

Decision Problems for Automaton Semigroups and Groups

Jan Philipp Wächter

Universität des Saarlandes

21 June 2024

Presentations

• traditional presentation of algebraic structures:

In this talk:
gebraic structures:
$$semigroups$$
, monoids or groups
 $(q_1, \dots, q_n \mid \ell_1 = r_1, \dots, \ell_m = r_m)$

 $Q = \{q_1, \ldots, q_n\}$: generators, $(\ell_1, r_1), \ldots, (\ell_m, r_m) \in Q^+ \times Q^+$: relations

- possible input to algorithms if both sets are finite
- alternative: use automata ~> automaton structures
- Why? Many examples of groups with interesting properties arise in this way (intermediate growth, Burnside problem, ...) and it allows for a finite description of possibly non-finitely presented (semi)groups (Lamplighter group, Grigorchuk's group, ...).
- How? \rightsquigarrow short recap

Automata

In this setting, an automaton $\mathcal{T} = (Q, \Sigma, \delta)$ is a

- finite. directed graph whose
- nodes from Q are called states and
- edges given by $\delta \subseteq Q \times \Sigma \times \Sigma \times Q$ are called transitions and
- are labeled by pairs a/b of letters from the alphabet Σ .
- A transition $p \xrightarrow{a/b} q$
 - starts in p and
 - ends in q. Its
 - input is a and its
 - output is *b*.

An automaton is

- deterministic if $\forall a \in \Sigma \ \forall q \in Q$: q has at most one outgoing transition with input a.
- complete
- invertible

if $\forall a \in \Sigma \ \forall q \in Q$: q has at least one outgoing transition with input a.

if $\forall b \in \Sigma \ \forall q \in Q$: q has at most one outgoing transition with output b. Today we mostly consider complete automata!

Automata

In this setting, an automaton $\mathcal{T} = (Q, \Sigma, \delta)$ is a 0/0 finite, directed graph whose 1/0• nodes from Q are called states and • edges given by $\delta \subseteq Q \times \Sigma \times \Sigma \times Q$ are called transitions and • are labeled by pairs a/b of letters from the alphabet Σ . 0/1• A transition $p \xrightarrow{a/b} q$ q p • starts in p and • ends in q. Its \rightarrow It's a • input is a and its g-automaton! complete • output is *b*. An automaton is *S*-automaton *S*-automaton *G*-automaton • deterministic • complete • invertible Today we mostly consider complete automata:

3/15

21 June 2024

State Actions of *S*-automata

Idea: every state q induces a partial action $\Sigma^* \rightarrow_p \Sigma^*, u \mapsto q \circ u$

Example

• The action of *p* is the identity.

•
$$\boldsymbol{q} \circ 000 = 100$$

 $qq \circ 000 = q \circ 100 = 010$

 $qqq \circ 000 = \cdots = 110$

 \leftrightarrow the action of *q* increments (reverse) binary representation (least significant bit first)

- All state actions are total if the automaton is complete.
- All state actions are injective if the automaton is invertible. $\rightsquigarrow \mathscr{G}$ -automata induce bijections.

Jan Philipp Wächter (UdS)

Automaton Semigroups, Monoids and Groups

- semigroup $\mathscr{S}(\mathcal{T})$ generated by \mathcal{T} : closure under composition of the functions induced by the states
- monoid $\mathcal{M}(\mathcal{T})$ generated by \mathcal{T} : $\mathcal{M}(\mathcal{T}) = \mathscr{S}(\mathcal{T}) \cup \{\mathrm{id}\}$
- group $\mathscr{G}(\mathcal{T})$ generated by \mathcal{T} :
- include inverse functions

"automaton semigroup" "automaton monoid" "automaton group"

Example

- p: identity
- q: increment
- qp = pq = q in $\mathscr{S}(\mathcal{T})$

•
$$q^i \neq q^j$$
 in $\mathscr{S}(\mathcal{T})$ for $i \neq j$

 $\mathscr{S}(\mathcal{T})\simeq q^*$ $\simeq \mathcal{M}(\mathcal{T})$ $\mathscr{G}(\mathcal{T}) \simeq F(q)$

Summary

automaton	properties	Other people usually simply use "automaton semigroup" structure or this:
S-automaton	deterministic	(partial) automaton semigroup (partial) automaton monoid
complete \mathscr{S} -automaton	deterministic, complete	complete automaton semigroup complete automaton monoid
$\overline{\mathscr{S}}$ -automaton	deterministic, invertible	automaton-inverse semigroup automaton-inverse monoid
\mathscr{G} -automaton	deterministic, complete, invertible	automaton group This is the same as "inverse automaton monoid" "inverse automaton monoid" "inverse automaton W.; 2020) (D'Angeli, Rodaro, W.; 2020)

