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Warning: there will be some category theory in this talk.
Even “worse”, there will be generalisations of categories!

But categories are just semigroups with two unary operations (if you
add a zero!).

And the generalisations provide nice ways to make semigroups.



1: INTRODUCING CONSTELLATIONS

For any function f : Y — Z where Y, Z are sets, we have:

e Y is the domain of f, Dom(f);

e Z is the codomain of f, Cod(f).



Composition of functions in the category SET is only defined “rarely”:
for f: X Y and g : Z — W, we define

fog: X — W,butonlyifY = Z, or Cod(f) = Dom(g).

(Note: we read compositions left to right, and write “x f”, not “f (x)”.)

But for f o g to make sense, Wikipedia points out that it is enough to
have Cod(f) C Dom(g).



Actually, if for f : Y — Z, we define

o IMm(f) ={zf | x € Y}, the image of f,

then having Im(f) € Dom(g) is enough!
This gives the constellation product f - g.
In defining this, codomain ceases to be relevant.

But domain still is.



A category C'is a class with a partial binary operation o such that, for
all z,y € C,

1. x o (y o 2z) is defined if and only if (x o y) o z is defined and then
they are equal

2. ifxoy,yozaredefined, sois x o (yo z)

3. for each x € C there are identities e, f € C such thateo x =
xof==ux
(e is an identity if whenever e o s or s o e exists, it equals s)



The identities making e o x = =, x o f = x are unique and we call
then D(x) and R(x) respectively.

Can show the identities of the category are C° = {D(x) | z € C}.
We take a similar approach to defining constellations.
Suppose P is a class with a partial binary operation -.

Then e € P is a right identity if it is such that, forallz € P,ifx - e s
defined then it equals .

A (left) constellation is a class P with a partial binary operation - such
that for all x, y, z € P:



(C1) if x - (y - z) exists then so does (z - y) - z, and then the two
are equal;

(C2) x - (y - z) exists whenever x - y and y - z exist;

(C3) for each = € P, there is a unique right identity e € P for
which e -z = =x.

We write D(x) = e in (C3) and view P as having signature (-, D).



It follows easily that D(P) = {D(x) | x € P} is the set of all right
identities in P, and all are idempotent (meaning e - e = e).

P is quasiordered via s < t < s = D(s) - t (standard quasiorder).
Note that on D(P), e < fiffe- f exists.

Every category is a constellation if we ignore R, and then the standard
quasiorder is equality.

So constellations generalise categories.



Example: PT'x, the partial functions defined on X,
with constellation product and D(f) = the identity map on Dom( f).
In this example, s < t iff s is a restriction of ¢, a partial order.

There is a “Cayley theorem” for small constellations whose standard
quasiorder is a partial order (= “normal constellations”):

all embed in PT'y for some X.



Constellations were first defined in [Gould and Hollings, 2009].

They showed that the class of left restriction semigroups corresponds
to a special class of small constellations they called inductive.

Left restriction semigroups are a variety of unary semigroups with
unary operation D of domain (identity function on domain of a func-
tion).

Example: PT'x with partial function composition and D!

(The “symmetric left restriction monoid on X”!)



Axioms for left restriction semigroups: semigroups plus

e D(x)x = x;

e D(D(x)) = D(z) = D(x);

o D(D(z)y) = D(z)D(y) = D(y)D(x);

e D(zy) = D(=zD(y));

e tD(y) = D(zy)=x.



(There is a dual notion of a right restriction semigroup.)

It follows that D(S) = {D(s) | s € S} is a semilattice under multipli-
cation,

and that D(s) is the smallest e € D(S) such that es = s.

There is a “Cayley theorem” for left restriction semigroups in terms of
PTx.



To go from a left restriction semigroup S to a constellation,
define s - t = st whenever sD(t) = s.

The result is an inductive constellation (S, -, D).

What makes a constellation inductive?

Recall that a constellation has its natural quasiorder:

s < tifand only if D(s) - t exists and equals s.



The constellation P is inductive iff

e foralle € D(P) and s € P there is a unique largest x € P such
that x < s and x - e exists, the co-restriction of s to e, denoted s|e;

e whenever x - y exists and e € P,

D((z -y)le) = D(z|D(yle)).

This forces < to be a partial order,

and D(P) is a semilattice under it with e A f = el f.



The constellation obtained from a left restriction semigroup is induc-
tive.

Conversely, if P is inductive, we may define the pseudoproduct
s®t:=s|D(t) -tforall s,t € P,
and then (P, ®, D) is a left restriction semigroup.

The constructions are mutually inverse, morphisms correspond etc.



Gould and Hollings’ work sought to extend earlier work relating semi-
groups having both domain and range notions to certain types of or-
dered categories:

see the ESN-theorem, as well as [Lawson, 1991].

Already then, (certain special types of) constellations connect directly
to semigroup theory.

[Lawson, 1991]
M.V. Lawson, ‘Semigroups and ordered categories I: the reduced case’. J. Algebra
141 (1991), 422—462.

