Decision problems for one-relator monoids and groups

Islam Foniqi
joint work with R. D. GRAY \& C.-F. NYBERG-BRODDA

School of Mathematics

University of East Anglia

North British Semigroups and Applications Network
April 14th, 2023
Manchester

Decision problems

Decision problem $=$ question with YES/NO answer, on a countable set of inputs.

Example

(i) Is $n \in \mathbb{N}$ a prime number?

Trial division.
(ii) Are $m, n \in \mathbb{N}$ relatively prime?

Euclid's algorithm.
(iii) Are two finite simplicial complexes homeomorphic?

Undecidable (passes through the isomorphism problem in groups)

Decision problems

A set $S \subseteq \mathbb{N}$ is called decidable if there is an algorithm:

- which takes $n \in \mathbb{N}$ as input,
- terminates after a finite amount of time, and
- correctly decides whether n belongs to S or not.

There are undecidable sets $S \subset \mathbb{N}$.

A decision problem is called decidable \Longleftrightarrow there is an algorithm:

- taking as input each instance of the problem,
- terminates in finitely many steps, and
- correctly decides an answer YES/NO for each instance.

Key points of algorithms

- Finite nature; no infinite length.
- "Infinite loops" are not allowed.
- No infinitely many distinct algorithms, one for each instance.

Some early results on undecidability

- (Logic, 1930s, Church and Turing) There is no method (algorithm) for deciding which formulas of first-order logic are valid.
- (1950s) Undecidable decision problems appeared outside the area of Logic (e.g. in monoid/group theory).

Some algebraic structures

This talk consists of decision problems in three algebraic structures:
(i) Monoids,
(ii) Inverse monoids,
(iii) Groups.

Definition

Let (S, \cdot) be a set together with a operation $\cdot: S \times S \rightarrow S$. Then:

$$
\begin{aligned}
& \text { (as) } a \cdot(b \cdot c)=(a \cdot b) \cdot c\} \text { semigroup } \\
& \text { (id) } \quad(\exists 1 \in S)(\forall a \in S): 1 \cdot a=a \cdot 1=a \\
& \text { (inv) } \quad(\forall a \in S)\left(\exists a^{\prime} \in S\right): a \cdot a^{\prime}=a^{\prime} \cdot a=1
\end{aligned}
$$

Example

(1) $(\mathbb{N},+)$ is a semigroup.
(2) $\left(\mathbb{N}_{0},+\right)$ is a monoid.
(3) $(\mathbb{Z},+)$ is a group.

Some algebraic structures

Definition

An inverse monoid is a monoid M such that $\forall x \in M, \exists!x^{\prime} \in M$ with $x x^{\prime} x=x$ and $x^{\prime} x x^{\prime}=x^{\prime}$.

- groups \longleftrightarrow symmetries,
- monoids \longleftrightarrow transformations,
- inverse monoids \longleftrightarrow partial symmetries.

Example

Let S be a given set. Then

- Permutations $f: S \hookrightarrow S$ form a group.
- Functions $f: S \rightarrow S$ form a monoid.
- $\mathcal{I}_{S}=\{$ bijections $f: A \hookrightarrow B \mid A, B \subset S\}$ forms an inverse monoid, operation $=$ "compose wherever possible".

Presentations by generators and relators

$A=$ finite set. Denote by A^{*} the free monoid over A, i.e. $A^{*}=\{$ all words with letters in $A\}$,
including the empty word λ. Operation $=$ 'Concatenation of words'.
Example: For $A=\{a, b\}$, we have $\lambda, a b a, b a a b a a a$ as words in A^{*}.
Denote by $\operatorname{Gp}\langle A \mid R\rangle, \operatorname{Mon}\langle A \mid R\rangle, \operatorname{Inv}\langle A \mid R\rangle$ presentations of groups, monoids, and inverse monoids respectively.

Example

- $\operatorname{Gp}\langle a, b \mid a b=b a\rangle \simeq \mathbb{Z}^{2}$.
- $\operatorname{Mon}\langle a, b \mid a b=b a\rangle \simeq \mathbb{N}_{0}^{2}$.

