Hecke-Kiselman monoids and algebras

Magdalena Wiertel joint work with J. Okniński University of Warsaw, Poland

Manchester, June 2024

Definition (Ganyushkin, Mazorchuk)

Let Θ be a simple **oriented graph** with n vertices. Then the corresponding Hecke–Kiselman monoid HK_{Θ} is the monoid generated by **idempotents** x_1, \ldots, x_n such that:

- 1) if the vertices x_i , x_j are not connected in Θ , then $x_i x_j = x_j x_i$,
- 2) if x_i , x_j are connected by an arrow $x_i \rightarrow x_j$ in Θ , then $x_i x_j x_i = x_j x_i x_j = x_i x_j$.

Hecke–Kiselman algebra $K[\mathsf{HK}_\Theta]$ is the monoid algebra over a field K corresponding to the monoid $\mathsf{HK}_\Theta.$

 \leadsto the special case of definition for more general graphs: if the vertices x_i and x_j are connected by an edge $x_i - x_j$, then $x_i x_j x_i = x_j x_i x_j$

Examples

- 1) Monoid $\mathsf{HK}_{\Phi} = \langle x \mid x^2 = x \rangle$ consists of two elements 1, x.
- 2) Monoid HK_Θ is given by

$$\begin{aligned} \mathsf{HK}_\Theta = \langle \mathsf{a}, \mathsf{b}, \mathsf{c} \mid \mathsf{a}^2 = \mathsf{a}, \mathsf{b}^2 = \mathsf{b}, \mathsf{c}^2 = \mathsf{c}, \\ \mathsf{ab} = \mathsf{aba} = \mathsf{bab}, \mathsf{bc} = \mathsf{bcb} = \mathsf{cbc}, \mathsf{ac} = \mathsf{aca} = \mathsf{cac} \rangle. \end{aligned}$$

It has exactly 18 elements.

3) The monoid associated to Σ has the following presentation

$$\mathsf{HK}_{\Sigma} = \langle \mathsf{a}, \mathsf{b}, \mathsf{c} \mid \mathsf{a}^2 = \mathsf{a}, \mathsf{b}^2 = \mathsf{b}, \mathsf{c}^2 = \mathsf{c},$$
$$\mathsf{a}\mathsf{b} = \mathsf{a}\mathsf{b}\mathsf{a} = \mathsf{b}\mathsf{a}\mathsf{b}, \mathsf{b}\mathsf{c} = \mathsf{b}\mathsf{c}\mathsf{b} = \mathsf{c}\mathsf{b}\mathsf{c}, \mathsf{c}\mathsf{a} = \mathsf{a}\mathsf{c}\mathsf{a} = \mathsf{c}\mathsf{a}\mathsf{c}\rangle.$$

 HK_Σ is infinite. Every word in the free monoid $\langle a,b,c \rangle$ can be uniquely rewritten in HK_Σ as a subword of one of the infinite words $\mathit{cabcab}\ldots$ or $\mathit{cbacba}\ldots$

3

Motivations

- Hecke–Kiselman monoids are natural quotients of Coxeter monoids (0–Hecke monoids).
- 2) **Kiselman's semigroups** have origins in the convexity theory. They correspond to the Hecke–Kiselman monoids associated to certain oriented graphs, for example to the graph Θ .

- 3) If Σ is obtained from the graph Λ by orienting all edges, then HK_{Σ} is a homomorphic image of the monoid HK_{Λ} .
 - → Investigation of the Hecke–Kiselman monoids associated to oriented graphs is a natural first step to understand monoids associated to arbitrary graphs.

Properties of Hecke-Kiselman monoids and algebras

Theorem (Mazorchuk)

Monoid HK_{Θ} is finite \iff graph Θ is acyclic.

Lemma

Finite Hecke–Kiselman monoids are \mathcal{J} -trivial.

Definition

K-algebra R satisfies a polynomial identity (is PI algebra), if there exists a nonzero polynomial $f(x_1, \ldots, x_n)$ in non-commuting variables with coefficients in K, for some $n \ge 1$, such that $f(r_1, \ldots, r_n) = 0$ for all $r_1, \ldots, r_n \in R$.

Theorem (Męcel, Okniński)

For an oriented graph Θ the following conditions are equivalent

- 1) $K[HK_{\Theta}]$ is PI,
- 2) graph Θ does not contain two different cycles connected by an oriented path of length \geqslant 0,
- 3) monoid HK_{Θ} does not contain free submonoid of rank 2.

