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Introduction to this lecture series

Context and acknowledgements

These lecture notes are based on the five part digital lecture series, entitled “Direct

and subdirect products of groups, semigroups and algebras” given to the North

British Semigroups & their Applications Network (NBSAN) in September 2020.

They are provided to accompany the digitally recorded videos of the lectures found

on the London Mathematical Society’s (LMS) YouTube channel. These lectures were

kindly financially supported by the LMS, and further supported by the organisers

of the NBSAN.

Motivation and content

This five part lecture series is based on the topics of “Direct and subdirect products

in groups, semigroups and algebras”. The intended audience for this series consists

of postgraduates entering a PhD in any form of combinatorial algebra, though indeed

anyone with a familiarity from undergraduate courses in this area may also benefit,

particularly postgraduate students at later stages.

In summary, the aim of the lecture series is introduce the algebraic construction

of the direct product and the related notion of subdirect products, in the settings

of group theory (which should already be familiar from undergraduate courses),

semigroup theory and more widely in universal algebra. Starting with the familiar

case of groups, we will discuss both the abstract motivation and uses of the direct

product construction in reference to direct decomposability. We will then emphasise

abstraction of this construction to the related areas of semigroup theory and univer-

sal algebra. Some of the shortcomings of the direct product construction will then

be used to motivate the theory of subdirect products and subdirect irreducibility.

We will then discuss the effects of these constructions on structural properties in all

of these algebraic structures in the latter parts of the series. Further, we introduce

iii



some classic and recent research questions concerning direct and subdirect products,

with the intention of highlighting some active research topics; providing potential

research directions for postgraduates; and promoting the area of semigroup theory

and research interests represented within NBSAN.
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Chapter 1

Introduction to direct products

In the study of algebraic structures, a common theme of interest is representing a

given structure in terms of known and well studied simpler structures. Such repre-

sentations can be important when determining the properties of a given structure,

by knowing the properties of the simpler structures that can represent it.

For example, in finite group theory, the finite simple groups are considered as the

“building blocks” that make up a finite group, and we want to know in what ways

that finite group be built or represented by them. There are of course a number of

ways to construct another group given two or more simple groups, such as through

wreath products, semidirect products, and others. The direct product, however, is

probably the simplest such construction method.

This example from group theory is still a motivator in the theories of more general

algebraic structures. In general, the construction of the direct product of two al-

gebraic structures is a relatively basic and well-behaved operation. It is often true,

particularly in the class of groups, that algebraic properties such as finite generation,

finite presentation, and solubility (amongst others) are preserved by direct products.

Moreover, the converse is also true; each factor in a direct product often inherits

such properties.

Of course, direct products are not restricted to the class of groups, and comparing

and contrasting the effect of the direct product on generalisations of these properties

between different classes of algebras is of interest. However, we will begin by defining

the direct product construction in the context of group theory, and examine some

of its properties.
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1.1 Direct products of groups

To avoid any ambiguity in notation or meaning, we will start by recalling some basic

preliminaries from set theory and group theory, which are familiar from undergrad-

uate courses.

Definition 1.1.1. The Cartesian product of two sets S and T is the set of pairs

given by

S × T = {(s, t) : s ∈ S, t ∈ T}. �

Definition 1.1.2. A group is a set G together with a binary operation

· : G×G→ G, satisfying the following axioms:

� (Associativity) ∀f, g, h ∈ G, (f · g) · h = f · (g · h);

� (Identity) ∃ 1 ∈ G such that ∀g ∈ G, 1 · g = g · 1 = g;

� (Inverses) ∀g ∈ G, ∃g−1 ∈ G such that g · g−1 = g−1 · g = 1.

The operation · will be called the multiplication of G, and as usual will often

be omitted notationally when the context is clear. �

As another standard convention, we will often refer to the group G by its set only.

That is, we won’t necessarily pair G with its operation · explicitly every time, writing

just G to mean (G, ·).

Definition 1.1.3. For two groups G and H with operations ·G and ·H respec-

tively, the direct product of G and H is the Cartesian product G×H, together

with the binary operation · : (G×H)× (G×H)→ (G×H) defined by

(g, h) · (g′, h′) = (g ·G g′, h ·H h′). �

Where a binary operation is defined, a structure is sure to follow. The next propo-

sition indeed verifies that the direct product of two groups is a group.

Proposition 1.1.4. The direct product of groups G and H as defined in Defi-

nition 1.1.3 is a group.

Proof. The full proof is left as an exercise to the reader, but associativity follows

from associativity of ·G and ·H , the identity of the group is (1G, 1H), and the

inverse of (g, h) is (g−1, h−1).
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Examples 1.1.5. � The direct product of Z2 = {0, 1} (the finite cyclic

group of order 2) with itself is a group, which is isomorphic to the Klein

four-group K4 with multiplication table

· 1 i j k

1 1 i j k

i i 1 k j

j j k 1 i

k k j i 1

One such isomorphism is ϕ : Z2 × Z2 → K4 given by ϕ(0, 0) = 1,

ϕ(1, 0) = i, ϕ(0, 1) = j and ϕ(1, 1) = k.

� The vector space R2 is a direct product of R with itself, when viewed as

a group.

� Every group G can be realised as a direct product of groups, as

G ∼= G× {1} (where {1} is the trivial group). 4

Note: Of course, there was no particular reason to choose only two groups for

our definition of direct products: we can make direct products of three, four, or any

finite number of n groups in the natural way. The product of two n-tuples is another

n-tuple, whose i-th coordinate is the product of the two given i-th coordinates.

In fact, given any indexed family of groups {Gi}i∈I with indexing set I, we can

make a direct product of them in the following manner.

Definition 1.1.6. For an indexed family of sets {Gi}i∈I , the Cartesian product∏
i∈I Gi is defined by

∏
i∈I

Gi :=

{
f : I →

⋃
i∈I

Gi : for all i ∈ I, f(i) ∈ Gi

}
.

The direct product of the family of groups {Gi}i∈I is the Cartesian product

G =
∏

i∈I Gi with operation · : G × G → G, for which the product of two

functions f, g ∈ G is the function f · g : I →
⋃
i∈I Gi given by

(f · g)(i) = f(i) ·Gi
g(i). �

Again, let’s see that this definition of the direct product gives us a group.
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Proposition 1.1.7. The direct product of a family of groups G = {Gi}i∈I as

defined in Definition 1.1.6 is a group.

Proof. Let f, g, h ∈ G. By definition, f · g is a function from I to
⋃
i∈I Gi, such

that for all i ∈ I,

(f · g)(i) = f(i) ·Gi
g(i) ∈ Gi

by closure of the operation on Gi. Hence · : G×G→ G is a binary operation.

