Decision problems for one-relator monoids and groups

Islam Foniqi joint work with R. D. GRAY & C.-F. NYBERG-BRODDA

School of Mathematics

North British Semigroups and Applications Network April 14th, 2023 Manchester

Islam Foniqi

NBSAN

Decision problems

Decision problem = question with YES/NO answer, on a countable set of inputs.

Example

(i) Is $n \in \mathbb{N}$ a prime number?

Trial division.

(ii) Are $m, n \in \mathbb{N}$ relatively prime?

Euclid's algorithm.

(iii) Are two finite simplicial complexes homeomorphic?

Undecidable (passes through the isomorphism problem in groups)

Decision problems

A set $S \subseteq \mathbb{N}$ is called decidable if there is an algorithm:

- which takes $n \in \mathbb{N}$ as input,
- terminates after a finite amount of time, and
- $\bullet\,$ correctly decides whether n belongs to S or not.

There are undecidable sets $S \subset \mathbb{N}$.

A decision problem is called decidable \iff there is an algorithm:

- taking as input each instance of the problem,
- terminates in finitely many steps, and
- correctly decides an answer YES/NO for each instance.

Key points of algorithms

- Finite nature; no infinite length.
- "Infinite loops" are not allowed.
- No infinitely many distinct algorithms, one for each instance.

• (Logic, 1930s, Church and Turing) There is no method (algorithm) for deciding which formulas of first-order logic are valid.

• (1950s) Undecidable decision problems appeared outside the area of Logic (e.g. in monoid/group theory).

Some algebraic structures

This talk consists of decision problems in three algebraic structures:

(i) Monoids, (ii) Inverse monoids, (iii) Groups.

Definition

Let (S, \cdot) be a set together with a operation $\cdot : S \times S \to S$. Then:

$$\begin{array}{cc} (as) & a \cdot (b \cdot c) = (a \cdot b) \cdot c \\ (id) & (\exists \ 1 \in S) \ (\forall a \in S) : 1 \cdot a = a \cdot 1 = a \\ (inv) & (\forall a \in S) \ (\exists a' \in S) : a \cdot a' = a' \cdot a = 1 \end{array} \right\} \operatorname{monoid} \\ \end{array} \right\} \operatorname{group}$$

Example

- (1) $(\mathbb{N}, +)$ is a semigroup.
- (2) $(\mathbb{N}_0, +)$ is a monoid.
- (3) $(\mathbb{Z}, +)$ is a group.

Some algebraic structures

Definition

An inverse monoid is a monoid M such that $\forall x \in M, \exists !x' \in M \text{ with } xx'x = x \text{ and } x'xx' = x'.$

- groups \longleftrightarrow symmetries,
- monoids \longleftrightarrow transformations,
- inverse monoids \leftrightarrow partial symmetries.

Example

Let S be a given set. Then

- Permutations $f: S \hookrightarrow S$ form a group.
- Functions $f: S \to S$ form a monoid.
- $\mathcal{I}_S = \{ \text{bijections } f : A \hookrightarrow B \mid A, B \subset S \}$ forms an inverse monoid, operation = "compose wherever possible".

Presentations by generators and relators

 $A=\ensuremath{\mathsf{finite}}$ set. Denote by A^* the free monoid over A, i.e.

 $A^* = \{ \text{all words with letters in } A \},\$

including the empty word λ . Operation = 'Concatenation of words'.

Example: For $A = \{a, b\}$, we have λ , aba, baabaaa as words in A^* .

Denote by $\operatorname{Gp}\langle A | R \rangle$, $\operatorname{Mon}\langle A | R \rangle$, $\operatorname{Inv}\langle A | R \rangle$ presentations of groups, monoids, and inverse monoids respectively.

Example

•
$$\operatorname{Gp}\langle a, b \mid ab = ba \rangle \simeq \mathbb{Z}^2.$$

•
$$\operatorname{Mon}\langle a, b \mid ab = ba \rangle \simeq \mathbb{N}_0^2$$
.