Monoid C_n and algebra $K[C_n]$ associated to an oriented cycle Monoid C_n for any $n \ge 3$ is given by the presentation

$$\langle x_1, \dots, x_n : x_i^2 = x_i, x_i x_{i+1} = x_i x_{i+1} x_i = x_{i+1} x_i x_{i+1} \text{ for } i = 1, \dots, n,$$

 $x_i x_j = x_j x_i \text{ for } n - 1 > i - j > 1 \rangle$

What is known about C_n and $K[C_n]$?

- 1) (Denton) C_n is a \mathcal{J} -trivial monoid.
- (Męcel, Okniński) K[C_n] satisfies a polynomial identity and is of Gelfand-Kirillov dimension one.
- 3) (Męcel, Okniński) **Gröbner basis** of $K[C_n]$ can be characterized.
 - \leadsto (Okniński, MW) description of **reduced forms** of (almost all) elements of C_n

Useful tool: semigroups of matrix type

Definition

If S is a semigroup, A, B are nonempty sets and $P=(p_{ba})$ is a $B\times A$ - matrix with entries in S^0 , then the semigroup of matrix type $\mathcal{M}^0(S,A,B;P)$ over S is the set of all matrices of size $A\times B$ with at most one nonzero entry with the operation

$$M \cdot N = M \circ P \circ N$$

for every matrices M and N, where \circ is standard matrix multiplication.

Ideal chain and matrix structures inside C_n

Theorem

 C_n has a chain of ideals

$$\emptyset = I_{n-2} \triangleleft I_{n-3} \triangleleft \cdots \triangleleft I_0 \triangleleft I_{-1} \triangleleft C_n,$$

with the following properties

- 1) for $i=0,\ldots,n-2$ there exist semigroups of matrix type $M_i=\mathcal{M}^0(S_i,A_i,B_i;P_i)$, such that $M_i\subset I_{i-1}/I_i$ (we assume that $I_{n-3}/\emptyset=I_{n-3}\cup\{\theta\}$), where S_i is the infinite cyclic semigroup, P_i is a square symmetric matrix of size $B_i\times A_i$ and with coefficients in $S_i^1\cup\{\theta\}$;
- 2) $|A_i| = |B_i| = \binom{n}{i+1}$ for every i = 0, ..., n-2;
- 3) for $i=1,\ldots,n-2$ the sets $(I_{i-1}/I_i)\setminus M_i$ are finite and C_n/I_{-1} is a finite semigroup.

Properties of the monoid C_n and algebra $K[C_n]$

Theorem (MW)

Monoid C_n satisfies a nontrivial semigroup identity.

Definition

Algebra is **right (left) Noetherian**, if every ascending chain of right (left) ideals $I_1 \subset I_2 \subseteq ...$ stabilises.

Definition

Algebra A is **semiprime**, if for any ideal $I \triangleleft A$ the condition $I^2 = \{0\}$ implies that $I = \{0\}$.

Theorem (Okniński, MW)

Hecke–Kiselman algebra $K[C_n]$ is a semiprime (right and left) Noetherian algebra.

Corollary

 $K[C_n]$ embeds into the matrix algebra $M_r(L)$ over a field L for some $r \geqslant 1$.

Irreducible representations of $K[C_n]$

Let K be an algebraically closed field.

Theorem

Every irreducible representation $\varphi: K[C_n] \longrightarrow M_j(K)$ of the Hecke–Kiselman algebra $K[C_n]$ over an algebraically closed field K is of one of the following forms

- 1) φ is induced by an irreducible representation of the semigroup of matrix type M_i inside the ideal chain of C_n ,
- 2) φ is 1-dimensional representation associated to an idempotent of the monoid C_n .
- \rightsquigarrow characterization of all idempotents of the monoid C_n is known

Irreducible representations of $K[M_i]$

Recall that $M_i = \mathcal{M}^0(S_i, A_i, B_i; P_i)$, where S_i is infinite cyclic semigroup generated by s_i , P_i is a $B_i \times A_i$ matrix with coefficients in $S_i^1 \cup \{\theta\}$.

 $M_i \rightsquigarrow \text{completely 0-simple closure } cl(M_i) = \mathcal{M}^0(\operatorname{gr}(s_i), A_i, B_i; P_i).$

Theorem

Every irreducible representation of the infinite cyclic group $gr(s_i)$ induces a unique irreducible representation of M_i . It is induced by an irreducible representation of $cl(M_i)$.

Conversely, every irreducible representation of M_i comes from a representation of the group $gr(s_i)$, and can be uniquely extended to an irreducible representation of $cl(M_i)$.

