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Warning: there will be some category theory in this talk.

Even “worse”, there will be generalisations of categories!

But categories are just semigroups with two unary operations (if you
add a zero!).

And the generalisations provide nice ways to make semigroups.



1: INTRODUCING CONSTELLATIONS

For any function f : Y → Z where Y, Z are sets, we have:

• Y is the domain of f , Dom(f);

• Z is the codomain of f , Cod(f).



Composition of functions in the category SET is only defined “rarely”:

for f : X → Y and g : Z →W , we define

f ◦ g : X →W , but only if Y = Z, or Cod(f) = Dom(g).

(Note: we read compositions left to right, and write “xf ”, not “f(x)”.)

But for f ◦ g to make sense, Wikipedia points out that it is enough to
have Cod(f) ⊆ Dom(g).



Actually, if for f : Y → Z, we define

• Im(f) = {xf | x ∈ Y }, the image of f ,

then having Im(f) ⊆ Dom(g) is enough!

This gives the constellation product f · g.

In defining this, codomain ceases to be relevant.

But domain still is.



A category C is a class with a partial binary operation ◦ such that, for
all x, y ∈ C,

1. x ◦ (y ◦ z) is defined if and only if (x ◦ y) ◦ z is defined and then
they are equal

2. if x ◦ y, y ◦ z are defined, so is x ◦ (y ◦ z)

3. for each x ∈ C there are identities e, f ∈ C such that e ◦ x = x,
x ◦ f = x

(e is an identity if whenever e ◦ s or s ◦ e exists, it equals s)



The identities making e ◦ x = x, x ◦ f = x are unique and we call
then D(x) and R(x) respectively.

Can show the identities of the category are C0 = {D(x) | x ∈ C}.

We take a similar approach to defining constellations.

Suppose P is a class with a partial binary operation ·.

Then e ∈ P is a right identity if it is such that, for all x ∈ P , if x · e is
defined then it equals x.

A (left) constellation is a class P with a partial binary operation · such
that for all x, y, z ∈ P :



(C1) if x · (y · z) exists then so does (x · y) · z, and then the two
are equal;

(C2) x · (y · z) exists whenever x · y and y · z exist;

(C3) for each x ∈ P , there is a unique right identity e ∈ P for
which e · x = x.

We write D(x) = e in (C3) and view P as having signature (·, D).



It follows easily that D(P ) = {D(x) | x ∈ P} is the set of all right
identities in P , and all are idempotent (meaning e · e = e).

P is quasiordered via s . t⇔ s = D(s) · t (standard quasiorder).

Note that on D(P ), e . f iff e · f exists.

Every category is a constellation if we ignoreR, and then the standard
quasiorder is equality.

So constellations generalise categories.



Example: PTX , the partial functions defined on X,

with constellation product and D(f) = the identity map on Dom(f).

In this example, s . t iff s is a restriction of t, a partial order.

There is a “Cayley theorem” for small constellations whose standard
quasiorder is a partial order (= “normal constellations”):

all embed in PTX for some X.



Constellations were first defined in [Gould and Hollings, 2009].

They showed that the class of left restriction semigroups corresponds
to a special class of small constellations they called inductive.

Left restriction semigroups are a variety of unary semigroups with
unary operation D of domain (identity function on domain of a func-
tion).

Example: PTX with partial function composition and D!

(The “symmetric left restriction monoid on X”!)



Axioms for left restriction semigroups: semigroups plus

• D(x)x = x;

• D(D(x)) = D(x) = D(x)2;

• D(D(x)y) = D(x)D(y) = D(y)D(x);

• D(xy) = D(xD(y));

• xD(y) = D(xy)x.



(There is a dual notion of a right restriction semigroup.)

It follows that D(S) = {D(s) | s ∈ S} is a semilattice under multipli-
cation,

and that D(s) is the smallest e ∈ D(S) such that es = s.