Word problems in monoids

Let $M=\operatorname{Mon}\langle A \mid R\rangle$ be a monoid.

- Word problem for M is decidable if there is an algorithm solving the decision problem:
Input: $\quad w_{1}, w_{2} \in A^{*}$.
Output: YES if $w_{1}=w_{2}$ in M; NO if $w_{1} \neq w_{2}$ in M.

Theorem

The word problem is decidable in free monoids.

Proof.

$A=$ alphabet, $M=A^{*}$, and $w_{1}, w_{2} \in M$.

$$
w_{1}=w_{2} \text { in } M \Longleftrightarrow \text { both words look graphically the same. }
$$

Word problems in monoids

Theorem (Markov, Post (1947))

The word problem for finitely presented monoids is undecidable in general.

Remark. There are known examples of such monoids, with 3 relations.

Remark

The word problem is still open for monoids with 1 (or 2) relations.

Word problems in groups

Word problem for $\operatorname{Gp}\langle A \mid R\rangle$ is decidable if there is an algorithm determining if a word w is the identity.

Theorem

The word problem is decidable in free groups.

Theorem (Novikov (1955), Boone (1958))

There exist finitely presented groups G with undecidable word problem.

Remark. All known examples of such groups have at least 12 relations.

One-relator groups

Group presentation with one defining relator:

$$
G=\operatorname{Gp}\left\langle a_{1}, \ldots, a_{n} \mid r\right\rangle
$$

where r is a word in $\left\{a_{1}, \ldots, a_{n}\right\}^{*}$.

Example

- $\mathbb{Z}^{2}=\mathrm{Gp}\langle a, b \mid a b=b a\rangle=\pi_{1}$ (
- Generalizing the first example, we obtain:

$$
\begin{aligned}
S_{g} & =\pi_{1}(\\
& =\operatorname{Gp}\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}\right\rangle
\end{aligned}
$$

- $K=\operatorname{Gp}\left\langle a, b \mid a^{2}=b^{2}\right\rangle=\pi_{1}$ ($)$
- $K_{g}=\operatorname{Gp}\left\langle a_{1}, \ldots, a_{g} \mid a_{1}^{2} \cdots a_{g}^{2}\right\rangle$, non-orientable surfaces.
- $B S(m, n)=\operatorname{Gp}\left\langle a, b \mid b a^{m} a^{-1}=a^{n}\right\rangle$, Baumslag-Solitar groups.

Classical results on one-relator groups

- Magnus (1932): One-relator groups have solvable word problem.
- Magnus Freiheitssatz: $G=\operatorname{Gp}\langle A \mid r\rangle, r=$ cyclically reduced. If $B \subsetneq A$, then $\operatorname{Gp}\langle B\rangle$ is free.
Example: $\operatorname{Gp}\langle a, b\rangle$ is free of rank 2 in $\operatorname{Gp}\left\langle a, b, c \mid a^{2} b^{2} c^{2}=1\right\rangle$.
- Newman (1968): If $r=u^{k}$ with $k>1$, then G is hyperbolic.
- Howie (1980s): If $r \neq u^{k}$ for some $k>1$, the G is locally indicable: i.e. for any fin. gen. $H \leqslant G$, there is a surjective homomorphism

$$
\varphi: H \longrightarrow \mathbb{Z}
$$

- Linton (2023) Coherence: When finitely generated subgroups are finitely presented.
Louder and Wilton / Wise independently dealt with the torsion case.

Open problems

- Conjugacy problem: Given two elements g_{1}, g_{2} in a group, decide whether $g_{1}=h g_{2} h^{-1}$ for some h.
- The isomorphism problem: Given two one-relator groups G_{1}, G_{2}, decide if $G_{1} \simeq G_{2}$.
- Is G hyperbolic if G does not contain Baumslag-Solitar groups?

Classical cases of word problem in one-relator monoids

Let $M=\operatorname{Mon}\langle A \mid U=V\rangle$ with $|U| \geq|V| . M$ has solvable word problem:

- If $|U|=|V|$,
- If $V=1$; this case reduces to Magnus' result on 1-relator groups.
- If $|U|>|V|$ and U does not have self-overlaps.