Overview

Sidki's Activity for Automata

- has no cycles, the automaton is finitary. \rightsquigarrow finitary automaton group \equiv finite group
- has at most one cycle, the automaton has bounded activity. \rightsquigarrow bounded automaton group
- has no "entangled" cycles, the automaton has polynomial activity.
 Grigorchuk's group

There is a generalization to monoids (Bartholdi, Godin, Klimann, Picantin; 2018) but without the above geometric characterization!

Lines of Research

- Research on individual automaton semigroups for example: Grigorchuk's group
- Research on the structure theory structure of the automaton vs. algebraic properties for example: classification results (e.g. activity hierarchy), non-automaton (semi)groups, closure properties, automaton constructions
- Research on decision problems over automaton structures for example: word problem, finiteness problem, freeness problem

We will mostly discuss line 3!

Important Complexity Classes

Class of problems	solvable in		byTuring machines
LogSpace	logarithmic space		deterministic
NL	logarithmic space polynomial time		non-deterministic
Р			deterministic
\mathbf{NP}	polynomial	time	non-deterministic
PSpace	polynomial space		deterministic or
			non-deterministic

$NC^1 \subseteq LOGSPACE \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE$

Most inclusions are suspected to be strict but we only know $NL \subsetneq PSPACE$.

We will also encounter the circuit complexity class NC^1 (which is a bit different to the others).

Reductions

Definition

Definition (many-one LOGSPACE-reducible)

B is *C*-complete if $B \in C$ and *B* is *C*-hard.

 $A \leq_{\log} B \iff$ there is a LOGSPACE-computable total function f mapping instances of A to instances of B such that $A \ni x \iff f(x) \in B.$

Idea: An algorithm for *B* also yields one for *A*.

B is *C*-hard (for a complexity class *C*) if $\forall A \in C : A \leq_{\log} B$.

Typically: $\forall A \in \mathcal{C} : A \leq_{\log} B' \leq_{\log} B$

"An algorithm for B solves any problem in C."

Word Problem

Word Problem

Definition (Uniform Word Problem)

The word problem of an automaton groups is the problem						
Constant: Input: Question:	a \mathscr{G} -automaton $\boldsymbol{\rho} \in Q^{\pm *}$ is $\boldsymbol{\rho} = \mathbb{1}$ in $\mathscr{G}(\mathcal{G})$	$\mathcal{T} = (Q, \Sigma, \delta)$ \mathcal{T})?	and For mon Input: Question	\mathcal{P} -automator $p, q \in Q^*$ $p = q \text{ in } \mathcal{M}$	$\mathcal{T} = (Q, \Sigma, \delta)$ $(\mathcal{T})?$	
	general automaton groups	bounded automaton groups	finitary automaton groups	general complete automaton monoids	bounded automaton monoids	
word problem	PSpace- complete W., Weiß; 2020	$\begin{array}{l} \in LOGSPACE \\ \text{Bond., Nek.; 2003} \\ NC^1\text{-hard} \\ \text{by finitary case} \end{array}$	$\begin{array}{c} \text{regular} \\ NC^1\text{-complete} \\ \text{Barrington; 1989} \end{array}$	PSPACE- complete D'A RW 2017 by group case	open $\in PSPACE$ NC^1 -hard	
uniform word problem	PSPACE- complete by non-unif. case	<i>open</i> ∈ PSpace coNP-hard	CONP-complete Kotowsky, W.; 2023	PSPACE- complete by non-unif. case	<i>open</i> ∈ PSpace coNP-hard	

Recall: $NC^1 \subseteq LogSpace \subseteq NL \subseteq P \subseteq NP \subseteq PSpace$

Jan Philipp Wächter (UdS)