Word problems in monoids

Let $M = \operatorname{Mon}\langle A | R \rangle$ be a monoid.

• Word problem for M is decidable if there is an algorithm solving the decision problem:

Input: $w_1, w_2 \in A^*$. Output: YES if $w_1 = w_2$ in M; NO if $w_1 \neq w_2$ in M.

Theorem

The word problem is decidable in free monoids.

Proof.

A =alphabet, $M = A^*$, and $w_1, w_2 \in M$.

 $w_1 = w_2$ in $M \iff$ both words look graphically the same.

Word problems in monoids

Theorem (Markov, Post (1947))

The word problem for finitely presented monoids is undecidable in general.

Remark. There are known examples of such monoids, with 3 relations.

Remark

The word problem is still open for monoids with 1 (or 2) relations.

Word problems in groups

Word problem for $\operatorname{Gp}\langle A | R \rangle$ is decidable if there is an algorithm determining if a word w is the identity.

Theorem

The word problem is decidable in free groups.

Theorem (Novikov (1955), Boone (1958))

There exist finitely presented groups G with undecidable word problem.

Remark. All known examples of such groups have at least 12 relations.

Group presentation with one defining relator:

$$G = \operatorname{Gp}\langle a_1, \ldots, a_n \mid r \rangle$$

where r is a word in $\{a_1, \ldots, a_n\}^*$.

Example

•
$$\mathbb{Z}^2 = \operatorname{Gp}\langle a, b \mid ab = ba \rangle = \pi_1 (\boldsymbol{\textcircled{S}})$$

• Generalizing the first example, we obtain:

$$S_g = \pi_1 \left(\bigcirc \bigcirc \bigcirc \right)$$

= $\operatorname{Gp}\langle a_1, b_1, \dots, a_g, b_g \mid a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_g b_g a_g^{-1} b_g^{-1} \rangle$
$$K = \operatorname{Gp}\langle a, b \mid a^2 = b^2 \rangle = \pi_1 \left(\bigcirc \oslash \right)$$

•
$$K_g = \operatorname{Gp}\langle a_1, \ldots, a_g \mid a_1^2 \cdots a_g^2 \rangle$$
, non-orientable surfaces.

• $BS(m,n) = \operatorname{Gp}\langle a,b \, | \, ba^m a^{-1} = a^n \rangle$, Baumslag-Solitar groups.

Classical results on one-relator groups

- Magnus (1932): One-relator groups have solvable word problem.
- Magnus Freiheitssatz: $G = \operatorname{Gp}\langle A \mid r \rangle$, r = cyclically reduced.If $B \subsetneq A$, then $\operatorname{Gp}\langle B \rangle$ is free. Example: $\operatorname{Gp}\langle a, b \rangle$ is free of rank 2 in $\operatorname{Gp}\langle a, b, c \mid a^2b^2c^2 = 1 \rangle$.
- Newman (1968): If $r = u^k$ with k > 1, then G is hyperbolic.
- Howie (1980s): If $r \neq u^k$ for some k > 1, the G is locally indicable: i.e. for any fin. gen. $H \leq G$, there is a surjective homomorphism

$$\varphi:H\longrightarrow\mathbb{Z}.$$

 Linton (2023) Coherence: When finitely generated subgroups are finitely presented.
 Louder and Wilton / Wise independently dealt with the torsion case.

Open problems

- Conjugacy problem: Given two elements g_1, g_2 in a group, decide whether $g_1 = hg_2h^{-1}$ for some h.
- The isomorphism problem: Given two one-relator groups G_1, G_2 , decide if $G_1 \simeq G_2$.
- Is G hyperbolic if G does not contain Baumslag-Solitar groups?

Classical cases of word problem in one-relator monoids

Let $M = Mon \langle A | U = V \rangle$ with $|U| \ge |V|$. M has solvable word problem: • If |U| = |V|,

- If V = 1; this case reduces to Magnus' result on 1-relator groups.
- If |U| > |V| and U does not have self-overlaps.