There is a “Cayley theorem” for left restriction semigroups in terms of
PTX .



To go from a left restriction semigroup S to a constellation,

define s · t = st whenever sD(t) = s.

The result is an inductive constellation (S, ·, D).

What makes a constellation inductive?

Recall that a constellation has its natural quasiorder:

s ≤ t if and only if D(s) · t exists and equals s.



The constellation P is inductive iff

• for all e ∈ D(P ) and s ∈ P there is a unique largest x ∈ P such
that x ≤ s and x ·e exists, the co-restriction of s to e, denoted s|e;

• whenever x · y exists and e ∈ P ,

D((x · y)|e) = D(x|D(y|e)).

This forces ≤ to be a partial order,

and D(P ) is a semilattice under it with e ∧ f = e|f .



The constellation obtained from a left restriction semigroup is induc-
tive.

Conversely, if P is inductive, we may define the pseudoproduct

s⊗ t := s|D(t) · t for all s, t ∈ P ,

and then (P,⊗, D) is a left restriction semigroup.

The constructions are mutually inverse, morphisms correspond etc.



Gould and Hollings’ work sought to extend earlier work relating semi-
groups having both domain and range notions to certain types of or-
dered categories:

see the ESN-theorem, as well as [Lawson, 1991].

Already then, (certain special types of) constellations connect directly
to semigroup theory.

[Lawson, 1991]
M.V. Lawson, ‘Semigroups and ordered categories I: the reduced case’. J. Algebra
141 (1991), 422–462.

[Gould and Hollings, 2009]
V. Gould and C. Hollings, ‘Restriction semigroups and inductive constellations’.
Comm. Algebra 38 (2009), 261–287.



2: RIGHT CANONICAL EXTENSION:
CATEGORIES FROM CONSTELLATIONS

We define the constellation CSET using constellation product of sur-
jective functions:

with f · g defined if and only if Im(f) ⊆ Dom(g),

and with D defined as in the category SET .

This gives a composable constellation

(for every s there exists t such that s · t exists).



The concrete categories of groups GRP , topological spaces TOP ,
posets etc also have corresponding constellations:

restrict to surjective morphisms and use the constellation product and
D.

Thus we get CGRP , CTOP and so on.

These examples of constellations have an obvious notion of range:

(the identity map on) the image of a morphism.



Let P be a constellation.

Let C(P ) = {(s, e) ∈ P ×D(P ) | s · e = s}.

On C(P ), define (s, e) ◦ (t, f) = (s · t, f)

providing e = D(t) (in which case s · t exists).

Also define D((s, e)) = (D(s), D(s)) and R((s, e)) = (e, e).



Proposition: For any constellation P , (C(P ), ◦, D,R) is a category.

We call (C(P ), ◦, D,R) here the canonical extension of the constel-
lation P .

If P is a category, then it is easy to see that P ∼= C(P ).

Generally, P is a quotient of C(P ) in a certain sense.



A similar construction was considered by Lawson in [Lawson, 2004].

He showed how to turn an ordered groupoid into a left cancellative
category.

But ordered groupoids can be viewed as constellations (with inverses),

and then his construction becomes a special case of this one.



We’re interested in the congruences θ on a category K such that

K/θ is a constellation and K ∼= C(K/θ).

Call them canonical congruences: they have a nice internal descrip-
tion.

It’s possible to define these on general (composable) constellations.

There is a Correspondence Theorem for them,

so maximal↔ simple, etc.



We can define a canonical congruence δ on SET as follows:

(f, g) ∈ δ if and only if Dom(f) = Dom(g), Im(f) = Im(g),

and xf = xg for all x ∈ Dom(f).

Moreover SET/δ ∼= CSET , and so SET ∼= C(CSET ).

And CSET is “canonically simple” (so irreducible).

So this is a “best possible” representation of SET as C(P ).



A similar argument can be given for the category of groups:

GRP ∼= C(CGRP ), although CGRP is not canonically simple.

