The meet-stalactic and meet-taiga monoids

Thomas Aird

University of Manchester
20 June 2024

- Joint work with Duarte Ribeiro (NOVA University Lisbon).
- This work was supported by the London Mathematical Society, the Heilbronn Institute for Mathematical Research, and NOVA University Lisbon

Tableaux and Trees

Stalactic monoids ISt, rSt
Stalactic tableaux

Taiga monoids

 ITg, rTgBinary search trees with multiplicities

The left and right stalactic and taiga monoids

Let ISt and rSt denote the left and right stalactic monoids, and ITg and $r \mathrm{Tg}$ denote the left and right taiga monoids.

Definition

For $u, v \in \mathbb{N}^{*}$,

$$
\begin{aligned}
& u \equiv \equiv_{\mathrm{ISt}} v \Longleftrightarrow P_{\mathrm{ISt}}(u)=P_{\mathrm{ISt}}(v) \\
& u \equiv_{\mathrm{rSt}} v \Longleftrightarrow P_{\mathrm{rSt}}(u)=P_{\mathrm{rSt}}(v), \\
& u \equiv_{\mathrm{ITg}} v \Longleftrightarrow P_{\mathrm{ITg}}(u)=P_{\mathrm{ITg}}(v), \text { and } \\
& u \equiv_{\mathrm{r} T g} v \Longleftrightarrow P_{\mathrm{r} T g}(u)=P_{\mathrm{r} T g}(v)
\end{aligned}
$$

The stalactic monoid

Given $w=214244 \in \mathbb{N}^{*}$, we calculate $P_{\mathrm{ISt}}(w)$ and $P_{\mathrm{rSt}}(w)$.
Example ($P_{\text {ISt }}(214244)$)

Example $\left(P_{\text {rSt }}(214244)\right)$

Patience sorting tableau

Definition

We define increasing [decreasing] patience sorting tableaux by example. Let,

$A=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | | 5 |
| 6 | | | , and $B=$| 2 | 5 | 6 |
| :--- | :--- | :--- | .

(1) A and B increase left-to-right in the first row.
(2) A increases top-to-bottom in each column, and
(3) B decreases top-to-bottom in each column.

So A is an increasing patience sorting tableau and B is a decreasing patience sorting tableau.

Q-symbols for stalactic

Let $w=214244$.

Example

$P_{\mathrm{ISt}}(w)=$| 2 | 1 | 4 |
| :--- | :--- | :--- |
| 2 | | 4 |
| | 4 | | and $Q_{\mathrm{ISt}}(w)=$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | | 5 | .

Example

$$
P_{\mathrm{rSt}}(w)=\begin{array}{|l|l|l}
\hline 1 & 2 & 4 \\
\hline & 2 & 4 \\
\cline { 2 - 3 } & 4
\end{array} \text { and } Q_{\mathrm{rSt}}(w)=\begin{array}{|l|l|l|}
\hline 2 & 4 & 6 \\
\hline & 1 & 5 \\
\cline { 2 - 4 }
\end{array} .
$$

Robinson-Schensted-like

Theorem

The map $w \mapsto\left(P_{\mathrm{ISt}}(w), Q_{\mathrm{ISt}}(w)\right)$ [$w \mapsto\left(P_{\mathrm{rSt}}(w), Q_{\mathrm{rSt}}(w)\right)$] is a bijection between the elements of \mathbb{N}^{*} and the set formed by the pairs (T, S) where
(1) T is a stalactic tableau;
(2) S is an increasing [decreasing] patience-sorting tableau;
(3) T and S have the same shape.

The taiga monoid

Given $w=3143223 \in \mathbb{N}^{*}$, we calculate $P_{\mathrm{ITg}}(w)$ and $P_{\mathrm{rTg}}(w)$.

Example ($\left.P_{\text {iTg }}(3143223)\right)$

Example $\left(P_{\mathrm{rTg}}(3143223)\right)$

We call, $P_{\mathrm{ITg}}(w)$ and $P_{\mathrm{rTg}}(w)$, Binary search trees with multiplicities (BSTM).

Binary trees over sets

Definition

We define an increasing [decreasing] binary tree over sets (BTS) by example. Let,

(1) A and B contain exactly the interval $\{1, \ldots, m\}$ for some $m \in \mathbb{N}$,
(2) replacing each node in A with its minimum obtains an increasing tree,
(3) replacing each node in B with its maximum obtains a decreasing tree. So A is an increasing BTS and B is an decreasing BTS.