To show associativity, we have

[(f · g) · h](i) = (f · g)(i) ·Gi
h(i)

= [f(i) ·Gi
g(i)] ·Gi

h(i)

= f(i) ·Gi
[g(i) ·Gi

h(i)] (By associativity in Gi)

= f(i) ·Gi
(g · h)(i)

= [f · (g · h)](i),

and hence we have shown that (f · g) · h = f · (g · h). The identity of G is the

function e : I →
⋃
i∈I Gi given by e(i) = 1Gi

(the identity of Gi), as

(f · e)(i) = f(i) ·Gi
e(i) = f(i) ·Gi

1Gi
= f(i)

and

(e · f)(i) = e(i) ·Gi
f(i) = 1Gi

·Gi
f(i) = f(i),

hence f ·e = f = e·f . Finally, the inverse of f is the function f−1 : I →
⋃
i∈I Gi

given by f−1(i) = (f(i))−1, as

(f−1 · f)(i) = f−1(i) ·Gi
f(i) = (f(i))−1 ·Gi

f(i) = 1Gi
= e(i)

and

(f · f−1)(i) = f(i) ·Gi
f−1(i) = f(i) ·Gi

(f(i))−1 = 1Gi
= e(i),

hence f · f−1 = f−1 · f = e. Note that the function f−1 is not necessarily the

inverse function of f .

When I is finite with |I| = n, there is a natural isomorphism between
∏

i∈I Gi and

G1 ×G2 × · · · ×Gn. See the following exercise for the n = 2 case.

Exercise 1.1.8. Let G and H be groups, I = {1, 2}, G1 = G, G2 = H. Show
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that the map

ϕ :
∏

i∈{1,2}

Gi → G×H, f 7→ (f(1), f(2))

is an isomorphism of groups. Hence given groups G1, G2, . . . , Gn, generalise this

map to find an isomorphism between
∏

i∈I Gi and G1 ×G2 × · · · ×Gn.

Note: For the rest of this series, by “the direct product” of G and H, we will mean

G×H rather than Definition 1.1.6.

1.2 Direct products of semigroups and monoids

Groups are only one example of an algebraic structure with a direct product con-

struction. There are many others, but we will first focus on two classes of algebras

that generalise groups. These are the classes of semigroups and monoids.

Definition 1.2.1. A semigroup is a pair (S, ·), where S is a non-empty set, and

· : S × S → S is a binary operation that is also associative, meaning for all

s, t, u ∈ S,

s · (t · u) = (s · t) · u. �

Where the context of the operation is clearly understood, we will speak of the

semigroup S only by referring to its set. We will also omit the symbol ·, and instead

write st for s · t, which we will call the product of s and t. We will further talk about

the operation as the multiplication of S. The multiplicative notation allows us to

consider powers of elements sn for n ∈ N, without amiguity of meaning. When S is

finite, we can use a multiplication table to descibe the multiplication of S, similarly

to finite groups.

Examples 1.2.2. • The set {0, 1} together with the usual multiplication of

real numbers forms a finite semigroup;

• The natural numbers N together with addition form a semigroup;

• The natural numbers N together with subtraction does not form a semigroup,

as 1− (2− 3) = 2, but (1− 2)− 3 = −4. 4

As all groups have an associative binary operation, then every group is of course a

semigroup. Every group also has an identity element, and hence is also a monoid,

which we now define.

5



Definition 1.2.3. A monoid is a semigroup M containing an identity 1 ∈ M ,

meaning for all m ∈M ,

1m = m1 = m. �

It is a short exercise to see that identities in monoids are unique, hence we will

always refer to the identity of M .

Examples 1.2.4. • The finite semigroup ({0, 1},×) is also a finite monoid,

with 1 being the identity;

• (N,+) does not form a monoid, but N ∪ {0} with addition does, taking 0 to

be the identity;

• Every group is a monoid (and so every group is also a semigroup). 4

Of course, we can create Cartesian products of two semigroups or two monoids, and

similarly define the direct product structure on them as follows.

Definition 1.2.5. For two semigroups (resp. monoids) S and T with operations

·S and ·T respectively, the direct product of S and T is the Cartesian product

S × T , together with the binary operation · : (S × T ) × (S × T ) → (S × T )

defined by

(s, t) · (s′, t′) = (s ·S s′, t ·T t′). �

In exactly the same way as groups, we can generalise this to a direct product of a

family of semigroups or monoids, as seen below.

Definition 1.2.6. The direct product of the family of semigroups (resp. monoids)

{Si}i∈I is the Cartesian product S =
∏

i∈I Si with operation · : S × S → S, for

which the product of two functions f, g ∈ S is the function f · g : I →
⋃
i∈I Si

given by

(f · g)(i) = f(i) ·Si
g(i). �

And, as expected, we have...

Proposition 1.2.7. The direct product of two semigroups (resp. monoids) S

and T is a semigroup (resp. monoid). The direct product of a family of semi-

groups (resp. monoids) {Si}i∈I is a semigroup (resp. monoid). �
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1.3 Direct products in universal algebra

We can more broadly describe the structures we have seen so far as sets together

with collections of operations satisfying certain properties. For example, a group

has a binary operation (multiplication, taking two arguments), a unary operation

(inversion, taking one argument) and a nullary operation (the identity, taking no

arguments).

The study of sets with abstract collections of operations is known as universal alge-

bra, whose chief objects of consideration are algebras (such as groups, semigroups,

and monoids).

Definition 1.3.1. An n-ary operation on a setA is a map f fromA× A× · · · × A︸ ︷︷ ︸
n times

to A. A finitary operation on A is an n-ary operation, for some n ∈ N.

An algebra is a set A together with a collection F of finitary operations on A.

A type of algebras is a set F of map symbols f ∈ F , for which a natural number

n is assigned to each f ∈ F . The number n is known as the arity of f . The

signature of a type of algebras F is an ordered tuple of the arities of the map

symbols of F .

An algebra A is said to be of type F if, for every map symbol f ∈ F of arity n,

there is a corresponding n-ary operation fA ∈ F . �

Examples 1.3.2. � A groupG comes equipped with the binary operation of

multiplication, the unary operation of inversion, and the nullary operation

which quantifies the existence of the identity.

Giving these operations the map symbols ·, −1, and 1 respectively, with

arities 2, 1 and 0 then we can define the type G = {·,−1 , 1} with signature

(2, 1, 0). Groups are then algebras of type G, but it is not necessarily the

case that an algebra of type G is a group.

� A monoid has a binary operation and a nullary operation, so defining the

set of map symbols M = {·, 1} with signature (2, 0), then monoids are

algebras of typeM. Notice as well that the algebras of type G are also of

type M.