Moreover, $U \longrightarrow V$ gives a complete rewriting system for M.

A word W has self-overlaps if there is a subword S of W which is both a prefix and a suffix of W, i.e. W = SR = LS.

 $w = \underline{ab}\underline{bab}$ has self-overlaps with S = ab, L = abb, R = bab

Reductions and remaining cases

Theorem (Adjan, Oganesyan (1987))

WP for 1-relator monoids can be reduced to the case with 2 generators: $M = \mathrm{Mon} \langle a, b \ | \ U = V \rangle.$

Theorem (Adjan, Oganesyan (1987))

WP for 1-relator monoids can be reduced to the following two cases:

(i)
$$M = \operatorname{Mon}\langle a, b \mid bQa = aRa \rangle$$
,

(ii)
$$M = \operatorname{Mon}\langle a, b \mid bQa = a \rangle$$
.

Theorem (Ivanov, Margolis, Meakin (2001))

(i) $\operatorname{Mon}\langle a, b | bQa = aRa \rangle$ embeds into $\operatorname{Inv}\langle a, b | a^{-1}R^{-1}a^{-1}bQa \rangle$. (ii) $\operatorname{Mon}\langle a, b | bQa = a \rangle$ embeds into $\operatorname{Inv}\langle a, b | a^{-1}bQa \rangle$.

One-relator case: Decidable WP for INV \implies decidable WP for MON.

Theorem (Gray (2020))

There is a one-relator $Inv\langle A | w = 1 \rangle$ with undecidable word problem.

- Gray's example is not of the form (i), (ii) from the IMM theorem.
- One could still investigate the solution of the word problem for one-relator monoids, through their inverse counterpart.

The case bQa = a

Theorem (Adjan)

The monoid
$$M = Mon\langle a, b | bQa = a \rangle$$
 is left-cancellative, i.e.
 $WU = WV$ implies $U = V$.

Given two words, steps to decide if they are equal are given as follows:

$$\begin{array}{ll} (i) & (bX, bY) \longrightarrow (X, Y) \\ (ii) & (aX, aY) \longrightarrow (X, Y) \\ (iii) & (bX, aY) \longrightarrow (bX, bQaY) \longrightarrow (X, QaY) \end{array}$$

and we stop if one of the words becomes empty.

Prefix membership problem

The prefix membership problem in $M = Mon\langle A | u = v \rangle$ asks about membership in $P = Mon\langle prefixes of the each u, v \rangle$.

Similarly, one defines the suffix membership problem.

Example

Let
$$M = Mon\langle a, b, c \mid ab = aca \rangle$$
. Then:
 $P = Mon\langle a, ab, ac \rangle$
 $S = Mon\langle b, ab, a, ca \rangle$

Remark. The prefix/suffix monoid depend on the presentation. Indeed: $G_1 = \operatorname{Gp}\langle a, b \mid aba = 1 \rangle$ and $G_2 = \operatorname{Gp}\langle a, b \mid baa = 1 \rangle$ are isomorphic to \mathbb{Z} . $P_1 = \operatorname{Mon}\langle a, ab = a^{-1} \rangle \simeq \mathbb{Z}, \quad P_2 = \operatorname{Mon}\langle b = a^{-2}, ba = a^{-1} \rangle$ $= \operatorname{Mon}\langle 1, a^{-1}, a^{-2}, a^{-3}, \ldots \rangle \simeq \mathbb{N}_0.$

Submonoid (subgroup) membership problem

• Submonoid membership problem:

N - a finitely generated submonoid of $M = \operatorname{Mon} \langle A \mid R \rangle$. The submonoid membership problem for N within M is decidable if there is an algorithm solving the decision problem:

Input: $w \in A^*$.Output:YES if $w \in N$; NO if $w \notin N$.