[Gould and Hollings, 2009]
V. Gould and C. Hollings, ‘Restriction semigroups and inductive constellations’.
Comm. Algebra 38 (2009), 261-287.



2: RIGHT CANONICAL EXTENSION:
CATEGORIES FROM CONSTELLATIONS

We define the constellation C'S ET using constellation product of sur-
jective functions:

with f - g defined if and only if Im(f) C Dom(g),
and with D defined as in the category SET.
This gives a composable constellation

(for every s there exists t such that s - ¢ exists).



The concrete categories of groups GRP, topological spaces TOP,
posets etc also have corresponding constellations:

restrict to surjective morphisms and use the constellation product and
D.

Thus we get CGRP, CTOP and so on.
These examples of constellations have an obvious notion of range:

(the identity map on) the image of a morphism.



Let P be a constellation.

Let C(P) = {(s,e) € P x D(P) | s-e = s}.
On C(P), define (s,e)o (t,f) = (s-t, f)
providing e = D(t) (in which case s - t exists).

Also define D((s,e)) = (D(s),D(s)) and R((s,e)) = (e, e).



Proposition: For any constellation P, (C(P), o, D, R) is a category.
We call (C(P), o, D, R) here the canonical extension of the constel-
lation P.

If P is a category, then it is easy to see that P = C(P).

Generally, P is a quotient of C(P) in a certain sense.



A similar construction was considered by Lawson in [Lawson, 2004].

He showed how to turn an ordered groupoid into a left cancellative
category.

But ordered groupoids can be viewed as constellations (with inverses),

and then his construction becomes a special case of this one.



We’'re interested in the congruences 6 on a category K such that
K /0 is a constellation and K = C(K/9).

Call them canonical congruences: they have a nice internal descrip-
tion.

It's possible to define these on general (composable) constellations.
There is a Correspondence Theorem for them,

so maximal <> simple, etc.



We can define a canonical congruence 6 on SET as follows:
(f,g) € ¢ if and only if Dom(f) = Dom(g), Im(f) = Im(g),
and x f = xg for all z € Dom(f).

Moreover SET /6 = CSET,and so SET = C(CSET).
And C'SET is “canonically simple” (so irreducible).

So this is a “best possible” representation of SET as C(P).



A similar argument can be given for the category of groups:
GRP = C(CGRP), although CGRP is not canonically simple.

But every composable constellation has a canonically simple quotient
(by Zorn).

This means there is some canonically simple quotient P of CGRP,
and then GRP = C(P) is “best possible”.

(How about rings, topological spaces, posets etc?)



So constellations seem pretty useful in the study of categories.

[Gould and S., 2017] : V. Gould and T. Stokes, ‘Constellations and their relationship
with categories’. Algebra Universalis 77 (2017), 271-304.

See also:

[Gould and S., 2022]
V. Gould and T. Stokes, ‘Constellations with range and IS-categories’.
J. Pure Appl. Algebra 226 (2022), 106995.



How about for semigroups?

After all, constellations were invented to give an ESN-type theorem
for left restriction semigroups!



3: LEFT CANONICAL EXTENSIONS.

There is a way to obtain constellations themselves via canonical ex-
tension of even more primitive objects, that “adds in” the domains of
elements!

These primitive objects are partial algebras with distinguished ‘idem-
potents” that can be used to extend on the left.

We can apply the construction to semigroups to obtain constellations;

sometimes these constellations are inductive, hence are “really” just
left restriction semigroups!



Basic idea: we have a semigroup .S with some idempotents £ C S;
we define Cp(S) = {(e,s) € E x S | es = s},

and we set (e, s) - (f,t) = (e, st) € Cg(S), whenever sf = s,
and define D((e,s)) = (e,e) € Cr(S).

Then (Cg(S), -, D) is always a constellation!



Sometimes this constellation Cx(.S) is inductive.

This means that the constellation product on Cr(S) can be com-
pleted to a left restriction semigroup operation in a unique way.

Indeed, for any semigroup S with £ C E(S),
one can determine exactly when Cr(S) is inductive.

It turns out there must be an action of S on E satisfying certain con-
ditions.

And E must be a meet-semilattice wrt a relevant quasiorder.



Specifically:

e the quasiorder on E given by ew! f if e = ef is a partial order and
F is a meet-semilattice under it;

e s-(eNf)=1(s-e)A(s-f),where Ais meetin FE;

e foralls,t € Sande € F, ste = st iff s(t-e) = s.

Call a pair (S, ') satisfying these necessary and sufficient conditions
an inductive left E£-monoid.



Then S does indeed act on E in the usual sense: (st) -e = s-(t-e).
Denote by Rest(E,S) the left restriction semigroup you get by ex-

tending the product on C'g(.S) in this way when (S, E') is an inductive
left £-monoid.

For any (e, s), (f,t) € Rest(FE,S), their product is
(e,8) @ (f,t) =(en(s-f),(en(s-[f))st),
where e A fisthe meetofe, f € E and s - f is the action of son f.