� Semigroups are algebras of type S = {·} with signature (2). Algebras of

type G or M are also of type S. 4
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We can again frame direct products in this setting as follows.

Definition 1.3.3. If A and B are algebras of type F with collections of finitary

operations FA and FB respectively, then the direct product of A and B is the set

A× B, with the collection of finitary operations FA×B defined in the following

way:

For every map symbol f ∈ F and corresponding n-ary operation fA ∈ FA and

fB ∈ FB, the n-ary operation fA×B ∈ FA×B is defined by

fA×B((a1, b1), (a2, b2), . . . , (an, bn)) = (fA(a1, a2, . . . , an), fB(b1, b2, . . . , bn)) �

This is quite a complicated generalisation of our previously “easy” direct product

construction. Let us now see an example which compares the definitions.

Example 1.3.4. N with addition is a semigroup that is not a group, and Z
with addition is a group. Even though Z is an algebra of type {·,−1 , 1} (with

signature (2, 1, 0)), N is not. But both are algebras of type {·} (with signature

(2)).

Considering them as algebras of the same type, taking the finitary operations

·N and ·Z to both be addition, then we have our operations corresponding to

the map symbol · of arity 2. Using the universal algebra definition of the direct

product of N and Z, letting m,n ∈ N and p, q ∈ Z be arbitrary, we get the

binary operation ·N×Z on N× Z given by

·N×Z((m, p), (n, q)) = (·N(m,n), ·Z(p, q)) = (m+ n, p+ q).

In other words, we recover the expected operation on the direct product N×Z,

if we were to use the definition of a direct product of semigroups. 4
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Chapter 2

Direct decomposability

When trying to determine the properties of a given algebraic structure, it is often

useful to know if it can be decomposed as (or is isomorphic to) a direct product

of related structures. The constituent factors of this direct product may give us

some information about our original structure, or give a useful representation. For

example, every finite Abelian group is isomorphic to a direct product of cyclic sub-

groups. This notion of direct decomposition is the topic of this chapter. We will

consider what it means for a group or semigroup to be directly decomposable in

particular.

2.1 Directly decomposing groups

Our motivation for this section is the following question: Given a group G, when is

it isomorphic to a direct product of groups? Of course, we are more interested in

knowing when this can be done in a non-trivial way, as G ∼= G×{1}. This motivates

the following definition.

Definition 2.1.1. A group F is called directly decomposable if there exist non-

trivial proper subgroups G, H of F such that F ∼= G × H . Otherwise, F is

called directly indecomposable. �

Examples 2.1.2. � The Klein four-group K4 is directly decomposable, by

considering the subgroups {1, i} and {1, j} as isomorphic copies of Z2.

That is, K4
∼= Z2 × Z2.

� Z2 is a simple group (having no non-trivial proper subgroups), and hence

it is directly indecomposable.
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� Z is not simple, but is directly indecomposable. As every non-trivial

proper subgroup of Z is isomorphic to Z itself, it would have to be that

Z ∼= Z×Z if Z were directly decomposable. This is of course a contradic-

tion, as Z× Z is not cyclic. 4

Note that the direct product of groups G and H always contains the subgroups

G′ = G×{1H} and H ′ = {1G}×H, which are isomorphic to G and H respectively.

We will thus identify G with G′, and H with H ′, and think of G and H as subgroups

of G×H. We note the following properties with this identification:

(1) The intersection G ∩H contains only the identity of G×H.

(2) Every element (g, h) ∈ G×H can be written as the product

(g, h) = (g, 1H)(1G, h).

This expression is a unique decomposition of (g, h) into a product of an element

of G with an element of H.

(3) As (g, 1H)(1G, h) = (1G, h)(g, 1H), then every element of G commutes with

every element of H.

These three properties will play an important role when considering direct decom-

posability. Suppose that a group F has two subgroups G and H with these three

properties (1)-(3) as given. Consider the mapping

ϕ : G×H → F, (g, h) 7→ gh.

What can we say about it?

� ϕ is well defined, for if (g, h) = (g′, h′), then g = g′, h = h′ and hence

ϕ(g, h) = gh = g′h′ = ϕ(g′, h′).

� The map ϕ is injective, for if ϕ(g, h) = ϕ(g′, h′), then gh = g′h′, and hence

(g′)−1g = h′h−1. But by property (1), it must be that (g′)−1g = h′h−1 = 1,

and hence g = g′, h = h′ and (g, h) = (g′, h′).

� The map ϕ is also surjective by property (2), as any f ∈ F can be written as

f = gh for some g ∈ G, h ∈ H, and hence ϕ(g, h) = f .

� Finally, ϕ is a group homomorphism, as for any (g, h), (g′, h′) ∈ G × H, by

using property (3) we have

ϕ((g, h)(g′, h′)) = ϕ(gg′, hh′) = gg′hh′ = ghg′h′ = ϕ(g, h)ϕ(g′, h′).

10



Thus ϕ is an isomorphism. We have now shown the following theorem.

Theorem 2.1.3. Let F be a group, and let G and H be subgroups. If the

following properties hold, then F ∼= G×H.

(1) The intersection of G and H is trivial;

(2) Every element of F can be uniquely written as a product of an element of

G with an element of H;

(3) Every element of G commutes with every element of H. �

Conversely, given a direct product F ′ = G′×H ′ of groups G′ and H ′, then there

exist subgroups G ∼= G′ and H ∼= H ′ of F ′ satisfying the above properties.

Note: Uniqueness isn’t strictly required in property (2), here. If f ∈ F is such

that f = gh and f = g′h′ for some g, g′ ∈ G, h, h′ ∈ H, then gh = g′h′, implying

(g′)−1g = h′h−1. By property (1), it must be that (g′)−1g = h′h−1 = 1, whence

g = g′ and h = h′ giving uniqueness.

Example 2.1.4. Consider the dihedral group D6, given by the presentation

D6 = 〈σ, ρ : σ6 = ρ2 = (σρ)2 = 1〉.

Let’s consider the subgroups G = {1, σ3} and H = {1, ρ, σ2, σ4, σ2ρ, σ4ρ}. Then

G ∩H = {1}. The elements of D6 \ (G ∪H) are σ, σ5, σρ, σ3ρ, σ5ρ. Using the

identities in the presentation, we have

σ = σ3σ4, σ5 = σ3σ2,

σρ = σ3σ4ρ, σ5ρ = σ3σ2ρ.

and of course σ3ρ is the product of σ3 and ρ, and hence every element of D6 is

a product of an element of G with an element of H.

