}}$.
- M is the monoid of partial isomorphisms of a relational structure on \mathbb{N} ;

Thank you for listening!