Remark. $M = Mon \langle A | R \rangle$ has decidable submonoid membership problem, if there is a uniform algorithm for submonoid membership within M.

- Subgroup membership problem: *H* - a finitely generated submonoid of *G* = Gp⟨*A* | *R*⟩. The subgroup membership problem for *N* within *M* is decidable if there is an algorithm solving the decision problem: Input: *w* ∈ (*A* ∪ *A*⁻¹)*.
 - **Output:** YES if $w \in H$; NO if $w \notin H$.

Submonoid membership problem

Theorem (Benois (1969))

The submonoid membership problem is decidable in free groups.

Theorem (Cadilhac et al. (2020))

Baumslag-Solitar groups of the form

$$BS(1,q) = \operatorname{Gp}\langle a,t \mid tat^{-1} = a^q \rangle$$

for $q \in \mathbb{N}$ have decidable submonoid membership problem.

Motivation for the membership problems

Theorem (Guba)

Given $M = Mon\langle a, b | b = bQa \rangle$, there exists a finite set C and a positive word U over $\{a, b\} \cup C$ such that if $G = Gp\langle a, b, C | a^{-1}bUa = 1 \rangle$ has decidable suffix membership problem then M has decidable word problem.

Note. $G = \operatorname{Gp}\langle a, b, C | bU = 1 \rangle$, is a positive one-relator group.

Remark

Decidable submonoid membership \implies decidable suffix membership.

Corollary

 $M={\rm Mon}\big\langle a,b\,|\,b=bQa\big\rangle$ would have decidable word problem, if positive one-relator groups had decidable submonoid membership problem.

Motivation: study of submonoid membership problem in positive one-relator groups.

Islam Foniqi

Some 'bad' groups...

Right-angled Artin groups (RAAGs):

$$P_4 = \underbrace{\begin{array}{c}a & b & c & d\\ \bullet & \bullet & \bullet \end{array}}_{a & b} \qquad C_4 = \underbrace{\begin{array}{c}d & c\\ \bullet & \bullet & \bullet\\ a & b\end{array}}_{a & b}$$

Define $A(P_4)$, $A(C_4)$ from the information encoded in P_4, C_4 respectively: $A(P_4) \coloneqq \operatorname{Gp}\langle a, b, c, d \mid ab = ba, bc = cb, cd = dc \rangle$ $A(C_4) \coloneqq \operatorname{Gp}\langle a, b, c, d \mid ab = ba, bc = cb, cd = dc, da = ad \rangle \simeq F_2 \times F_2$

Theorem

- Lohrey and Stainberg (2008) There is a finitely generated submonoid M in $A(P_4)$ with undecidable submonoid membership.
- *Mihailova (1966)* There is a subgroup *H* in *G*₂ such that the subgroup membership problem for *M* within *G*₂ is undecidable.

Theorem (Gray (2019))

There is a one-relator group, e.g. $G = \text{Gp}\langle a, t | a(tat^{-1}) = (tat^{-1})a \rangle$, with a fixed fin. gen. submonoid N where membership is undecidable.

Question: What about one-relator monoids $Mon\langle A | w = 1 \rangle$?

Theorem (Gray, Foniqi, Nyberg-Brodda (2022))

There is a group $G = \text{Gp}\langle a, b | w = 1 \rangle$ defined by a positive relation w, with undecidable submonoid membership problem.

E.g. $G = \operatorname{Gp}\langle x, y | x^2y^2 = y^2x^{-2} \rangle \cong \operatorname{Mon}\langle a, b | ba^2ba^4ba^2b = 1 \rangle$; the isomorphism is given by y = a and $x = ba^2$ (Perrin & Schup, (1984).

Corollary

There is a one-relator special monoid $M = Mon\langle a, b | w = 1 \rangle$, with undecidable submonoid membership problem.