Finiteness Problem

	Definition (F	-initeness Probler	n) monoids				
	The finiteness problem for automaton groups is the problem						
	Input:	a G-automaton 7	Г <i>S</i> —automa	iton			
	Question:	is $\mathscr{G}(\mathcal{T})$ finite?	$\iff \mathscr{M}(\mathcal{T})$ is	s finite			
		general automaton groups	bounded automaton groups	finitary automaton groups	general complete automaton monoids	bounded automaton monoids	
	finiteness prob	lem <i>open</i>	decidable Bondarenko, W.; 2021	<i>trivial</i> all finite	undecidable Gillibert 2014	decidable D'A RW WIP	
	Theorem (D	'Angeli, Francoeı	ur, Rodaro, W.;	2020)			
	An automaton semigroup is infinite if and only if it admits an infinite word with infinite orbit.						
Theorem (Bondarenko, W.; 2021)							
	For bounded	teness problem for automaton groups is the problem a \mathcal{G} -automaton \mathcal{T} \mathcal{G} -automaton ion: is $\mathcal{G}(\mathcal{T})$ finite? $\Leftrightarrow \mathcal{M}(\mathcal{T})$ is finite $\begin{array}{c} general \\ automaton groups \\ automaton groups \\ automaton groups \\ s \ problem \\ open \\ decidable \\ Bondarenko, W.; 2021 \\ all finite \\ decidable \\ Gillibert 2014 \\ decidable \\ D'ARW WIP \\ \hline \\ m (D'Angeli, Francoeur, Rodaro, W.; 2020) \\ omaton semigroup is infinite if and only if it admits an infinite word with infinite orbit. \\ m (Bondarenko, W.; 2021) \\ nded automaton groups, the language of words with infinite orbit is \omega-regular. \\ Philip Wächter (UdS) \\ \hline Decision Problems forAutomaton (Semi)Groups \\ 21 June 2024 \\ 21 June 204 \\ 21 June 204$					
	Jan Philipp	Wächter (UdS)	Decision Problems forAu	tomaton (Semi)Groups	21 Jun	e 2024 12 /	

Freeness Problem

Definition (Freeness Problem) monoids

The freeness problem for automaton groups is the problem

Input:a $\frac{\mathscr{G}$ -automaton \mathcal{T} \mathscr{G} -automatonQuestion:is $\mathscr{G}(\mathcal{T})$ a free group? \nleftrightarrow $\mathscr{M}(\mathcal{T})$ is a free monoid

	general	bounded	finitary	general complete	bounded
	automaton groups	automaton groups	automaton groups	automaton monoids	automaton monoids
freeness problem	open	decidable by order/finiteness prob.	<i>trivial</i> all finite	undecidable D'A RW; 2024	open

Theorem (Sidki; 2004)

An automaton group of polynomial activity cannot contain a free subgroup of rank 2.

Jan Philipp Wächter (UdS)

More Details

Theorem (D'Angeli, Rodaro, W.; arXiv/2024)

The following problem is undecidable for given automaton semigroups and monoids:

- This is based on a general reduction from Post's Correspondence Problem and
- yields further results.

Lemma (Levi's Lemma)

A semigroup (monoid) if free if and only if

- 1 it has a (proper) length function and
- **2** is equidivisible.

💛 What about this part? 🛶 WIP

Summarv

Future Work and Open Problems

- What about the free presentation problem for semigroups?
- At what activity level becomes the problem undecidable? Decidable for bounded activity monoids?

$$\begin{array}{ll} \text{nes the problem undecidable?} & \mathrm{NC}^1 \subseteq \mathrm{LogS}_{\mathrm{PACE}} \subseteq \mathrm{NL}\\ \text{vity monoids?} & \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PS}_{\mathrm{PACE}}\\ \end{array}$$

	general automaton groups	bounded automaton groups	finitary automaton groups	general complete automaton monoids	bounded automaton monoid
word problem	PSpace- complete W., Weiß; 2020	$\in \mathrm{LOGSPACE}$ Bond., Nek.; 2003 $\mathrm{NC}^{1} ext{-hard}$ by finitary case	regular NC^1 -complete Barrington; 1989	PSPACE- complete D'ARW 2017 by group case	open $\in PSPACE$ NC^1 -hard
uniform word problem	PSPACE- complete by non-unif. case	<i>open</i> ∈ PSpace coNP-hard	CONP-complete Kotowsky, W.; 2023	PSPACE- complete by non-unif. case	<i>open</i> ∈ PSpace coNP-hard
finiteness problem open		decidable Bondarenko, W.; 2021	<i>trivial</i> all finite	undecidable Gillibert 2014	decidable D'A RW WIP
freeness problem	open	decidable by order/finiteness prob.	<i>trivial</i> all finite	undecidable D'A RW; 2024	open
Jan Philipp Wächter (UdS)		Decision Problems forAu	itomaton (Semi)Groups	21 Jun	e 2024 1