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semigroup, inverse semigroup, and group topologies

A semigroup topology for a semigroup (S, ·) is any topology
on S under which the multiplication map

(a, b) 7→ a · b

is continuous.

An inverse semigroup topology for an inverse semigroup (I, ·)
is any topology on I under which the maps

(a, b) 7→ a · b and a 7→ a−1

are continuous.

An inverse semigroup topology on a group is called a group
topology.
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Why Topological Algebra?

Some good ways of using Topology in Semigroup Theory:

1 Fix a semigroup S. What kind of topologies does S admit?

2 Conversely, fix some topological properties (say compact &
Hausdorff). What can you say about semigroups admitting
such topologies?

3 Fix a semigroup S and a semigroup topology τ for S. Study
topologically-algebraic problems:

What are the subsemigroups of S which are closed (or open,
compact, . . . ) under τ?
What is the least number of elements of S that generates a
subsemigroup of S which is dense under τ? (“topologically
generating S”)

For point 3 to be interesting and meaningful, we need to agree on
a τ which is (i) ‘natural’ for S and (ii) ‘nice’ in a topological sense.
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Properties that make topologists happy
Part 1. Having many open sets

There are nine, increasingly stronger, “separation axioms”

T0 ⇐ T1 ⇐ T2 ⇐ T2 1
2
⇐ T3 ⇐ T3 1

2
⇐ T4 ⇐ T5 ⇐ T6.

They describe ways in which points in the space may be separated
by open sets. For example, a topological space S is. . .

. . .T1 (Fréchet) if for all distinct x, y ∈ S, there exists an
open neighbourhood of x which does not contain y;

. . .T2 (Hausdorff) if all distinct x, y ∈ S have disjoint open
neighbourhoods.

U ⊆ S is a neighbourhood of x ∈ S if x ∈ V ⊆ U for some open
V ⊆ S.
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Properties that make topologists happy
Part 2. Having not too many open sets

A topological space S is. . .

. . . separable if S has a countable dense subset;

. . . compact if every open cover of S may be reduced to a
finite subcover;

. . . connected if no open set (other than ∅ and S) is also
closed;
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Properties that make topologists happy
Part 3. Being like the real numbers

A topological space (S, τ) is. . .

. . . second-countable if τ has a countable basis;

. . .metrizable if τ is induced by a metric on S;

. . . completely metrizable if τ is induced by a complete metric
on S;

. . .Polish if S is completely metrizable and separable.

. . . locally compact if every point in S has a compact
neighbourhood.
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Natural topologies for a semigroup

(S, ·) is a semigroup. What semigroup topology should we give S?
Two approaches:

1 From context: What kind of object is S? Does the set S
already come with a topology we care about? Examples:

the real numbers under addition (R,+)
general linear groups GLn(R)

2 Purely algebraic: Ignore the context (if any) of the set S as
an object and consider topologies that may be defined on any
abstract semigroup (S, ·). Examples:

Minimal topologies which are T1, Hausdorff, . . .
Maximal topologies which are compact, second-countable,. . .
Topologies defined via algebraic equations (Zariski topologies).

We will now consider some of these “purely algebraic” topologies
in more detail.

Yann Péresse Topologies on the Symmetric Inverse Monoid



Some minimal topologies on any semigroup S

Let S be a semigroup.

semigroup Fréchet Markov topology on S := intersection of
all all T1 semigroup topologies on S.

semigroup Hausdorff Markov topology on S := intersection of
all Hausdorff semigroup topologies on S.

Warning: Hausdorffness may be lost

The semigroup Markov topologies are both T1 but neither is
necessarily T2.

Warning: joint continuity may be lost

The semigroup Markov topologies may not be semigroup
topologies! They may only be “shift continuous”.

We analogously define inverse Markov topologies on a group or
inverse semigroup G and the same warnings apply.
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Semigroup topologies vs shift continuous topologies

Recall: under a semigroup topology on (S, ·) the
multiplication map

(a, b) 7→ a · b

is continuous. (Multiplication is a function from S × S to S.)

Under a shift continuous topology on S, for every fixed s ∈ S,
the maps given by left or right“shifts by s”

a 7→ s · a and a 7→ a · s

are continuous. (The shift maps are functions from S to S.)

semigroup topology =⇒ shift continuous topology
(but the converse is false)
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Zariski topologies
Semigroup and group polynomials

Semigroup polynomials

A semigroup polynomial over a semigroup (S, ·) is a function
P : S → S of the form

(x)P = a0 · x · a1 · x · . . . an−1 · x · an for all x ∈ S

where a0, a1, . . . , an ∈ S1.