Finally, noting that G is precisely the center of D6, then every element of G

commutes with every element of H. It thus follows by Theorem 2.1.3 that

D6
∼= G×H. In particular, as G ∼= Z2 and H ∼= D3, then D6

∼= Z2 ×D3. 4

A natural question is the following:

Question 2.1.5. Is every group isomorphic to a direct product of directly in-

decomposable groups?

We will answer this question when we come to study subdirect products.

11



2.2 Directly decomposing semigroups

In this section, we’re using the same motivation as the previous section to ask the

question: when is a semigroup isomorphic to a direct product of two semigroups? As

for groups, we can define what it means for a semigroup to be directly decomposable,

as in the following.

Definition 2.2.1. A semigroup S is called directly decomposable if there exist

non-trivial semigroups T , U such that S ∼= T × U . Otherwise, S is called

directly indecomposable. �

The question of direct decomposability is more complicated than for the theory of

groups, but it does generalise the result we obtained in the previous section. We first

begin with some important background from semigroup theory to answer it.

2.2.1 Congruences on semigroups

We will use the theory of congruences on semigroups to characterise direct decom-

posability. We must first recall some of the theory of equivalence relations on sets.

Definition 2.2.2. A binary relation on a set X is a subset of X×X. An equiva-

lence relation ∼ on a set X is a subset

∼⊆ X ×X satisfying the following properties:

(R) Reflexivity: For all x ∈ X, (x, x) ∈∼;

(S) Symmetry: If (x, y) ∈∼, then (y, x) ∈∼;

(T) Transitivity: If (x, y) ∈∼ and (y, z) ∈∼, then (x, z) ∈∼.

The ∼-equivalence class of an element x ∈ X is the set

[x]∼ = {y ∈ X : (x, y) ∈∼}.

The quotient set of S by ∼ is the set X/ ∼ of all ∼-equivalence classes of X,

given by

X/ ∼= {[x]∼ ∈ P(X) : x ∈ X}. �

We will often write x ∼ y to mean (x, y) ∈∼, and say that x is “∼-related” to

y. This motivates the occasional use of notation such as “=” and “≡” as subsets.
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Examples 2.2.3. • The subset ∆ = {(x, x) : x ∈ X} ofX×X is an equivalence

relation on any set X, called the equality relation on X;

• The subset ∇ = X × X is an equivalence relation on any set X, called the

universal relation on X;

• The subset ≡2 = {(x, y) ∈ N × N : x ≡ y (mod 2)} is an equivalence relation

on N;

• If X is a set of people, then the subset

∼= {(x, y) ∈ X ×X : x and y have the same birthday}

is an equivalence relation on that set of people. 4

Given two equivalence relations σ and ρ on the same set X, we can define their

composition as follows.

Definition 2.2.4. Let σ, ρ be two equivalence relations on a set X. Then the

composition of σ and ρ is the relation denoted σ ◦ ρ on X, defined by

(x, y) ∈ σ ◦ ρ⇔ ∃ z ∈ X such that (x, z) ∈ σ, (z, y) ∈ ρ. �

Note: The composition of two equivalence relations is not necessarily an equivalence

relation.

Exercise 2.2.5. Let σ, ρ be two equivalence relations on a set X. Show that

σ ◦ ρ is an equivalence relation on X if and only if σ ◦ ρ = ρ ◦ σ.

We can further use this composition to define the join of two equivalence relations,

as follows.

Definition 2.2.6. Let σ, ρ be two equivalence relations on a set X. Then the

join of σ and ρ is the relation denoted σ ∨ ρ on X, given by

(x, y) ∈ σ ∨ ρ⇔ For some n ∈ N, ∃x1, x2, . . . , xn ∈ X such that

(x, x1) ∈ σ, (x1, x2) ∈ ρ, (x2, x3) ∈ σ, . . . , (xn−1, xn) ∈ σ, (xn, y) ∈ ρ.

Equivalently

σ ∨ ρ = (σ ◦ ρ) ◦ (σ ◦ ρ) ◦ (σ ◦ ρ) ◦ . . .

Noting that σ ◦ σ = σ and ρ ◦ ρ = ρ, then if σ ◦ ρ = ρ ◦ σ, it follows that

σ ∨ ρ = σ ◦ ρ. �
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Lemma 2.2.7. The join of two equivalence relations σ and ρ on a set X is an

equivalence relation on X.

Proof. Let x, y, z ∈ X be arbitrary. Firstly, (x, x) ∈ σ ∨ ρ, as (x, x) ∈ σ and

(x, x) ∈ ρ by reflexivity, and hence taking x1 = x will do to show reflexivity of

σ ∨ ρ.

If (x, y) ∈ σ ∨ ρ, then there exist x1, x2, x3, . . . , xn ∈ X such that

(x, x1) ∈ σ, (x1, x2) ∈ ρ, (x2, x3) ∈ σ, . . . , (xn−1, xn) ∈ σ, (xn, y) ∈ ρ.

By symmetry and reflexivity of σ and ρ, then it is also true that

(y, y) ∈ σ, (y, xn) ∈ ρ, (xn, xn−1) ∈ σ, . . . , (x1, x) ∈ σ, (x, x) ∈ ρ.

So we see by reversing the sequence of xi’s that (y, x) ∈ σ∨ ρ by definition, and

σ ∨ ρ is symmetric.

Finally, if (x, y), (y, z) ∈ σ ∨ ρ, then there exist x1, x2, . . . , xn, y1, y2, . . . ym ∈ X
such that

(x, x1) ∈ σ, (x1, x2) ∈ ρ, (x2, x3) ∈ σ, . . . , (xn−1, xn) ∈ σ, (xn, y) ∈ ρ, (2.1)

and

(y, y1) ∈ σ, (y1, y2) ∈ ρ, (y2, y3) ∈ σ, . . . , (ym−1, ym) ∈ σ, (ym, z) ∈ ρ. (2.2)

Reading (2.1) followed immediately by reading (2.2) gives that (x, z) ∈ σ ∨ ρ
by definition, whence σ ∨ ρ is transitive, finishing the proof.

We are now ready to define special types of equivalence relations on semigroups

called congruences, which will play an important role in direct decomposability for

semigroups.

Definition 2.2.8. For a semigroup S, a congruence on S is an equivalence

relation σ on S such that

(s, t) ∈ σ and (u, v) ∈ σ ⇒ (su, tv) ∈ σ.