But every composable constellation has a canonically simple quotient
(by Zorn).

This means there is some canonically simple quotient P of CGRP ,

and then GRP ∼= C(P ) is “best possible”.

(How about rings, topological spaces, posets etc?)



So constellations seem pretty useful in the study of categories.

[Gould and S., 2017] : V. Gould and T. Stokes, ‘Constellations and their relationship

with categories’. Algebra Universalis 77 (2017), 271–304.

See also:

[Gould and S., 2022]

V. Gould and T. Stokes, ‘Constellations with range and IS-categories’.

J. Pure Appl. Algebra 226 (2022), 106995.



How about for semigroups?

After all, constellations were invented to give an ESN-type theorem
for left restriction semigroups!



3: LEFT CANONICAL EXTENSIONS.

There is a way to obtain constellations themselves via canonical ex-
tension of even more primitive objects, that “adds in” the domains of
elements!

These primitive objects are partial algebras with distinguished ‘idem-
potents” that can be used to extend on the left.

We can apply the construction to semigroups to obtain constellations;

sometimes these constellations are inductive, hence are “really” just
left restriction semigroups!



Basic idea: we have a semigroup S with some idempotents E ⊆ S;

we define CE(S) = {(e, s) ∈ E × S | es = s},

and we set (e, s) · (f, t) = (e, st) ∈ CE(S), whenever sf = s,

and define D((e, s)) = (e, e) ∈ CE(S).

Then (CE(S), ·, D) is always a constellation!



Sometimes this constellation CE(S) is inductive.

This means that the constellation product on CE(S) can be com-
pleted to a left restriction semigroup operation in a unique way.

Indeed, for any semigroup S with E ⊆ E(S),

one can determine exactly when CE(S) is inductive.

It turns out there must be an action of S on E satisfying certain con-
ditions.

And E must be a meet-semilattice wrt a relevant quasiorder.



Specifically:

• the quasiorder on E given by eωlf if e = ef is a partial order and
E is a meet-semilattice under it;

• s · (e ∧ f) = (s · e) ∧ (s · f), where ∧ is meet in E;

• for all s, t ∈ S and e ∈ E, ste = st iff s(t · e) = s.

Call a pair (S,E) satisfying these necessary and sufficient conditions
an inductive left E-monoid.



Then S does indeed act on E in the usual sense: (st) · e = s · (t · e).

Denote by Rest(E,S) the left restriction semigroup you get by ex-
tending the product on CE(S) in this way when (S,E) is an inductive
left E-monoid.

For any (e, s), (f, t) ∈ Rest(E,S), their product is

(e, s)⊗ (f, t) = (e ∧ (s · f), (e ∧ (s · f))st),

where e ∧ f is the meet of e, f ∈ E and s · f is the action of s on f .

Rest(E,S) restricts back to give CE(S) if we keep D and limit prod-
ucts: s · t := st providing sD(t) = s.



Which left restriction semigroupsR arise from inductive constellations
CE(S)? Let’s answer this for monoids.

Exactly ones with “enough large idempotents” in the following sense.

For every e ∈ D(R), there is e′ ∈ E(R) with D(e′) = 1 and e L e′.

Now let R1 = {s ∈ R | D(s) = 1} and E = {e′ | e ∈ D(R)}.

Then (R1, E) is an inductive left E-monoid, in which s · e′ = D(se)′

for all s ∈ R1 and e′ ∈ E,

and R ∼= Rest(E,S)! (The exact choice of E doesn’t matter!)



So...which left restriction monoids have enough large idempotents?

The archetypal left restriction semigroup is PTX ...

and it has enough large idempotents!

Here, (PTX)1 = TX , and for e ∈ D(PTX), let e′ ∈ TX be any
projection onto dom(e).

Then define E = {e′ | e ∈ D(PTX)}.