Inverse semigroup (including group) polynomials

An inverse semigroup polynomial on an inverse semigroup G is of
the form

(x)P = a0 · xϵ1 · a1 · xϵ2 · . . . an−1 · xϵn · an for all x ∈ S

where a0, a1, . . . , an ∈ G1 and ϵ1, . . . , ϵn ∈ {−1, 1}
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Zariski topologies
The open sets

The semigroup Zariski topology on a semigroup S

The topology generated by the sets of the form

{x ∈ S : (x)P ̸= (x)Q}

over all semigroup polynomials P and Q over S.

The inverse Zariski topology on an inverse semigroup G

The topology generated by the sets of the form

{x ∈ G : (x)P ̸= (x)Q}

over all inverse semigroup polynomials P and Q over G.

The Zariski topology is always T1 and shift-continuous and is
contained in every Hausdorff semigroup topology on S.
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Properties of minimal topologies

The containment of the “minimal” topologies:

inverse Zariski inverse Fréchet Markov

Zariski Fréchet Markov

Hausdorff Markov

inverse Hausdorff Markov

Least T1 (inverse) shift-continuous topology
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A maximal topology: automatic continuity

Recall: a topology is second-countable if it can be given by a
countable basis (or sub-basis).

Definition

Let τAC be the union of all second-countable semigroup topologies
on S.

Properties of τAC :

τAC is always a semigroup topology for S.

If τAC is itself second-countable, then τAC is the maximal
second-countable semigroup topology on S.

S has automatic continuity under τAC : every homomorphism
from S to any second-countable topological semigroup is
continuous.
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Today’s semigroups of interest (at least in this talk)

We will consider topologies on the following semigroups acting via
(partial) functions on a set X.

The full transformation semigroup XX consisting of all
functions f : X → X;

The symmetric group Sym(X) consisting of a bijections
f : X → X;

The symmetric inverse monoid IX consisting of all bijections
between subsets of X.

The operation in each case is composition of (partial) functions.
For simplicity, we will only consider the case when X is countably
infinite. So we let X = N = {0, 1, 2, 3 . . . }.
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A topology for NN

Is there context? Does the set NN already already have a natural
topology? Yes!

Note that NN is the infinite Cartesian product
Nω = N× N× N× · · · , i.e. all sequences over N. (Think of
f : N → N as (f(0), f(1), f(2), . . . ).)

The natural (from a topologist’s point of view) topology on a
Cartesian product of topological spaces is the (Tychonoff)
product topology.

If we give each copy of N the discrete topology (which seems
natural), then Nω is the so-called Baire space.

A sub-basis for the product topology is given by the sets
{f ∈ NN : (m)f = n} over all m,n ∈ N.
This topology for NN is called the pointwise topology.
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The pointwise topology is nice

The Baire space (NN under the pointwise topology) has the
following properties:

NN is Polish (completely metrizable and separable).

In particular, NN satisfies all separation axioms T0, . . . , T6 and
is second-countable.

NN is far from being (even locally) compact: it contains no
compact neighbourhoods.

NN is totally disconnected: the only connected subspaces are
single points.

Every Polish space is the continuous image of NN.

The subspace Sym(N) is homeomorphic to NN.
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The pointwise topology is natural for NN and Sym(N)

Under the pointwise topology:

NN is a topological semigroup;

Sym(N) is a topological group;

A submonoid of NN is closed if and only if it is the
endomorphism monoid of a relational structure on N.
A subgroup of Sym(N) is closed if and only if it is the
automorphism group of a relational structure on N.

Yann Péresse Topologies on the Symmetric Inverse Monoid



The pointwise topology for Sym(N) as an abstract group

Theorem (Gaughan 1967)

The pointwise topology is the least Hausdorff group topology on
Sym(N).

Theorem (Kechris, Rosendal 2004)

The pointwise topology is the unique non-trivial separable group
topology on Sym(N).

Corollary

the pointwise topology is the unique Polish group topology on
Sym(N).
the pointwise topology is the inverse Hausdorff Markov,
inverse Fréchet Markov, and Zariski topology on Sym(N).
Every homomorphism from Sym(N) into any second-countable
topological group is continuous (automatic continuity).
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The pointwise topology on NN as an abstract semigroup

Theorem (L. Elliott, J. Jonušas, J.D. Mitchell, Z. Mesyan, M.
Morayne, YP 2023)

The pointwise topology is

1 the least T1 and shift continuous topology on NN.