In this way, σ is said to be compatible with the multiplication of S. �
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Examples 2.2.9. • The equality relation ∆ = {(s, s) ∈ S × S} from Ex-

amples 2.2.3 is an equivalence relation on any semigroup S, and moreover if

(s, s) ∈ ∆, and (t, t) ∈ ∆, then (st, st) ∈ ∆. Hence the equality relation is a

congruence on any semigroup S;

• Similarly, the universal relation ∇ = S ×S is a congruence on any semigroup

S, as (s, t) ∈ ∇ and (u, v) ∈ ∇ imply that s, t, u, v ∈ S, and hence su, tv ∈ S,

so that (su, tv) ∈ ∇;

• Given a semigroup homomorphism ϕ : S → T , consider its kernel, defined

kerϕ = {(s, t) ∈ S × S : ϕ(s) = ϕ(t)}.

It is an equivalence relation on S: being clearly reflexive, symmetric and tran-

sitive by equality of images. Further, if (s, t), (u, v) ∈ kerϕ, then ϕ(s) = ϕ(t)

and ϕ(u) = ϕ(v), hence

ϕ(su) = ϕ(s)ϕ(u) = ϕ(t)ϕ(v) = ϕ(tv),

and (su, tv) ∈ kerϕ. Hence kernels of homomorphisms are congruences. 4

Congruences on groups will probably be familiar to you already, even if you don’t

recognise them just yet. That’s because, in fact, there is a 1-1 correspondence

between group congruences and normal subgroups. We prove this now with the

following two lemmas.

Lemma 2.2.10. Let G be a group, and let ∼ be a congruence on G. Then

N = [1]∼ is a normal subgroup of G, and (g, h) ∈∼ if and only if g−1h ∈ N .

Proof. We will first show that [1]∼ is a subgroup, using the subgroup test.

Firstly, N is a non-empty subset of G, as 1 ∈ N . If g, h ∈ N then

(1, g), (1, h) ∈∼. As ∼ is reflexive, then (h−1, h−1) ∈∼, and further as ∼ is

a congruence, then in particular (1h−1, hh−1) = (h−1, 1) ∈∼. By symmetry,

(1, h−1) ∈∼, so

(12, gh−1) = (1, gh−1) ∈∼,

and hence gh−1 ∈ N . Hence N is a subgroup of G. To show that N is normal

in G, let g ∈ G, n ∈ N . Then (g, g), (g−1, g−1) ∈∼ by reflexivity, and (1, n) ∈∼
by definition. Hence

(g−11g, g−1ng) = (1, g−1ng) ∈∼,
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so that g−1ng ∈ N . Hence N is a normal subgroup. Finally, using the property

of congruences,

(g, h) ∈∼⇔ (g−1g, g−1h) ∈∼⇔ (1, g−1h) ∈∼⇔ g−1h ∈ N.

Lemma 2.2.11. Let G be a group, and let N be a normal subgroup of G. Then

N induces a congruence ∼ on G, defined

(g, h) ∈∼⇔ g−1h ∈ N.

Proof. We will show first that ∼ is an equivalence relation. Firstly, as N is a

normal subgroup of G, it contains the identity, and hence 1 = g−1g ∈ N for any

g ∈ G. Thus (g, g) ∈∼ for any g ∈ G, and hence ∼ is reflexive.

Secondly, if (g, h) ∈∼, then g−1h ∈ N by definition. As N is a subgroup, then

the inverse (g−1h)−1 = h−1g ∈ N , and hence (h, g) ∈∼, so ∼ is symmetric.

Thirdly, if (g, h), (h, i) ∈∼, then g−1h, h−1i ∈ N , and so the product

g−1hh−1i = g−1i ∈ N , so that (g, i) ∈∼. Thus ∼ is transitive, and hence

an equivalence relation on G.

Finally, to show that ∼ is a congruence on G, let (g, h), (i, j) ∈∼. Then

g−1h, i−1j ∈ N . In particular as N is normal in G, then j−1g−1hj ∈ N . As N

is a subgroup of G, then we have

(i−1j)(j−1g−1hj) = i−1g−1hj = (gi)−1hj ∈ N,

and hence (gi, hj) ∈∼ as required.

Returning now to congruences in semigroup theory, let’s see some operations on

congruences in the following lemma.

Lemma 2.2.12. Given two congruences σ, ρ on a semigroup S, the join σ ∨ ρ
and intersection σ ∩ ρ are also congruences on S.

Proof. That σ ∨ ρ is an equivalence relation has already been shown. If

(s, t), (u, v) ∈ σ ∨ ρ, then there exist elements x1, x2, . . . , xn, y1, y2, . . . , ym ∈ S
such that

(s, x1) ∈ σ, (x1, x2) ∈ ρ, (x2, x3) ∈ σ, . . . , (xn−1, xn) ∈ σ, (xn, t) ∈ ρ,
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and

(u, y1) ∈ σ, (y1, y2) ∈ ρ, (y2, y3) ∈ σ, . . . , (ym−1, ym) ∈ σ, (ym, v) ∈ ρ.

We can also assume that m = n without losing any generality, for if m < n,

then we can let ym = ym+1 = ym+2 = · · · = yn, and hence by reflexivity of σ

and ρ we can still obtain elements y1, y2, . . . yn ∈ S such that

(u, y1) ∈ σ, (y1, y2) ∈ ρ, . . . , (ym−1, ym) ∈ ρ,

(ym, ym+1) ∈ σ, (ym+1, ym+2) ∈ ρ . . . , (yn−1, yn) ∈ σ, (yn, v) ∈ ρ

and similarly if m > n. As σ and ρ are congruences, it follows that

(su, x1y1) ∈ σ, (x1y2, x2y2) ∈ ρ, . . . , (xn−1yn−1, xnyn) ∈ σ, (xnyn, tv) ∈ ρ,

and hence that (su, tv) ∈ σ ∨ ρ. Thus σ ∨ ρ is a congruence.

In the case of σ ∩ ρ, as (x, y) ∈ σ ∩ ρ ⇔ (x, y) ∈ σ, (x, y) ∈ ρ, then it quickly

follows that σ ∩ ρ is a congruence from σ and ρ being congruences.

Given a congruence σ on a semigroup S, we are able to give the quotient set S/σ an

algebraic structure, similarly to how quotients of groups by normal subgroups are

obtained.

Lemma 2.2.13. Let S be a semigroup, and let σ be a congruence on S. Then

the quotient set

S/σ = {[s]σ : s ∈ S},

together with the operation · : S/σ → S/σ defined

[s]σ · [t]σ = [st]σ

is a semigroup. �

Definition 2.2.14. For a semigroup S and a congruence σ on S, the quotient

set S/σ together with the operation · : S/σ → S/σ defined

[s]σ · [t]σ = [st]σ

is called the quotient semigroup of S by σ. �

Finally, we now give a generalisation of the first isomorphism theorem of groups, fpr

which we leave the proof as an exercise to the reader.
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Theorem 2.2.15 (First Isomorphism Theorem (for semigroups)). Let S, T be

semigroups, and let ϕ : S → T be a homomorphism. Then kerϕ is a congruence

on S, imϕ is a subsemigroup of T , and

S/kerϕ ∼= imϕ

Proof. Exercise.