Moreover, $U \longrightarrow V$ gives a complete rewriting system for M.
A word W has self-overlaps if there is a subword S of W which is both a prefix and a suffix of W, i.e. $W=S R=L S$.

$w=\underline{a b} b \underline{a b}$ has self-overlaps with $S=a b, L=a b b, R=b a b$

Reductions and remaining cases

Theorem (Adjan, Oganesyan (1987))

WP for 1-relator monoids can be reduced to the case with 2 generators:

$$
M=\operatorname{Mon}\langle a, b \mid U=V\rangle
$$

Theorem (Adjan, Oganesyan (1987))

WP for 1-relator monoids can be reduced to the following two cases:
(i) $M=\operatorname{Mon}\langle a, b \mid b Q a=a R a\rangle$,
(ii) $M=\operatorname{Mon}\langle a, b \mid b Q a=a\rangle$.

A digression to one-relator inverse monoids

Theorem (Ivanov, Margolis, Meakin (2001))

(i) $\operatorname{Mon}\langle a, b \mid b Q a=a R a\rangle$ embeds into $\operatorname{Inv}\left\langle a, b \mid a^{-1} R^{-1} a^{-1} b Q a\right\rangle$.
(ii) $\operatorname{Mon}\langle a, b \mid b Q a=a\rangle \quad$ embeds into $\operatorname{Inv}\left\langle a, b \mid a^{-1} b Q a\right\rangle$.

One-relator case: Decidable WP for INV \Longrightarrow decidable WP for MON.

Theorem (Gray (2020))

There is a one-relator $\operatorname{Inv}\langle A \mid w=1\rangle$ with undecidable word problem.

- Gray's example is not of the form $(i),(i i)$ from the IMM theorem.
- One could still investigate the solution of the word problem for one-relator monoids, through their inverse counterpart.

The case $b Q a=a$

Theorem (Adjan)

The monoid $M=\operatorname{Mon}\langle a, b \mid b Q a=a\rangle$ is left-cancellative, i.e.

$$
W U=W V \text { implies } U=V \text {. }
$$

Given two words, steps to decide if they are equal are given as follows:
(i) $\quad(b X, b Y) \longrightarrow(X, Y)$
(ii) $\quad(a X, a Y) \longrightarrow(X, Y)$
(iii) $(b X, a Y) \longrightarrow(b X, b Q a Y) \longrightarrow(X, Q a Y)$
and we stop if one of the words becomes empty.

Prefix membership problem

The prefix membership problem in $M=\operatorname{Mon}\langle A \mid u=v\rangle$ asks about membership in $P=\operatorname{Mon}\langle$ prefixes of the each $u, v\rangle$.
Similarly, one defines the suffix membership problem.

Example

Let $M=\operatorname{Mon}\langle a, b, c \mid a b=a c a\rangle$. Then:

$$
\begin{aligned}
P & =\operatorname{Mon}\langle a, a b, a c\rangle \\
S & =\operatorname{Mon}\langle b, a b, a, c a\rangle
\end{aligned}
$$

Remark. The prefix/suffix monoid depend on the presentation. Indeed: $G_{1}=\operatorname{Gp}\langle a, b \mid a b a=1\rangle$ and $G_{2}=\operatorname{Gp}\langle a, b \mid b a a=1\rangle$ are isomorphic to \mathbb{Z}.

$$
\begin{aligned}
P_{1}=\operatorname{Mon}\left\langle a, a b=a^{-1}\right\rangle \simeq \mathbb{Z}, \quad P_{2} & =\operatorname{Mon}\left\langle b=a^{-2}, b a=a^{-1}\right\rangle \\
& =\operatorname{Mon}\left\langle 1, a^{-1}, a^{-2}, a^{-3}, \ldots\right\rangle \simeq \mathbb{N}_{0}
\end{aligned}
$$

Submonoid (subgroup) membership problem

- Submonoid membership problem:
N - a finitely generated submonoid of $M=\operatorname{Mon}\langle A \mid R\rangle$.
The submonoid membership problem for N within M is decidable if there is an algorithm solving the decision problem:
Input: $\quad w \in A^{*}$.
Output: YES if $w \in N$; NO if $w \notin N$.