Q-symbols for stalactic

Let $w=3143223$.

Example

$$
P_{\mathrm{ITg}}(w)=\overbrace{\left.1^{1}\right)_{2^{2}}^{3^{3}}}^{4_{4^{1}}} \text { and } Q_{\mathrm{ITg}}(w)=\underbrace{(1,4,7)}_{(2,5)}
$$

Example

$$
P_{\mathrm{rTg}}(w)=\underset{2^{2}}{3^{2}} \stackrel{3^{3}}{\left(4^{1}\right)} \text { and } Q_{\mathrm{rTg}}(w)=\stackrel{(1,4,7)}{(5,6)(3)}
$$

Robinson-Schensted-like

Theorem

The map $w \mapsto\left(P_{\mathrm{ITg}}(w), Q_{\mathrm{ITg}}(w)\right)\left[w \mapsto\left(P_{\mathrm{rTg}}(w), Q_{\mathrm{rTg}}(w)\right)\right]$ a bijection between the elements of \mathbb{N}^{*} and the set formed by the pairs (T, S) where
(1) T is a BSTM;
(2) S is an increasing [decrasing] BTS such that the union of the sets labelling S is the interval [m], where m is the sum of the multiplicities of T;
(3) T and S have the same underlying binary tree shape;
(9) the multiplicity of the i-th node of T is the cardinality of the set labelling the i-th node of S.

The meet-stalactic and meet-taiga monoid

Let mSt and mTg denote the meet-stalactic and meet taiga monoid.

Definition

Let $P_{\mathrm{mSt}}(w)=\left(P_{\mathrm{ISt}}(w), P_{\mathrm{rSt}}(w)\right)$, and $P_{\mathrm{mTg}}(w)=\left(P_{\mathrm{ITg}}(w), P_{\mathrm{rTg}}(w)\right)$. Then, for $u, v \in \mathbb{N}^{*}$,

$$
\begin{aligned}
u \equiv_{\mathrm{mSt}} v & \Longleftrightarrow P_{\mathrm{mSt}}(u)=P_{\mathrm{mSt}}(v), \text { and } \\
u \equiv_{\mathrm{mTg}} v & \Longleftrightarrow P_{\mathrm{mTg}}(u)=P_{\mathrm{mTg}}(v) .
\end{aligned}
$$

Example

We can equally define a Q-symbol for mSt by
$Q_{\mathrm{mSt}}(w)=\left(Q_{\mathrm{ISt}}(w), Q_{\mathrm{rSt}}(w)\right)$

Example

$P_{\mathrm{mSt}}(214244)=\left(\begin{array}{|l|l|l|}\hline 2 & 1 & 4 \\ \hline 2 & & 4 \\ \hline & 4 & \\ \hline\end{array}, \begin{array}{ll|l|l|}\hline 1 & 2 & 4 \\ \hline\end{array}\right)$ and

$$
Q_{\mathrm{mSt}}(214244)=\left(\right.
$$

Twin stalactic tableaux

Let cont(T) be the multi-set containing every label in T. We say a column is simple if it only contains one block.

Definition

Let T_{L}, T_{R} be stalactic tableaux. We say $\left(T_{L}, T_{R}\right)$ are a pair of twin stalactic tableaux if
(1) $\operatorname{cont}\left(T_{L}\right)=\operatorname{cont}\left(T_{R}\right)$, and
(2) for each simple column labelled c and any column labelled d, if c is left of d in T_{L}, then c is left of d in T_{R}.

Proposition

For any $w \in \mathbb{N}^{*}$, the meet-stalactic P-symbol $\left(P_{\mathrm{ISt}}(w), P_{\mathrm{rSt}}(w)\right)$ of w is a pair of twin stalactic tableaux.

Twin patience-sorting tableaux

Definition

Let $\left(S_{L}, S_{R}\right)$ be a pair of (respectively) increasing and decreasing patience-sorting tableaux. We say $\left(S_{L}, S_{R}\right)$ are a pair of twin patience-sorting tableaux if
(1) there exists a content preserving bijection ϕ between the columns of S_{L} and the columns of S_{R};
(2) for each simple column c and any column d in S_{L}, if c appears to the left of d in S_{L} then $\phi(c)$ appears to the left of $\phi(d)$ in S_{R}.

Proposition

For any $w \in \mathbb{N}^{*}$, the meet-stalactic Q-symbol $\left(Q_{\mathrm{ISt}}(w), Q_{\mathrm{rSt}}(w)\right)$ of w is a pair of twin patience-sorting tableaux.