2.2.2 A characterisation of direct decomposition for semigroups

We now have the tools necessary to consider directly decomposing semigroups. Let’s

first consider the case when we have a direct product P = S × T of semigroups S

and T given to us.

There are two natural semigroup homomorphisms when given such a direct prod-

uct: the projection maps from P to S and from P to T . Formally, these are the

maps

πS : P → S, (s, t) 7→ s

πT : P → T, (s, t) 7→ t.

As we saw in Examples 2.2.9, the kernels of these homomorphisms are congruences

on P . Noting that

((s, t), (u, v)) ∈ kerπS ⇔ πS(s, t) = πS(u, v)⇔ s = u,

and similarly that

((s, t), (u, v)) ∈ kerπT ⇔ πS(s, t) = πS(u, v)⇔ t = v,

then it follows that ((s, t), (u, v)) ∈ kerπS ∩ kerπT ⇔ (s, t) = (u, v), and hence

the intersection ker πS ∩ kerπT is equal to the equality relation ∆ that we saw in

Examples 2.2.9.

What about the composition of these congruences? Well

((s, t), (u, v)) ∈ kerπS ◦ kerπT ⇔ ∃(x, y) ∈ P such that ((s, t), (x, y)) ∈ kerπS

and ((x, y), (u, v)) ∈ kerπT

⇔ (s, v) ∈ P

But as P is the direct product of S and T , then this last condition is certainly true,
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and hence it follows that ((s, t), (u, v)) ∈ kerπS ◦kerπT for all (s, t), (u, v) ∈ P . Thus

kerπS ◦ kerπT is equal to the universal relation ∇ that we saw in Examples 2.2.9.

Similarly, we can show that

((s, t), (u, v)) ∈ kerπT ◦ kerπS ⇔ (u, t) ∈ P,

and hence that ker πT ◦kerπS is also equal to the universal relation ∇. In particular,

notice that

kerπS ◦ kerπT = ker πT ◦ kerπS.

Finally, what about the join of these congruences? Well any pair ((s, t), (u, v)) from

P × P is indeed in the join ker πS ∨ kerπT , as

((s, t), (s, v)) ∈ kerπS, ((s, v), (u, v)) ∈ kerπT ,

and so it must again be that the join ker πS∨kerπT is equal to the universal relation

∇.

We have proved the following lemma.

Lemma 2.2.16. Let P = S × T be the direct product of semigroups S and T .

Then there exist congruences σ, ρ on P such that

(1) σ ∩ ρ = ∆;

(2) σ ◦ ρ = ρ ◦ σ;

(3) σ ∨ ρ = ∇. �

Now conversely, given any semigroup S and two congruences σ and ρ on S matching

the conditions of Lemma 2.2.16, we claim that S is isomorphic to a direct product.

We prove this result in the next lemma.

Lemma 2.2.17. Let S be a semigroup, and let σ, ρ be congruences on S such

that σ ∩ ρ = ∆, σ ◦ ρ = ρ ◦ σ and σ ∨ ρ = ∇. Then

S ∼= (S/σ)× (S/ρ).

Proof. We define the mapping ϕ : S → (S/σ) × (S/ρ) by ϕ(s) = ([s]σ, [s]ρ).

Then ϕ is well defined, for if s = t, then [s]σ = [t]σ and similarly [s]ρ = [t]ρ, and

hence ϕ(s) = ([s]σ, [s]ρ) = ([t]σ, [t]ρ) = ϕ(t).

Conversely, if ϕ(s) = ϕ(t) for some s, t ∈ S, then ([s]σ, [s]ρ) = ([t]σ, [t]ρ), whence
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[s]σ = [t]σ and [s]ρ = [t]ρ. It follows then that (s, t) ∈ σ ∩ ρ, which must mean

s = t as σ ∩ ρ is equal to the equality relation. Thus ϕ is injective.

To show that ϕ is a surjection, then let ([s]σ, [t]ρ) ∈ (S/σ)× (S/ρ) be arbitrary.

As σ∨ ρ = ∇, then in particular (s, t) ∈ σ∨ ρ. As σ ◦ ρ = ρ ◦σ, then recall that

implies σ ∨ ρ = σ ◦ ρ. Hence there exists some u ∈ S such that (s, u) ∈ σ and

(u, t) ∈ ρ. That is, [s]σ = [u]σ, [t]ρ = [u]ρ. Thus

([s]σ, [t]ρ) = ([u]σ, [u]ρ) = ϕ(u),

and hence ϕ is a surjection

Finally, for any s, t ∈ S, we have

ϕ(st) = ([st]σ, [st]ρ) = ([s]σ[t]σ, [s]ρ[t]ρ) = ([s]σ, [s]ρ)([t]σ, [t]ρ) = ϕ(s)ϕ(t)

Hence ϕ is an isomorphism, and the result follows.

Note: Throughout this section, we could have used groups, monoids, or algebras

instead of semigroups (associativity was not necessarily used). The above result is

true more generally in universal algebra.
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Chapter 3

Introduction to subdirect products

When we discussed direct decomposability, we posed the question “Is every group

isomorphic to a direct product of directly indecomposable groups?”. More generally,

we will ask “Is every semigroup isomorphic to a direct product of directly indecom-

posable semigroups?”. If the semigroup is finite, the answer is yes, as seen in the

following.

Proposition 3.0.1. Every finite semigroup S is isomorphic to a direct product

of directly indecomposable semigroups.

Proof. We will proceed by induction on |S|. For the base case when |S| = 1,

S itself is trivial, and hence directly indecomposable, so there is nothing to

show. Hence suppose S is a non-trivial semigroup (that is, |S| > 1). Assume

for the inductive hypothesis that, for all finite semigroups T with |T | < |S|, T
is isomorphic to a direct product of directly indecomposable semigroups.

If S is directly indecomposable, there is nothing to show. Otherwise, S is

directly decomposable, with S ∼= T × U for some non-trivial semigroups T and

U . As |S| = |T × U | = |T ||U |, and T and U are non-trivial, then it must be

that |T | < |S| and |U | < |S|. By the inductive hypothesis, it follows that T

is isomorphic to a direct product of directly indecomposable semigroups, as is

U . Thus S is, by taking the direct product of the decompositions for T and U .

Hence we’ve proved our inductive hypothesis, and thus the result.