Remark. $M=\operatorname{Mon}\langle A \mid R\rangle$ has decidable submonoid membership problem, if there is a uniform algorithm for submonoid membership within M.

- Subgroup membership problem:
H - a finitely generated submonoid of $G=\operatorname{Gp}\langle A \mid R\rangle$.
The subgroup membership problem for N within M is decidable if there is an algorithm solving the decision problem:
Input: $\quad w \in\left(A \cup A^{-1}\right)^{*}$.
Output: YES if $w \in H$; NO if $w \notin H$.

Submonoid membership problem

Theorem (Benois (1969))

The submonoid membership problem is decidable in free groups.

Theorem (Cadilhac et al. (2020))

Baumslag-Solitar groups of the form

$$
B S(1, q)=\operatorname{Gp}\left\langle a, t \mid t a t^{-1}=a^{q}\right\rangle
$$

for $q \in \mathbb{N}$ have decidable submonoid membership problem.

Motivation for the membership problems

Theorem (Guba)

Given $M=\operatorname{Mon}\langle a, b \mid b=b Q a\rangle$, there exists a finite set C and a positive word U over $\{a, b\} \cup C$ such that if $G=\operatorname{Gp}\left\langle a, b, C \mid a^{-1} b U a=1\right\rangle$ has decidable suffix membership problem then M has decidable word problem.

Note. $G=\operatorname{Gp}\langle a, b, C \mid b U=1\rangle$, is a positive one-relator group.

Remark

Decidable submonoid membership \Longrightarrow decidable suffix membership.

Corollary

$M=\operatorname{Mon}\langle a, b \mid b=b Q a\rangle$ would have decidable word problem, if positive one-relator groups had decidable submonoid membership problem.

Motivation: study of submonoid membership problem in positive one-relator groups.

Some 'bad' groups...

Right-angled Artin groups (RAAGs):

$$
P_{4}=\stackrel{a}{\bullet} \quad b \quad c \quad c
$$

Define $A\left(P_{4}\right), A\left(C_{4}\right)$ from the information encoded in P_{4}, C_{4} respectively:

$$
\begin{aligned}
& A\left(P_{4}\right):=\operatorname{Gp}\langle a, b, c, d \mid a b=b a, b c=c b, c d=d c\rangle \\
& A\left(C_{4}\right):=\operatorname{Gp}\langle a, b, c, d \mid a b=b a, b c=c b, c d=d c, d a=a d\rangle \simeq F_{2} \times F_{2}
\end{aligned}
$$

Theorem

- Lohrey and Stainberg (2008) There is a finitely generated submonoid M in $A\left(P_{4}\right)$ with undecidable submonoid membership.
- Mihailova (1966) There is a subgroup H in G_{2} such that the subgroup membership problem for M within G_{2} is undecidable.

Undecidable submonoid membership problems

Theorem (Gray (2019))

There is a one-relator group, e.g. $G=\operatorname{Gp}\left\langle a, t \mid a\left(t a t^{-1}\right)=\left(t a t^{-1}\right) a\right\rangle$, with a fixed fin. gen. submonoid N where membership is undecidable.

Question: What about one-relator monoids $\operatorname{Mon}\langle A \mid w=1\rangle$?

Theorem (Gray, Foniqi, Nyberg-Brodda (2022))

There is a group $G=\operatorname{Gp}\langle a, b \mid w=1\rangle$ defined by a positive relation w, with undecidable submonoid membership problem.
E.g. $G=\operatorname{Gp}\left\langle x, y \mid x^{2} y^{2}=y^{2} x^{-2}\right\rangle \cong \operatorname{Mon}\left\langle a, b \mid b a^{2} b a^{4} b a^{2} b=1\right\rangle$; the isomorphism is given by $y=a$ and $x=b a^{2}$ (Perrin \& Schup, (1984).

Corollary

There is a one-relator special monoid $M=\operatorname{Mon}\langle a, b \mid w=1\rangle$, with undecidable submonoid membership problem.

Rational subset membership problem

Given a monoid M, denote by $R A T(M)$ the smallest subset of $\mathcal{P}(M)$

- containing all finite subsets of M, and
- closed under union, product, and Kleene hull.