Rest(E, S) restricts back to give C'g(.S) if we keep D and limit prod-
ucts: s - t := st providing sD(t) = s.



Which left restriction semigroups R arise from inductive constellations
Cr(S)? Let's answer this for monoids.

Exactly ones with “enough large idempotents” in the following sense.
For every e € D(R), thereis ¢/’ € E(R) with D(e¢’) =1 ande L €.
Nowlet Ry = {s€ R| D(s)=1}and E = {€' | e € D(R)}.

Then (R1, E) is an inductive left E-monoid, in which s - ¢/ = D(se)’
foralls € Ry ande € E,

and R = Rest(FE, S)! (The exact choice of E doesn’t matter!)



So...which left restriction monoids have enough large idempotents?
The archetypal left restriction semigroup is PT'x ...
and it has enough large idempotents!

Here, (PTx)1 = T, and for e € D(PTY), let ¢/ € Tx be any
projection onto dom(e).

Then define E = {¢/ | e € D(PTx)}.

So (T'x, F) is an inductive left E-monoid, and PTy = Rest(E, T ).



But the general theory still works fine with this modification.
So let’s work through an example, with X = {z,y}.
Then PTx = {1,0,pz, py, €, f,%, 4, k}, where

1 is the identity map, O is the empty function,

pz = {(z,2), (y,2) }, py = {(z,9), (¥, y) },

ez = {(z,2)}, ey = {(y,9) },

i ={(z,y), (v, )}, g ={(z,9)}, k={(y,z)}.



Then D(PTx) = {1,0,ex, ey},

E(PTx) = D(PTx) U{psx,py}, and

(PTx)1 = Tx = {1,pz,py, i} and E((PTx)1) = {1, pz, py}-
The idempotents in the £-classes are {O}, {1}, {pz, ez} and {py, ey }.
So01L1,ex L ps, ey L py,

witnessing the fact that PTx has almost enough large idempotents.



So we let E = {0, 1, pz, py} and build C%(S) equal to

{(07 0)7 (pa:,p:v)a (Pyapy)a (pa:,py)a (pyﬂpilf)a (17 1)7 (177’>7 (1ap$)7 (17py)}7

corresponding to partial functions as follows:

(070) A (Z)a (pil?apx) < €x, (pyapy) < eya (p:capy) < j7

(pyapaz) < k) (17 1) < 17 (17/L> < 7;7 (17p33> pra (pr) pr



For example, since D((pz, py)) = (pz,pz), and (pz, py) = (Pz, pz) (1, py),
we interpret (pz, py) as “the restriction of p, to Ran(pz)”, or ey.

So C(TY) correctly enumerates the elements of PT'x.

And constellation products are trivial to compute:

e.g. recall that i = {(z,y), (y,x)} and j = {(z,y) }.

Soji=j -i={(x,z)} = es.

Correspondingly, we have (pz,py) - (1,7) = (pz, pyi) = (Pz, Pz),



For general compositions, we use multiplication in Restq(E, T)%).

For example, to get ¢5 = ey In PT'x, we proceed to compute
(1,%) ® (pzspy) = (LA (G- pz), (LA (- pa))ipy),

which requires calculation of < - p, = py (the largest left equalizer in
F of 1 and py). Hence,

(1,4) ® (P, py) = (LA (i~ pa), (LA (i - pz))ipy)

— (Pyapyipy) — (Pyapxpy) — (py7py)a

as it should!



New kind of example: consider the set Rel x of binary relations on X
and equip it with domain D defined as for PT'y.

Then (Rely, -, D) is not a left restriction monoid.

BUT instead equip Rel x with demonic composition x:

(z,y) € sxtiff (x,y) € st AND zs C dom(t).

Like usual relational composition, this operation is associative...

and it generalises both partial function composition and composition
of left total binary relations.



Indeed (Rel x, %, D) is known to be a left restriction monoid.

Here, (Rely )1 is the semigroup of left total binary relations Relk,,
whose domains are all of X.

And (Rel x, %, D) has almost enough large idempotents:
fore € D(Relx), let € be as for PT'y, so define E as there.

Then C%(Relk,) is inductive, and Rest®(E, Rell,) = (Rely, *, D).



A further example comes from the partition monoid P(X) on the set
X.

Consider the submonoid P*(X) of all “left total” partitions P*(X) on
X (defined in the “obvious” way).

It's not hard to see this is a right restriction monoid where R(s) is the
finest block partition e such that se = s.

And it's got enough large idempotents!



What is PY(X)1?
Basically a copy of T'x!

And the large idempotents consist of one transformation for each
equivalence relation on X.

So we must have P*(X) = RRest((Ty, E)!

(The “dual symmetric left restriction monoid on X!)

[S., 2022] : T. Stokes, ‘Left restriction monoids from left E-completions’. J. Algebra
608 (2022), 143—185.
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