So (TX , E) is an inductive left E-monoid, and PTX ∼= Rest(E, TX).



But the general theory still works fine with this modification.

So let’s work through an example, with X = {x, y}.

Then PTX = {1,0, px, py, e, f, i, j, k}, where

1 is the identity map, 0 is the empty function,

px = {(x, x), (y, x)}, py = {(x, y), (y, y)},

ex = {(x, x)}, ey = {(y, y)},

i = {(x, y), (y, x)}, j = {(x, y)}, k = {(y, x)}.



Then D(PTX) = {1,0, ex, ey},

E(PTX) = D(PTX) ∪ {px, py}, and

(PTX)1 = TX = {1, px, py, i} and E((PTX)1) = {1, px, py}.

The idempotents in the L-classes are {0}, {1}, {px, ex} and {py, ey}.

So 1 L 1, ex L px, ey L py,

witnessing the fact that PTX has almost enough large idempotents.



So we let E = {0,1, px, py} and build C0
E(S) equal to

{(0,0), (px, px), (py, py), (px, py), (py, px), (1,1), (1, i), (1, px), (1, py)},

corresponding to partial functions as follows:

(0,0)↔ ∅, (px, px)↔ ex, (py, py)↔ ey, (px, py)↔ j,

(py, px)↔ k, (1,1)↔ 1, (1, i)↔ i, (1, px)↔ px, (1, py)↔ py.



For example, sinceD((px, py)) = (px, px), and (px, py) = (px, px)(1, py),

we interpret (px, py) as “the restriction of py to Ran(px)”, or ey.

So C0
E(T

0
X) correctly enumerates the elements of PTX .

And constellation products are trivial to compute:

e.g. recall that i = {(x, y), (y, x)} and j = {(x, y)}.

So ji = j · i = {(x, x)} = ex.

Correspondingly, we have (px, py) · (1, i) = (px, pyi) = (px, px),



For general compositions, we use multiplication in Rest0(E, T0
X).

For example, to get ij = ey in PTX , we proceed to compute

(1, i)⊗ (px, py) = (1 ∧ (i · px), (1 ∧ (i · px))ipy),

which requires calculation of i · px = py (the largest left equalizer in
E of 1 and px). Hence,

(1, i)⊗ (px, py) = (1 ∧ (i · px), (1 ∧ (i · px))ipy)

= (py, pyipy) = (py, pxpy) = (py, py),

as it should!



New kind of example: consider the set RelX of binary relations on X

and equip it with domain D defined as for PTX .

Then (RelX , ·, D) is not a left restriction monoid.

BUT instead equip RelX with demonic composition ∗:

(x, y) ∈ s ∗ t iff (x, y) ∈ st AND xs ⊆ dom(t).

Like usual relational composition, this operation is associative...

and it generalises both partial function composition and composition
of left total binary relations.



Indeed (RelX , ∗, D) is known to be a left restriction monoid.

Here, (RelX)1 is the semigroup of left total binary relations ReltX ,
whose domains are all of X.

And (RelX , ∗, D) has almost enough large idempotents:

for e ∈ D(RelX), let e′ be as for PTX , so define E as there.

Then C0
E(Rel

t
X) is inductive, and Rest0(E,ReltX) ∼= (RelX , ∗, D).



A further example comes from the partition monoid P (X) on the set
X.

Consider the submonoid P t(X) of all “left total” partitions P t(X) on
X (defined in the “obvious” way).

It’s not hard to see this is a right restriction monoid where R(s) is the
finest block partition e such that se = s.

And it’s got enough large idempotents!



What is P t(X)1?

Basically a copy of TX !

And the large idempotents consist of one transformation for each
equivalence relation on X.

So we must have P t(X) ∼= RRest((TX , E)!

(The “dual symmetric left restriction monoid on X”!)

[S., 2022] : T. Stokes, ‘Left restriction monoids from left E-completions’. J. Algebra
608 (2022), 143–185.
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