
K-Theory of Inverse Semigroups

Alistair R. Wallis
Supervisor: Mark V. Lawson

Heriot-Watt University

24 July 2013



Background

Dualities in mathematics:

I Order structures and discrete spaces (Stone duality)

I Locally compact Hausdorff spaces and commutative
C ∗-algebras (Gelfand representation theorem)

Also, (von Neumann) regular rings similar to regular semigroups



Background

Paterson (1980’s) and Renault (1980) generalised this to deep
connections between 3 different ”discrete” mathematical
structures:

I Inverse semigroups (generalised order structures)

I Topological groupoids (generalised discrete spaces)

I C*-algebras



Background

Some successful applications:

I Topological K -theory and operator / algebraic K -theory
(Serre-Swan theorem)

I Module theory for rings (Dedekind + others) and act theory
for monoids

I Morita equivalence of semigroups (Knauer, Talwar) vs. Morita
equivalence for rings (Morita)

I Morita equivalence for inverse semigroups (Afara, Funk, Laan,
Lawson, Steinberg) vs. Morita equivalence for C ∗-algebras
(Rieffel + others)



Examples

I Polycyclic / Cuntz monoid / Cuntz groupoid / Cuntz algebra

I Graph inverse semigroups / Cuntz-Krieger semigroups /
Cuntz-Krieger groupoid / Cuntz-Krieger algebra

I Boolean inverse monoids / Boolean groupoids

I Tiling semigroups / tiling groupoids / tiling C ∗-algebras



Grothendieck group

Theorem
Let S be a commutative semigroup. Then there is a unique (up to
isomorphism) commutative group G = G(S), called the
Grothendieck group, and a homomorphism φ : S → G , such that
for any commutative group H and homomorphism ψ : S → H,
there is a unique homomorphism θ : G → H with ψ = θ ◦ φ.



Algebraic K-theory

I R - ring

I ProjR - finitely generated projective modules of R.

I (ProjR ,⊕) is a commutative monoid.

I Define
K0(R) = G(ProjR).

I If X is a compact Hausdorff space and C (X ) is the ring of
F-valued continuous functions on X then

K 0
F(X ) ∼= K0(C (X )).



Idempotent matrices

I Let M(R) denote the set of N by N matrices over R with
finitely many non-zero entries.

I Idempotent matrices correspond to projective modules

I Say idempotent matrices E ,F ∈ M(R) are similar and write
E ∼ F if E = XY and F = YX where X ,Y ∈ M(R).

Proposition

Idempotent matrices E and F define the same projective module if
and only if E ∼ F .



Idempotent matrices

I Denote the set of idempotent matrices by Idem(R) and define
a binary operation on Idem(R)/ ∼ by

[E ] + [F ] = [E ′ + F ′],

where if a row in E ′ has non-zero entries then that row in F ′

has entries only zeros, similarly for columns of E ′, and for
rows and columns of F ′, and such that E ′ ∼ E and F ′ ∼ F .

Theorem
This is a well-defined operation and the monoids Idem(R)/ ∼ and
ProjR are isomorphic.

I This gives us an alternative way of viewing K0(R):

K0(R) = G(Idem(R)/ ∼).



K -theory of inverse semigroups

I Idea: want to define K0(S) for S an inverse semigroup.

I Need to restrict the class of inverse semigroups - will not be a
problem.

I Give definition in terms of projective modules and definition in
terms of idempotent matrices.

I Want K0(S) ∼= K0(C (S)), where C (S) is some C ∗-algebra
associated to S .



Some inverse semigroup theory

I An inverse semigroup is a semigroup S such that for every
element s ∈ S there exists a unique element s−1 ∈ S with
ss−1s = s and s−1ss−1 = s−1 (without uniqueness, we have a
regular semigroup).

I A regular semigroup is inverse if and only if its idempotents
commute.

I Natural partial order (NPO): s ≤ t iff s = ts−1s.

I Remark: the set of idempotents form a meet semilattice under
the operation e ∧ f = ef .



Orthogonally complete inverse semigroups

I Firstly, we will assume our inverse semigroup S has a zero
(0s = s0 = 0).

I Next, we want our inverse semigroup to be sufficiently ring
like, namely we require orthogonal completeness - this will not
be a problem as every inverse semigroup with 0 has an
orthogonal completion and the examples we are interested in
are orthogonally complete.

I Elements s, t ∈ S are orthogonal, written s ⊥ t, if
st−1 = s−1t = 0.