General case: semigroup identities and Noetherian property

Let Θ be an oriented graph.

Theorem (MW)

The following conditions are equivalent

- 1) the Hecke–Kiselman monoid HK_Θ satisfies a nontrivial semigroup identity,
- 2) Θ does not contain two different cycles connected by an oriented path of length $\geqslant 0$.

Theorem (Okniński, MW)

The following conditions are equivalent

- 1) $K[HK_{\Theta}]$ is right Noetherian,
- 2) $K[HK_{\Theta}]$ is left Noetherian,
- 3) every connected component of the graph Θ is either an oriented cycle of some length or an acyclic graph.

General case: the radical of PI Hecke-Kiselman algebras

The Jacobson radical of an algebra A is given by

$$\mathcal{J}(A) = \{ a \in A \mid aM = 0 \text{ for every simple } A\text{-module } M \}.$$

Let Θ be a graph such that $K[HK_{\Theta}]$ satisfies a polynomial identity.

Definition

Denote by Θ' the subgraph of Θ obtained by deleting all arrows $x \to y$ that are not contained in any cyclic subgraph of Θ .

Example

General case: the radical of PI Hecke-Kiselman algebras

Theorem (Okniński, MW)

- 1) The Jacobson radical $\mathcal{J}(K[\mathsf{HK}_\Theta])$ of $K[\mathsf{HK}_\Theta]$ is an ideal generated by elements xy-yx for all edges $x\to y$ in Θ that are not contained in any cyclic subgraph of Θ .
- 2) $K[\mathsf{HK}_\Theta]/\mathcal{J}(K[\mathsf{HK}_\Theta]) \cong K[\mathsf{HK}_{\Theta'}]$, and it is the tensor product of algebras $K[\mathsf{HK}_{\Theta_i}]$ of the connected components $\Theta_1, \ldots, \Theta_m$ of Θ' , each being isomorphic to $K \oplus K$ or to the algebra $K[C_i]$, for some $i \geqslant 3$.

Example

General case: irreducible representations of PI Hecke-Kiselman algebras

K is an algebraically closed field.

Let Θ' be the subgraph of Θ obtained by deleting all arrows $x \to y$ that are not contained in any cyclic subgraph of Θ . Denote by $\Theta_1, \ldots, \Theta_m$ the connected components of Θ' .

Theorem

Every irreducible representation of $K[HK_{\Theta}]$ is of the form

$$K[\mathsf{HK}_{\Theta}] \to K[\mathsf{HK}_{\Theta_1}] \otimes \cdots \otimes K[\mathsf{HK}_{\Theta_m}] \to M_{r_1}(K) \otimes \cdots \otimes M_{r_m}(K) \xrightarrow{\simeq} M_{r_1 \cdots r_m}(K),$$

where

- 1) the first map is the natural epimorphism onto $K[HK_{\Theta}]/\mathcal{J}(K[HK_{\Theta}])$,
- 2) the second map is the natural map $\psi_1 \otimes \cdots \otimes \psi_m$ for some irreducible representations $\psi_i : K[\mathsf{HK}_{\Theta_i}] \to M_{r_i}(K), \ i = 1, \dots, m.$

References

- D11 T. Denton, Excursions into Algebra and Combinatorics at q = 0, PhD thesis, University of California, Davis (2011), arXiv: 1108.4379.
- GM11 O. Ganyushkin and V. Mazorchuk, On Kiselman quotients of 0-Hecke monoids, Int. Electron. J. Algebra 10 (2011), 174–191.
- KM09 G. Kudryavtseva and V. Mazorchuk, On Kiselman's semigroup, Yokohama Math. J., 55(1) (2009), 21–46.
- MO19g A. Mecel, J. Okniński, Growth alternative for Hecke-Kiselman monoids, Publicacions Matemàtiques 63 (2019), 219–240.
- MO19gb A. Męcel, J. Okniński, Gröbner basis and the automaton property of Hecke–Kiselman algebras, Semigroup Forum 99 (2019), 447–464.
 - OW20 J. Okniński, M. Wiertel, Combinatorics and structure of Hecke-Kiselman algebras, Communications in Contemporary Mathematics 22, No.07 (2020), 2050022.
- OW20r J. Okniński, M. Wiertel, M. On the radical of a Hecke–Kiselman algebra, Algebras and Represent. Theory, 24 (2021), 1431–1440.
 - W21 M. Wiertel, Irreducible representations of Hecke–Kiselman monoids, Linear Algebra and its Applications, 640, 12–33 (2022).

Thank you!