2 the maximal second-countable semigroup topology on NN.

Corollary

The pointwise topology on NN is
1 the unique T1 and second-countable semigroup topology;
2 the unique Polish semigroup topology;
3 the Fréchet Markov, Hausdorff Markov, and Zariski topology.

If S is a second-countable topological semigroup, then every
homomorphism ϕ : NN → S is continuous.

No T1 and shift-continuous topology on NN is connected or
(locally) compact.
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Proof Sketches Part 1

Claim 1: The pointwise topology is the least T1 and shift
continuous topology on NN.
Proof:

Let τ be a shift continuous and T1 topology for NN and
m,n ∈ N. We need to show that the sub-basic open set
{f ∈ NN : (m)f = n} of the pointwise topology is open in τ .

Let cm ∈ NN be constant with image m, k ̸= n, and h ∈ NN

satisfy (m)h = n and (x)h = k for x ̸= m.

Since τ is T1, {ck} is closed.

So {f ∈ NN : cmfh = ck} is closed since τ is shift-continuous.

But {f ∈ NN : cmfh = ck} = {f ∈ NN : (m)f ̸= n}.
So {f ∈ NN : (m)f = n} is open.
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Proof Sketches Part 2

Claim 2: The pointwise topology is the maximal second-countable
semigroup topology on NN.

Property X

A topological semigroup S has property X with respect to A ⊆ S
if: for every s ∈ S there exists fs, gs ∈ S and ts ∈ A such that
s = fstsgs and for every neighbourhood B of ts the set
fs(B ∩A)gs is a neighbourhood of s.

Proof (Very Sketchy):

Show that NN has “property X” with respect to Sym(N).
Conclude that, since the pointwise topology is Polish and the
maximal second-countable group topology on Sym(N), it is
the maximal second-countable semigroup topology on NN.
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Finding a topology on IN: Extending from Sym(N)

What is the right topology on IN?

No obvious (to me) topology on IN as a set.

Try extending the pointwise topology from Sym(N) to IN?

Recall: The pointwise topology on Sym(N) has sub-basic sets
{f ∈ Sym(N) : (m)f = n} over all m,n ∈ N.

Topology I0 on IN

The topology with sub-basic sets {f ∈ IN : (m,n) ∈ f} over all
m,n ∈ N.

The good: I0 is an inverse semigroup topology for IN and induces
the pointwise topology on Sym(N).
The bad: I0 is not T1. (If f ⊆ g, then every open neighbourhood
of f contains g.)
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Trying for a T1 topology

Can we find the least T1 shift-continuous topology for IN? (in the
case of NN, this was the pointwise topology).

Suppose that τ is a shift-continuous and T1 topology for IN
and let m,n ∈ N. For any x, y ∈ N, let sx,y = {(x, y)} ∈ IN.

Then

{f ∈ IN : sm,mfsn,n = sm,n} ={f ∈ IN : (m,n) ∈ f}
{f ∈ IN : sm,mfsn,n = ∅} ={f ∈ IN : (m,n) ̸∈ f}

are both closed.

So {f ∈ IN : (m,n) ∈ f} and {f ∈ IN : (m,n) ̸∈ f} are open.
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Properties of I1

Topology I1 on IN

The topology with the sub-basic sets
Um,n = {f ∈ IN : (m,n) ∈ f} and Vm,n = {f ∈ IN : (m,n) ̸∈ f}.

Theorem (L. Elliott, J. Jonušas, J.D. Mitchell, Z. Mesyan, M.
Morayne, YP 2023)

The topology I1 on IN is

1 Polish and compact(!?);

2 the least T1 and shift continuous topology;

3 not a semigroup topology but inversion is continuous.

Can we find a T1 (or higher) semigroup topology for IN?
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Inheriting from NN

Since IN embeds in a full transformation semigroup, we can try to
inherit a semigroup topology from the pointwise topology:

Let N′ = N ∪ {♢} where ♢ represents “undefined”.

For f ∈ IN define f ′ ∈ N′N′
by

(x)f ′ =

{
(x)f if x ∈ dom(f)

♢ otherwise

Then the map f 7→ f ′ embeds IN in N′N′
.

The pointwise topology on N′N′
induces a semigroup topology

I2 on IN via this embedding.

