Congruences on direct products of simple semigroups

Matthew Brookes
Joint with Nik Ruškuc
University of St Andrews

NBSAN 36

Warning for Vicky

A will be a semigroup or monoid throughout.

Definitions

Definition

Let S and A be semigroups. The direct product of S and A is the set

$$
S \times A=\{(s, a) \mid s \in S, a \in A\}
$$

with multiplication $(s, a)(t, b)=(s t, a b)$
Definition
A congruence ρ on S is an equivalence relation such that

$$
(s, t),(u, v) \in \rho \Longrightarrow(s u, t v) \in \rho
$$

- In particular, $\rho \subseteq S \times S$ is a subsemigroup

Definition

A semigroup is simple if it has no proper ideals.

An objective

- We want to describe congruences on $S \times A$ using congruences on S and congruences on A.
- Some congruences are easy, if π_{S} is a congruence on S and π_{A} is a congruence on A then

$$
\pi_{S} \times \pi_{A}=\left\{((s, a),(t, b)) \mid(s, t) \in \pi_{S},(a, b) \in \pi_{A}\right\}
$$

is a congruence on $S \times A$ - these are called decomposable congruences.

- Congruences are subsemigroups, a congruence on $S \times A$ is a subsemigroup of $(S \times A) \times(S \times A)$.
- $(S \times A) \times(S \times A) \cong S^{2} \times A^{2}$ so we could equivalently ask for subsemigroups of $S^{2} \times A^{2}$.

Fibre products

Definition: Fibre product

If S and A are semigroups and there are onto homomorphisms

$$
S \xrightarrow{f} V \stackrel{g}{\leftrightarrows} A
$$

then

$$
\{(s, a) \in S \times A \mid(s) f=(a) g\}
$$

is a subsemigroup of $S \times A$. Called a fibre product.

- In general, not all subsemigroups of $S \times A$ are fibre products
- Direct products are fibre products
- For groups, all subgroups are fibre products (Goursat's Lemma)

Fibre congruences

We can construct fibre products of congruences on semigroups. Take π_{S} and π_{A} congruences on S and A with

$$
\pi_{S} \stackrel{f}{\longrightarrow} V \stackrel{g}{\longleftarrow} \pi_{A}
$$

Then

$$
\left\{\left(\left(s_{1}, a_{1}\right),\left(s_{2}, a_{2}\right)\right) \mid\left(s_{1}, s_{2}\right) \in \pi_{S},\left(a_{1}, a_{2}\right) \in \pi_{A},\left(s_{1}, s_{2}\right) f=\left(a_{1}, a_{2}\right) g\right\}
$$

is a subsemigroup of $(S \times A) \times(S \times A)$.

Lemma

If S and A are simple monoids then this relation is a congruence on $S \times A$ if and only if V is an abelian group with

- identity $(s, s) f=(a, a) g$ (all $s \in S, a \in A)$
- $\left(\left(s_{1}, s_{2}\right) f\right)^{-1}=\left(s_{2}, s_{1}\right) f,\left(\left(a_{1}, a_{2}\right) g\right)^{-1}=\left(a_{2}, a_{1}\right) g$

Call congruences of this form fibre congruences

Fibre congruences

So we have a collection of congruences on $S \times A$

- Contains all congruences of the form $\pi_{S} \times \pi_{A}$
- So contains the identity and universal congruences

Is this all congruences?

- No... Rees congruences on direct products are not necessarily fibre
- But sometimes actually... Yes

Theorem
If S and A are simple monoids then every congruence on $S \times A$ is a fibre congruence.

Group images

Two ingredients for fibre congruence:

- congruences on factors
- group homomorphic images of congruences (with extra properties)

Theorem (Gomes)

For a semigroup X, group homomorphic images are determined by the normal subsemigroups.

- So, equivalently we want to find suitable normal subsemigroups $X \unlhd \pi_{S}$

Theorem

Let S be a simple monoid and let π be a congruence on S. The normal subsemigroups of π which define suitable group images are precisely the congruences on S which are normal subsemigroups of π.

Congruences on simple monoids

Theorem

Let S, A be simple monoids and let

- π_{s} be a congruence on $S-\left\{\left(s_{1}, s_{2}\right) \mid \exists a_{1}, a_{2} \in A\left(s_{1}, a_{1}\right) \rho\left(s_{2}, a_{2}\right)\right\}$
- π_{A} be a congruence on $A-\left\{\left(a_{1}, a_{2}\right) \mid \exists s_{1}, s_{2} \in S\left(s_{1}, a_{1}\right) \rho\left(s_{2}, a_{2}\right)\right\}$
- $\kappa s \unlhd \pi_{S}$ be a congruence on $S-\left\{\left(s_{1}, s_{2}\right) \mid\left(s_{1}, 1\right) \rho\left(s_{2}, 1\right)\right\}$
- $\kappa_{A} \unlhd \pi_{A}$ be a congruence on $A-\left\{\left(a_{1}, a_{2}\right) \mid\left(1, a_{1}\right) \rho\left(1, a_{2}\right)\right\}$
- $f: \pi_{S} / \kappa_{S} \rightarrow \pi_{A} / \kappa_{A}$ be an isomorphism

Then

$$
\left\{\left(\left(s_{1}, a_{1}\right),\left(s_{2}, a_{2}\right)\right) \mid\left(s_{1}, s_{2}\right) \in \pi_{S},\left(a_{1}, a_{2}\right) \in \pi_{A},\left[\left(s_{1}, s_{2}\right)\right] f=\left[\left(a_{1}, a_{2}\right)\right]\right\}
$$

is a congruence on $S \times A$. Moreover, all congruences on $S \times A$ are of this form.