The result is not true in general, however (a counter-example being any countably

infinite Boolean algebra). We thus seek a modification of the direct product notion

for which a statement akin to’ “Every semigroup is isomorphic to a something prod-

uct of something-ly indecomposable semigroups” is true. The correct notion is that
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of subdirect products, for which we now define some preliminaries.

3.1 Preliminaries

Definition 3.1.1. Let S and T be two semigroups. A subdirect product of S

with T (sometimes referred to as a subdirect product of S×T ) is a subsemigroup

U of the direct product S × T , such that the projection maps defined

πS : U → S := (s, t) 7→ s,

πT : U → T := (s, t) 7→ t

are surjections. In this case, we will write U ≤sd S × T . �

Again, we can define a subdirect product of a family of semigroups {Si}i∈I to be a

subsemigroup S of the direct product
∏

i∈I Si of that family, where each projection

mapping πi : S → Si onto the i-th factor is a surjection. Further, there was no

particular reason to pick semigroup here: subdirect products of groups, monoids,

and other algebras are similarly defined.

Examples 3.1.2. • The direct product S × T itself is a subdirect product of

semigroups S and T , as every element of S appears in some first coordinate, and

every element of T appears in some second coordinate. Hence the projection

maps onto S and T are surjections;

• The semigroup given by ∆S := {(s, s) : s ∈ S} is a subdirect product of a

semigroup S with itself, as every element of S appears in some first and second

coordinate. ∆S is known as the diagonal subdirect product;

• Let L = {0, 1} be the set of real numbers under the usual multiplication, and

let S be the subsemigroup of L × L given by S = {(1, 0), (0, 1), (0, 0)}. This

is a subdirect product, as both 0, 1 appear in the first coordinate of some pair,

and similarly for the second coordinates, and hence the projection maps are

surjective. 4

We will think of being a subdirect product as more of a property of a semigroup

rather than a direct construction. A particular type of constructible subdirect prod-

uct is a fiber product of semigroups, which we now define.

Definition 3.1.3. Given semigroups S, T, U and epimorphisms ϕ : S → U ,
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ψ : T → U , the fiber product of S and T with respect to ϕ, ψ is the set

Π(ϕ, ψ) := {(s, t) ∈ S × T : ϕ(s) = ψ(t)}

with multiplication inherited from S × T . U is called the fiber, or fiber quotient

of Π(ϕ, ψ). If V is a subdirect product of S × T which is also a fiber product,

we will write V ≤fp S × T . �

Again, there was no particular reason to define this only for semigroups, and hence

fiber products of other algebras are similarly defined. We now qualify in the following

lemma that fiber products are indeed examples of subdirect products.

Lemma 3.1.4. For semigroups S, T, U and epimorphisms ϕ : S → U ,

ψ : T → U , Π(ϕ, ψ) is a subdirect product of S × T .

Proof. If (s, t), (s′, t′) ∈ Π(ϕ, ψ), then (s, t)(s′, t′) = (ss′, tt′) ∈ Π(ϕ, ψ), as

ϕ(ss′) = ϕ(s)ϕ(s′) = ψ(t)ψ(t′) = ψ(tt′),

and hence Π(ϕ, ψ) is a subsemigroup of S × T . Moreover, for any s ∈ S, as

ϕ(s) ∈ U and ψ is surjective, there exists some t ∈ T such that ϕ(s) = ψ(t),

and hence (s, t) ∈ Π(ϕ, ψ). Similarly, for any t ∈ T , as ϕ is surjective, there

exists some s ∈ S such that ψ(t) = ϕ(s), and hence (s, t) ∈ Π(ϕ, ψ). Thus the

projection maps

πS : Π(ϕ, ψ)→ S := (s, t) 7→ s,

πT : Π(ϕ, ψ)→ T := (s, t) 7→ t.

are surjections, and Π(ϕ, ψ) is a subdirect product of S × T .

Examples 3.1.5. • For semigroup S and T , the direct product S × T is a

fiber product. We take U to be the trivial group {1}, ϕ to be the constant map

given by

ϕ : S → U := ϕ(s) = 1,

and similarly ψ to be the constant map given by

ψ : T → U := ψ(t) = 1.

• For a semigroup S, the diagonal subdirect product ∆S = {(s, s) : s ∈ S} is a

fiber product. We take U = S, ϕ : S → S to be the identity mapping (so that
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ϕ(s) = s), and ψ = ϕ. Then ϕ(s) = ψ(t)⇔ s = t. 4

It is a natural question to ask which subdirect products can be constructed in this

way. The answer is given by Fleischer’s lemma, as follows.

Lemma 3.1.6 (Fleischer’s lemma, [4, Lemma 10.1]). Let S, T, U be semigroups,

and let U ≤sd S × T . For the projection maps

πS : U → S := (s, t) 7→ s,

πT : U → T := (s, t) 7→ t,

denote by σ the congruence kerπS on U , and denote by ρ the congruence kerπT

on U . Then U is a fiber product of S with T if and only if

σ ◦ ρ = ρ ◦ σ.

Proof. (⇒) If U is a fiber product of S with T , then there exist epimorphisms

ϕ : S → V , ψ : T → V onto a common image V , such that

U = {(s, t) ∈ S × T : ϕ(s) = ψ(t)}.

Let ((s1, t1), (s2, t2)) ∈ σ ◦ ρ. Then there exists (s3, t3) ∈ U such that

((s1, t1), (s3, t3)) ∈ σ, ((s3, t3), (s2, t2)) ∈ ρ.

By the definitions of σ and ρ, it must be that s1 = s3, and t3 = t2. Hence

(s1, t2) ∈ U , and thus ϕ(s1) = ψ(t2). As (s1, t1) ∈ U and (s2, t2) ∈ U , it follows

that

ϕ(s2) = ψ(t2) = ϕ(s1) = ψ(t1),

and hence (s2, t1) ∈ U also. As

((s1, t1), (s2, t1)) ∈ ρ, ((s2, t1), (s2, t2)) ∈ σ,

then ((s1, t1), (s2, t2)) ∈ ρ ◦ σ. As ((s1, t1), (s2, t2)) was an arbitrary element of

σ ◦ ρ, then we have shown that σ ◦ ρ ⊆ ρ ◦ σ. The reverse inclusion follows by

a symmetric argument, and hence

σ ◦ ρ = ρ ◦ σ.

(⇐) If σ ◦ ρ = ρ ◦ σ, then σ ◦ ρ = σ ∨ ρ is a congruence. Let ι : U → U/(σ ◦ ρ)
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be the natural quotient mapping ι(u, v) = [(u, v)]σ◦ρ. As σ ⊆ σ ◦ ρ, there is a

natural epimorphism from U/σ to U/(σ ◦ ρ) given by

π : U/σ → U/(σ ◦ ρ) := [(u, v)]σ 7→ [(u, v)]σ◦ρ.