Islam Foniqi

NBSAN

April 14th, 2023 24 / 31

Rational subset membership problem

Given a monoid M, denote by RAT(M) the smallest subset of $\mathcal{P}(M)$

- $\bullet\,$ containing all finite subsets of M, and
- closed under union, product, and Kleene hull.

Rational subset membership problem:

R - a rational subset of $M = Mon \langle A | R \rangle$. The rational subset membership problem for R within M is decidable if there is an algorithm solving the decision problem: Input: $w \in A^*$. Output: YES if $w \in R$; NO if $w \notin R$.

Theorem (Kambites, Render (2007))

The bicyclic monoid $B = Mon \langle a, b | ab = 1 \rangle$ has decidable rational subset membership. Moreover, they describe rational subsets of this monoid.

Theorem (Lohrey, Steinberg (2007))

The rational subset membership problem for RAAGs is decidable if and only if the defining graph does not contain A_4 and C_4 .

Theorem (Kambites (2009, 2011))

As the length |u| + |v| increases, the probability that a randomly chosen one-relation monoid $Mon\langle A | u = v \rangle$ has a decidable rational subset membership problem tends to 1.

Rational subset membership problem

Two elements $x, y \in M$ are \mathcal{L} -related if Mx = My.

Theorem (Gray, Foniqi, Nyberg-Brodda (2023))

Let M be a fin. gen. left-cancellative monoid. If there is $U\subseteq M$ with

- $uv\mathcal{L}v$ for all $u, v \in U$,
- $\operatorname{Mon}\langle U \rangle$ is isomorphic to the trace monoid $T(P_4)$,

then M contains a rational subset in which membership is undecidable.

Denote
$$S(P_4) = \operatorname{Sgp}\langle a, b, c, d \mid ab = ba, bc = cb, cd = dc \rangle$$
.

Corollary

If a left-cancellative monoid embeds $S(P_4)$ in a single \mathcal{L} -class, then the monoid contains a rational subset in which membership is undecidable.

Rational subset membership problem

Theorem

For all $m, n \ge 2$, the monoid $\mathcal{M}_{m,n} = \operatorname{Mon}\langle a, b | (ba^n)^m (a^n b)^m a = a \rangle$ contains a fixed rational subset in which membership is undecidable.

Note: The monoids above do not contain nontrivial groups. In particular, $A(P_4)$ does not lie in $\mathcal{M}_{m,n}$.

Corollary

If G is a fin. gen. group which embeds $T(P_4)$ then G contains a fixed rational subset where membership is undecidable.

Prefix membership problem in one-relator structures

Theorem (Gray, Foniqi, Nyberg-Brodda (2023))

G positive one-relator group, Q any finitely generated submonoid of G. There exists a quasi-positive one-relator group G' such that:

decidable prefix membership problem for G' \downarrow membership problem for Q in G is decidable.

Furthermore, G' can be chosen such that $G' \cong G * \mathbb{Z}$.

Prefix membership problem in one-relator structures

Corollary

There exists a quasi-positive one-relator group

$$G = \mathrm{Gp}\langle a, b, t \mid uv^{-1} \rangle,$$

with undecidable prefix membership problem.

Proof.

(i) $G_1 = \operatorname{Gp}\langle a, b | w = 1 \rangle$ positive, with undecidable submonoid membership problem in a fixed $M = \operatorname{Mon}\langle w_1, w_2, \dots, w_k \rangle$

(ii) encode the \boldsymbol{w}_i into prefixes of the defining relator of a group

$$G_2 = \operatorname{Gp} \langle A \cup \{t\} \mid \beta w \beta^{-1} = 1 \rangle \cong G_1 * \mathbb{Z},$$

technique of Dolinka $\&\ {\rm Gray}$

(iii) As β might not be a positive word; use isomorphisms to change to: $G_3 = \operatorname{Gp}\langle A \cup \{t\} \mid \alpha w' \alpha^{-1} = 1 \rangle \cong G_2,$

where α and w' are positive words.

Islam Foniqi

NBSAN

Thank you for your attention!