Robinson-Schensted-like

Theorem

The map $w \mapsto\left(P_{\mathrm{mSt}}(w), Q_{\mathrm{mSt}}(w)\right)$ is a bijection between the elements of \mathbb{N}^{*} and the set formed by the pairs $\left(\left(T_{L}, T_{R}\right),\left(S_{L}, S_{R}\right)\right)$ where
(1) $\left(T_{L}, T_{R}\right)$ is a pair of twin stalactic tableaux;
(2) $\left(S_{L}, S_{R}\right)$ is a pair of twin patience-sorting tableaux with bijection ϕ;
(3) $\left(T_{L}, T_{R}\right)$ and $\left(S_{L}, S_{R}\right)$ have the same shape;
(9) For each column c in S_{L}, the column in T_{L} in the same position as c and the column in T_{R} in the same position as $\phi(c)$, have the same content.

Meet-taiga example

We can equally define a Q-symbol for mTg by
$Q_{\mathrm{mTg}}(w)=\left(P_{\mathrm{ITg}}(w), P_{\mathrm{rTg}}(w)\right)$

Example

Twin binary search trees with multiplicity

Definition

Let T_{L}, T_{R} be BTSMs. We say $\left(T_{L}, T_{R}\right)$ is a pair of twin binary trees with multiplicities (pair of twin BTMs), if for all i,
(1) $\operatorname{cont}\left(T_{L}\right)=\operatorname{cont}\left(T_{R}\right)$.
(2) if the i-th node of T_{L} has multiplicity 1 and has a left (resp. right) child then the i-th node of T_{R} does not have a left (resp. right) child.

Proposition

For any $w \in \mathbb{N}^{*}$, the meet-taiga P-symbol $\left(P_{\mathrm{lTg}}(w), P_{\mathrm{rTg}}(w)\right)$ of w is a pair of twin BTMs.

Twin binary trees over sets

Definition

Let $\left(S_{L}, S_{R}\right)$ be a pair of (respectively) increasing and decreasing BTSs. We say $\left(S_{L}, S_{R}\right)$ are a pair of twin binary trees over sets (pair of twin BTSs) if, for all i,
(1) the i-th node of S_{L} has the same label as the i-th node of S_{R};
(2) if the i-th node of S_{L} is labelled by a set of cardinality 1 and has a left (resp. right) child, then the i-th node of S_{R} does not have a left (resp. right) child.

Proposition

For any $w \in \mathbb{N}^{*}$, the meet-taiga Q-symbol $\left(Q_{\mid \mathrm{Tg}}(w), Q_{\mathrm{r} T \mathrm{~g}}(w)\right)$ of w is a pair of twin BTSs.

Robinson-Schensted-like

Theorem

The map $w \mapsto\left(P_{\mathrm{mTg}}(w), Q_{\mathrm{mTg}}(w)\right)$ is a bijection between the elements of \mathbb{N}^{*} and the set formed by the pairs $\left(\left(T_{L}, T_{R}\right),\left(S_{L}, S_{R}\right)\right)$ where
(1) $\left(T_{L}, T_{R}\right)$ is a pair of twin BSTMs;
(2) $\left(S_{L}, S_{R}\right)$ is a pair of twin $B T S_{s}$;
(3) $\left(T_{L}, T_{R}\right)$ and $\left(S_{L}, S_{R}\right)$ have the same underlying pair of binary trees shape;
(9) the multiplicity of the i-th node of T_{L} (resp. T_{R}) is the cardinality of the set labelling the i-th node of $S_{L}\left(\right.$ resp. $\left.S_{R}\right)$.

Size of stalactic classes

Example

Consider the meet-stalactic tableau,

$$
T=P_{\mathrm{mSt}}(214244)=\left(\begin{array}{|l|l|l|l|l|l|}
\hline 2 & 1 & 4 \\
\hline 2 & & 4 \\
& \begin{array}{ll}
1 & 2
\end{array} & 4 \\
\hline
\end{array}, \begin{array}{lll}
4 & & 2 \\
\hline
\end{array}\right)
$$

Then, we define the following poset: $\psi_{\mathrm{mSt}}(T)=$

Size of stalactic classes

Proposition

Let $w \in \mathbb{N}^{*}$. Then, each word in $[w]_{\mathrm{m} S t}$ is in bijection with a linear extension of $\psi_{\mathrm{mSt}}\left(P_{\mathrm{mSt}}(w)\right)$.