Example: Bicyclic monoid

$$
B=\langle b, c \mid b c=1\rangle
$$

- The congruences on B are $\Delta, \kappa=\left\{\left(c^{i} b^{j}, c^{m} b^{n}\right): i-j=m-n\right\}$ and $\pi_{d}=\left\{\left(c^{i} b^{j}, c^{m} b^{n}\right): d \mid(i-j)-(m-n)\right\}$ for $d \in \mathbb{N}$
- Equivalently, the homomorphic images of B are: $B, \mathbb{Z} \cong B / \kappa$ or $\mathbb{Z} f$ for a group homomorphism f.
- Want to know when congruences are normal subsemigroups of each other.
- If $\pi_{1} \unlhd \pi_{2} \neq \Delta$ then $\kappa \subseteq \pi_{1}$, and $\kappa \unlhd \pi_{d}$
- $\pi_{d} \unlhd \pi_{c}$ if and only if $c \mid d$

Theorem

The homomorphic images of $B \times B$ are (up to isomorphism):

- $B \times B$
- $B \times G$ for G an image of \mathbb{Z}
- an image of $\mathbb{Z} \times \mathbb{Z}$.

Decomposable congruences

Question from way back at the start:
π_{S} is a congruence on S and π_{A} is a congruence on A then

$$
\pi_{S} \times \pi_{A}=\left\{((s, a),(t, b)) \mid(s, t) \in \rho_{S},(a, b) \in \rho_{A}\right\}
$$

is a congruence on $S \times A$ (a decomposable congruence)

Question:

When are all the congruences on $S \times A$ decomposable?

This is known for groups (Miller 1975)

Decomposable congruences

Suppose S and A are non trivial monoids

- If S is not simple and $I \subset S$ be an ideal then $I \times A$ is an ideal of $S \times A$. The Rees congruence, $\rho_{I \times A}$, defined by this ideal is not decomposable.
- In this case we know all the congruences on $S \times A$, the fibre congruences.

The fibre congruence defined by

$$
\pi_{S} \xrightarrow{f} V \stackrel{g}{\leftrightarrows} \pi_{A}
$$

is decomposable if and only if V is trivial.

Decomposable congruences

So every congruence is decomposable if and only if there are no common abelian group images of a congruence on S and a congruence on A.

Theorem
If S and A are monoids then every congruence on $S \times A$ is decomposable if and only if

- S and A are simple
- for each $\pi_{S} \in \operatorname{Cong}(S)$ and each $\pi_{A} \in \operatorname{Cong}(A)$, the orders of the elements of the abelian group homomorphic images (satisfying the homomorphism conditions) of π_{S} and π_{A} are relatively prime (in particular are finite).

Height of direct products

Definition

The height of a semigroup, $\mathrm{Ht}(S)$, is the maximum length of a chain of congruences.

- If J is a \mathcal{J}-class of a semigroup S then the principal factor is $J^{*}=J \cup\{0\}$.
- J^{*} is a 0 -simple (S, S)-biact.
- Heights can be computed using the heights of the principal factors, regarded as (S, S)-biacts.

Theorem (B, East, Miller, Mitchell, Ruškuc)
If S has $n \mathcal{J}$-classes $J_{1}, \ldots J_{n}$ then

$$
\operatorname{Ht}(S)=\sum_{i=1}^{n} \operatorname{Ht}\left(J_{i}^{*}\right)-n
$$

Heights of direct products

If S and A are monoids then the \mathcal{J}-classes of S times A are $J \times K$ where J is a \mathcal{J}-class of S and K is a \mathcal{J}-class of A
It is possible to construct fibre congruences on products of acts.

Lemma

If J is a \mathcal{J}-class of S and K is a \mathcal{J}-class of T then every $S \times T$-act congruence on the principal factor $(J \times K)^{*}$ is a fibre congruence. Moreover,

$$
\mathrm{Ht}\left((J \times K)^{*}\right)=\mathrm{Ht}\left(J^{*}\right)+\mathrm{Ht}\left(K^{*}\right)-1
$$

Theorem

Let S be a monoid with $n \mathcal{J}$-classes and let A be monoid with m \mathcal{J}-classes. Then

$$
\mathrm{Ht}(S \times A)=m \mathrm{Ht}(S)+n \mathrm{Ht}(A)
$$

Thanks for listening