Rational subset membership problem:
R - a rational subset of $M=\operatorname{Mon}\langle A \mid R\rangle$.
The rational subset membership problem for R within M is decidable if there is an algorithm solving the decision problem:
Input: $\quad w \in A^{*}$.
Output: YES if $w \in R$; NO if $w \notin R$.

Rational subset membership problem

Theorem (Kambites, Render (2007))

The bicyclic monoid $B=\operatorname{Mon}\langle a, b \mid a b=1\rangle$ has decidable rational subset membership. Moreover, they describe rational subsets of this monoid.

Theorem (Lohrey, Steinberg (2007))

The rational subset membership problem for RAAGs is decidable if and only if the defining graph does not contain A_{4} and C_{4}.

Theorem (Kambites (2009, 2011))

As the length $|u|+|v|$ increases, the probability that a randomly chosen one-relation monoid $\operatorname{Mon}\langle A \mid u=v\rangle$ has a decidable rational subset membership problem tends to 1.

Rational subset membership problem

Two elements $x, y \in M$ are \mathcal{L}-related if $M x=M y$.

Theorem (Gray, Foniqi, Nyberg-Brodda (2023))

Let M be a fin. gen. left-cancellative monoid. If there is $U \subseteq M$ with

- $u v \mathcal{L} v$ for all $u, v \in U$,
- Mon $\langle U\rangle$ is isomorphic to the trace monoid $T\left(P_{4}\right)$, then M contains a rational subset in which membership is undecidable.

Denote $S\left(P_{4}\right)=\operatorname{Sgp}\langle a, b, c, d \mid a b=b a, b c=c b, c d=d c\rangle$.

Corollary

If a left-cancellative monoid embeds $S\left(P_{4}\right)$ in a single \mathcal{L}-class, then the monoid contains a rational subset in which membership is undecidable.

Rational subset membership problem

Theorem

For all $m, n \geq 2$, the monoid $\mathcal{M}_{m, n}=\operatorname{Mon}\left\langle a, b \mid\left(b a^{n}\right)^{m}\left(a^{n} b\right)^{m} a=a\right\rangle$ contains a fixed rational subset in which membership is undecidable.

Note: The monoids above do not contain nontrivial groups. In particular, $A\left(P_{4}\right)$ does not lie in $\mathcal{M}_{m, n}$.

Corollary

If G is a fin. gen. group which embeds $T\left(P_{4}\right)$ then G contains a fixed rational subset where membership is undecidable.

Prefix membership problem in one-relator structures

Theorem (Gray, Foniqi, Nyberg-Brodda (2023))

G positive one-relator group, Q any finitely generated submonoid of G. There exists a quasi-positive one-relator group G^{\prime} such that:
decidable prefix membership problem for G^{\prime}
\Downarrow
membership problem for Q in G is decidable.
Furthermore, G^{\prime} can be chosen such that $G^{\prime} \cong G * \mathbb{Z}$.

Prefix membership problem in one-relator structures

Corollary

There exists a quasi-positive one-relator group

$$
G=\operatorname{Gp}\left\langle a, b, t \mid u v^{-1}\right\rangle
$$

with undecidable prefix membership problem.

Proof.

(i) $G_{1}=\operatorname{Gp}\langle a, b \mid w=1\rangle$ positive, with undecidable submonoid membership problem in a fixed $M=\operatorname{Mon}\left\langle w_{1}, w_{2}, \ldots, w_{k}\right\rangle$
(ii) encode the w_{i} into prefixes of the defining relator of a group

$$
G_{2}=\operatorname{Gp}\left\langle A \cup\{t\} \mid \beta w \beta^{-1}=1\right\rangle \cong G_{1} * \mathbb{Z}
$$

technique of Dolinka \& Gray
(iii) As β might not be a positive word; use isomorphisms to change to:

$$
G_{3}=\operatorname{Gp}\left\langle A \cup\{t\} \mid \alpha w^{\prime} \alpha^{-1}=1\right\rangle \cong G_{2},
$$

where α and w^{\prime} are positive words.

Thank you for your attention!