Proposition

There exists an algorithm to compute the number of linear extensions of $\psi_{\mathrm{mst}}(T)$ has time complexity $\mathcal{O}\left(n^{2 k-2} k\right.$!) where n is the number of nodes and k is the size of the support.

Theorem

Let $k \geq 2, V=\left(v_{1}, \ldots, v_{k}\right) \in \mathbb{N}_{0}^{k}, B=\left(b_{1}, \ldots, b_{k-1}\right) \in \mathbb{N}_{0}^{k-1}$ and σ be a permutation of $[k]$. Then, when $\sigma_{1}<\sigma_{2}, \mathcal{L}(G[V ; B ; \sigma])$ is equal to

$$
\sum_{\substack{M \in \mathbb{N}_{o}^{\sigma_{2}-\sigma_{1}} \\ 0 \leq \leq M \|_{1} \leq v_{\sigma_{1}}}} \mathcal{L}_{M} \cdot\binom{v_{\sigma_{2}}-1+v_{\sigma_{1}}-\|M\|_{1}}{v_{\sigma_{1}}-\|M\|_{1}} \prod_{i=1}^{\sigma_{2}-\sigma_{1}}\binom{b_{\sigma_{1}-1+i}+m_{i}}{m_{i}}
$$

where $\mathcal{L}_{M}=1$ if $k=2$ and $\mathcal{L}_{M}=\mathcal{L}\left(G\left[f_{k, \sigma_{1}, \sigma_{2}, M}(V, B) ; \operatorname{Std}\left(\sigma_{2} \sigma_{3} \cdots \sigma_{k}\right)\right]\right)$ otherwise, and, when $\sigma_{2}<\sigma_{1}$, is equal to

$$
\sum_{\substack{M \in \mathbb{N}_{0}^{\sigma_{1}-\sigma_{2}} \\ 0 \leq\|M\|_{1} \leq v_{\sigma_{2}}-1}} \mathcal{L}_{M}^{\prime} \cdot\binom{v_{\sigma_{1}}+v_{\sigma_{2}}-1-\|M\|_{1}}{v_{\sigma_{2}}-1-\|M\|_{1}} \prod_{i=1}^{\sigma_{1}-\sigma_{2}}\binom{b_{\sigma_{2}-1+i}+m_{i}}{m_{i}},
$$

where $\mathcal{L}_{M}^{\prime}=1$ if $k=2$ and $\mathcal{L}_{M}^{\prime}=\mathcal{L}\left(G\left[f_{k, \sigma_{2}, \sigma_{1}, M}(V, B) ; \operatorname{Std}\left(\sigma_{1} \sigma_{3} \cdots \sigma_{k}\right)\right]\right)$ otherwise.

The Algorithm

Example

So, $[214244]_{\mathrm{mSt}}=3$.

Size of taiga classes

Example

Consider the meet-taiga tableau,

Then, we define the following poset: $\psi_{\mathrm{m} T \mathrm{~g}}(T)=$

Size of taiga classes

Proposition

Let $w \in \mathbb{N}^{*}$. Then, each word in $[w]_{\mathrm{m} T g}$ is in bijection with a linear extension of $\psi_{\mathrm{mTg}}\left(P_{\mathrm{mTg}}(w)\right)$.

Theorem

Let $Q_{\mathrm{mTg}}(w)=T=\left(T_{L}, T_{R}\right)$. Then,

$$
\mathcal{L}\left(\psi_{\mathrm{m} T \mathrm{~g}}(T)\right)=\sum_{L} \sum_{R} \mathcal{L}\left(\mathrm{mSt}\left(P_{\mathrm{mSt}}\left(w_{L, R}\right)\right)\right.
$$

where the first sum is over all linear extensions L of $\Delta\left(T_{L}\right)$ and the second sum is over all linear extensions R of $\nabla\left(T_{R}, p_{L}\right)$ where $a<x$ in p_{L} if and only if a is simple in $\left(T_{L}, T_{R}\right)$ and $a<x$ in L.

The Algorithm

Example

So, $[214244]_{\mathrm{mTg}}=[214244]_{\mathrm{mSt}}+[241244]_{\mathrm{mSt}}$.

The Algorithm

Example

So, $[214244]_{\mathrm{mTg}}=3+3=6$.

Size of taiga classes

Proposition

There exists an algorithm to compute the number of linear extensions of $\psi_{\mathrm{mTg}}(T)$ has time complexity $\mathcal{O}\left(n^{2 k-2}(k!)^{3}\right)$ where n is the number of nodes and k is the size of the support.