Topology I2 on IN

The topology with sub-basic sets
Um,n = {f ∈ IN : (m,n) ∈ f} and Wm = {f ∈ IN : m ̸∈ dom(f)}.
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Properties of I2

Topology I2 on IN

The topology with sub-basic sets
Um,n = {f ∈ IN : (m,n) ∈ f} and Wm = {f ∈ IN : m ̸∈ dom(f)}.

By construction of I2, we automatically get:

I2 is a semigroup topology for IN;

I2 is Polish (since IN is closed in N′N′
).

But inversion is not continuous! Embedding IN into N′N′
has

broken symmetry.
I2 has a dual I3 = I−1

2 = {U−1 : U ∈ I2} where
U−1 = {f−1 : f ∈ U}.

Topology I3 on IN

The topology with sub-basic sets
Um,n = {f ∈ IN : (m,n) ∈ f} and Wm = {f ∈ IN : m ̸∈ im(f)}.
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Properties of I2 and I3

Topologies I2 and I3 on IN

I2 is the topology with sub-basic sets
Um,n = {f ∈ IN : (m,n) ∈ f} and Wm = {f ∈ IN : m ̸∈ dom(f)}.
I3 is the topology with sub-basic sets
Um,n = {f ∈ IN : (m,n) ∈ f} and W−1

m = {f ∈ IN : m ̸∈ im(f)}.

Theorem (L. Elliott, J. Jonušas, J.D. Mitchell, Z. Mesyan, M.
Morayne, YP 2023)

I2 and I3 are Polish semigroup topologies for IN;

every T1 semigroup topology for IN contains I2 or I3;

I1 ⊊ I2 ∩ I3 and I2 ∩ I3 is the semigroup Hausdorff Markov
and semigroup Fréchet Markov topology for IN.

Yann Péresse Topologies on the Symmetric Inverse Monoid



The Polish inverse semigroup topology for IN

Topology I4 on IN

I4 is generated by I2 ∪ I3 and has sub-basic sets
Um,n = {f ∈ IN : (m,n) ∈ f}, Wm = {f ∈ IN : m ̸∈ dom(f)},
and W−1

m = {f ∈ IN : m ̸∈ im(f)}.

Theorem (L. Elliott, J. Jonušas, J.D. Mitchell, Z. Mesyan, M.
Morayne, YP 2023)

The topology I4 on IN is

1 a Polish inverse semigroup topology;

2 the inverse Hausdorff Markov, inverse Fréchet markov, and
inverse Zariski topology;

3 the maximal second-countable semigroup topology;

4 the unique T1 and second-countable inverse semigroup
topology.
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Overview

generated by I1 and
{f ∈ IN : x ̸∈ dom(f)}

generated by I1 and
{f ∈ IN : x ̸∈ im(f)}

generated by I2 ∪ I3

generated by the sets:
{f ∈ IN : (x, y) ∈ f},
{f ∈ IN : (x, y) ̸∈ f}

I2∩I3

I1 =

I2 = = I3

I4 =

Are there any other Polish semigroup topologies for IN?
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Classifying Polish semigroup topologies on IN

Theorem (S. Bardyla, L. Elliott, J.D. Mitchell, YP 2024)

The semigroup IN has countably infinitely many Polish semigroup
topologies. The partial order of the Polish semigroup topologies on
IN contains every finite partial order, has infinite descending
chains, but only finite ascending chains and anti-chains.

The partial order of Polish semigroup topologies on IN
consists two dual intervals: [I2, I4] and [I3, I4].

Topologies in [I2, I4] are characterised by “waning” (in some
sense decreasing) functions f : N ∪ {∞} → N ∪ {∞}.
For each waning function f , we get a Polish semigroup
topology generated by the sets:

{g ∈ IN : | im(g) \X| ≥ n and |X ∩ im(g)| ≤ (n)f}

over all n ∈ N and finite X ⊆ N.
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Topologies on IN and relational structures.

Recall the connection between the pointwise topology and
relational structures:

A submonoid of NN is closed if and only if it is the
endomorphism monoid of a relational structure on N.
A subgroup of Sym(N) is closed if and only if it is the
automorphism group of a relational structure on N.

Theorem (M. Hampenberg, YP 2024)

Let M be an inverse submonoid of IN which contains all
idempotents of IN. Then the following are equivalent:

M is closed in some Polish semigroup topology on IN;

M is closed in every shift-continuous T1 topology on IN.

M is the monoid of partial isomorphisms of a relational
structure on N;
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Thank you for listening!
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