I S is orthogonally complete if

1. s ⊥ t implies there exists s ∨ t
2. s ⊥ t implies u(s ∨ t) = us ∨ ut and (s ∨ t)u = su ∨ tu.



Rook matrices

I Throughout what follows S will be an orthogonally complete
inverse semigroup.

I A matrix A with entries in S is said to be a rook matrix if it
satisfies the following conditions:

1. (RM1): If a and b lie in the same row of A then a−1b = 0.
2. (RM2): If a and b lie in the same column of A then ab−1 = 0.

I R(S) = all finite-dimensional rook matrices

I Mn(S) = all n × n matrices

I Mω(S) = N× N rook matrices with finitely many non-zero
entries.



Facts about rook matrices

I R(S) is an inverse semigroupoid.

I Mn(S) and Mω(S) are orthogonally complete inverse
semigroups.

I Let
A(S) = E (Mω(S))/D.

I Define [E ] + [F ] = [E ′ ∨ F ′].

I We will define
K (S) = G(A(S)).

I S 7→ Mω(S) and S 7→ K (S) have functorial properties.



Pointed étale sets

A pointed étale set is a set X together with a right action of S on
X , a map p : X → E (S) and a distinguished element 0 satisfying
the following:

I x · p(x) = x .

I p(x · s) = s−1p(x)s.

I p(0X ) = 0 and if p(x) = 0 then x = 0X .

I 0X · s = 0X for all s ∈ S .

I x · 0 = 0X for all x ∈ X .

Define a partial order on X : x ≤ y iff x = y · p(x).
Define x ⊥ y if p(x)p(y) = 0 and say that x and y are orthogonal.
We will say elements x , y ∈ X are strongly orthogonal if x ⊥ y ,
∃x ∨ y and p(x) ∨ p(y) = p(x ∨ y).



Premodules and modules

A premodule is a pointed étale set such that

I If x , y ∈ X are strongly orthogonal then for all s ∈ S we have
x · s and y · s are strongly orthogonal and
(x ∨ y) · s = (x · s) ∨ (y · s).

I If s, t ∈ S are orthogonal then x · s and x · t are strongly
orthogonal for all x ∈ X .

A module is a pointed étale set such that

I If x ⊥ y then ∃x ∨ y and p(x ∨ y) = p(x) ∨ p(y).

I If x ⊥ y then (x ∨ y) · s = x · s ∨ y · s.



Examples

I 0 is a module with 0 · s = 0 for all s ∈ S (initial object in
category).

I eS is a premodule with es · t = est and p(es) = s−1es.

I S itself is a premodule with s · t = st and p(s) = s−1s.

I In fact, every right ideal is a premodule.



Categories

I We will define premodule morphisms and module morphisms
f : (X , p)→ (Y , q) to be structure preserving maps between,
respectively, premodules and modules.

I Note that we require q(f (x)) = p(x).

I We denote the category of premodules of S by PremodS and
modules by ModS .

I Monics in PremodS and ModS are injective and epics in
ModS are surjective.

I ModS is cocomplete.

Proposition

There is a functor PremodS →ModS , X 7→ X ], which is left
adjoint to the forgetful functor.



Coproducts

Can define coproduct in ModS for (X , p), (Y , q) by

X
⊕

Y = {(x , y) ∈ X × Y |p(x)q(y) = 0}

with
(p ⊕ q)(x , y) = p(x) ∨ q(y)

and
(x , y) · s = (x · s, y · s).



Projective modules

I A projective module P is one such that for all morphisms
f : P → Y and epics g : X → Y there is a map h : P → X
with gh = f .

I If P1,P2 projective then P1
⊕

P2 is projective.

I (eS)] is projective.

I Denote by ProjS the category of modules X with

X ∼=
m⊕
i=1

(eiS)].



Theorem
Let e = (e1, . . . , em), f = (f1, . . . , fn) and ∆(e),∆(f) be the
associated diagonal matrices in Mω(S). Then

m⊕
i=1

(eiS)] ∼=
n⊕

i=1

(fiS)]

if, and only if,
∆(e)D∆(f).

Corollary

K (S) = G(ProjS).



I Can define states and traces on S

I If S commutative, then K (S) ∼= K (E (S)).

I If S commutative or nice then can form tensor products of
matrices and modules - sometimes gives a ring structure on
K (S).



Examples

I Symmetric inverse monoids:

K (In) = Z.

I (Unital) Boolean algebras:

K (A) = K 0(S(A)).

I Cuntz-Krieger semigroups:

K (CKG) = K 0(OG).



Thank you for listening