As U is a subdirect product, then

S ∼= U/σ

(by the first isomorphism theorem). Hence there exists an epimorphism ϕ :

S → U/(σ ◦ ρ) with ι = πS ◦ ϕ (recalling that our convention is to compose

from left to right). A similar proof shows that there also exists an epimorphism

ψ : T → U/(σ ◦ ρ) with ι = πT ◦ψ. We have the following commuting diagram.

U T

S U/(σ ◦ ρ)

πT

πS
ι

ψ

ϕ

We claim that

U = {(u, v) ∈ S × T : ϕ(u) = ψ(v)}

If (u, v) ∈ U , then ι(u, v) = (πS ◦ ϕ)(u, v) = ϕ(u), and

ι(u, v) = (πT ◦ ψ)(u, v) = ψ(v). Hence ϕ(u) = ψ(v).

Conversely, if (u, v) ∈ S × T is such that ϕ(u) = ψ(v), then as U is a subdirect

product of S with T , there exist s ∈ S and t ∈ T such that (u, t) ∈ U and

(s, v) ∈ U . Now

ι(u, t) = (πS ◦ ϕ)(u, v) = ϕ(u) = ψ(v) = (πT ◦ ψ)(s, v) = ι(s, v),

and hence ((u, t), (s, v)) ∈ σ ◦ ρ. Hence there must exist (x, y) ∈ U such that

((u, t), (x, y)) ∈ σ and ((x, y), (s, v)) ∈ ρ. This implies however that x = u and

y = v, and hence (u, v) ∈ U . Thus we have shown that

U = {(u, v) ∈ S × T : ϕ(u) = ψ(v)},

and U is a fiber product.

For semigroups, there are hence examples of subdirect products which are not fiber

products, as seen below.

25



Example 3.1.7. We saw that for L = {0, 1}, the subsemigroup

S = {(0, 1), (1, 0), (0, 0)}

of L × L was a subdirect product. Using the notation of Fleischer’s lemma,

recall for pairs (s, t), (u, v) ∈ S that

((s, t), (u, v)) ∈ σ ◦ ρ⇔ (s, v) ∈ S,

and similarly that

((s, t), (u, v)) ∈ ρ ◦ σ ⇔ (u, t) ∈ S.

Now ((0, 1), (1, 0)) ∈ σ ◦ ρ as (0, 0) ∈ S, however ((0, 1), (1, 0)) 6∈ ρ ◦ σ, as

(1, 1) 6∈ S. Hence σ ◦ ρ 6= ρ ◦ σ, and thus S cannot be a fiber product by

Fleischer’s lemma. 4

3.2 Subdirect products of groups

For a subdirect product K of groups G and H, for any (g, h), (g′, h′) ∈ K, recall

that ((g, h), (g′, h′)) ∈ σ ◦ ρ if and only if (g, h′) ∈ K. As K is a subgroup of G×H,

then this implies (g, h′)−1 = (g−1, (h′)−1) ∈ K, and thus

(g, h)(g−1, (h′)−1)(g′, h′) = (g′, h) ∈ K.

Recalling that ((g, h), (g′, h′)) ∈ ρ ◦ σ if and only if (g′, h) ∈ K, then we have shown

that

((g, h), (g′, h′)) ∈ σ ◦ ρ⇒ ((g, h), (g′, h′)) ∈ ρ ◦ σ,

and hence that σ ◦ ρ ⊆ ρ ◦ σ. A similar consideration will show that ρ ◦ σ ⊆ σ ◦ ρ,

and hence that σ ◦ ρ = ρ ◦ σ. We have thus shown the following

Proposition 3.2.1. Every subdirect product of groups can be constructed as a

fiber product. �

A more concrete description of the subdirect products of two groups is given by

Goursat’s lemma, which we present without proof.

Corollary 3.2.2 (Goursat’s lemma). Let G and G′ be groups, let N E G and

N ′ E G′ be normal subgroups. Given an isomorphism ϕ : G/N → G′/N ′, then
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ϕ induces a subdirect product

Hϕ = {(g, g′) ∈ G×G′ : ϕ(gN) = g′N ′}

of G and G′. Moreover, every subdirect product H of G and G′ is obtained in

this way. �

3.3 Subdirect reducibility & Birkhoff’s representation the-

orem

Having now met with subdirect products, we can define what it means for a semi-

group (or indeed, group, monoid, or other algebra) to be subdirectly irreducible. The

concept is similar to that of direct indecomposability, although this time we will use

the infinite definition of direct product as seen in the following definition.

Definition 3.3.1. A subdirect representation of a semigroup S is subdirect

product T of a family of semigroups {Si}i∈I for which T is isomorphic to S.

A semigroup S is said to be subdirectly irreducible if, for any subdirect repre-

sentation T ≤s.d

∏
i∈I Si, one of the Si is isomorphic to S. Otherwise, S is said

to be subdirectly reducible �

Again, this definition could have been given for algebras more generally. We now give

the answer to the question “is every semigroup isomorphic to a subdirect product

of subdirectly irreducible semigroups” in the positive, by stating Birkhoff’s theorem

(without proof) for algebras.

Theorem 3.3.2 (Birkhoff’s representation theorem , [4, Theorem 8.6]). Every

algebra A is isomorphic to a subdirect product of subdirectly irreducible algebras.

�

This result is our main motivation for considerations of subdirect products. They

can provide a potentially useful tool for representing algebras; particularly when

they can be constructed as fiber products.
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Chapter 4

Finitary properties for direct and

subdirect products

We motivated the direct product and subdirect product definitions with a desire to

be able to consider properties of a given algebra using properties of the factors of

a representation constituting it. Conversely, we’d often like to be able to construct

examples of algebras with a set of given properties, using direct and subdirect prod-

ucts of families of algebras whose properties we know. Properties that we will pay

particular interest to in this chapter will be finitary properties.

Although we will see that the direct product of groups is generally well behaved

when it comes to inheriting finitary properties from its factors, we will see a num-

ber of interesting examples of subgroups of direct products which do not inherit

such properties. Subdirect products of groups in particular have often been used as

a source of interesting and unexpected counterexamples in this regard. We finish

these lecture notes with an overview of some of these classic examples and results in

both group theory and semigroup theory, as well as those stemming from recent re-

search. Further, we will talk about some of the more general open research questions

surrounding the theory of subdirect products in the context of universal algebra in

particular.

Being a descriptive chapter, there will be a number of concepts from the theory

of finitary properties which we have not seen in these lectures, which will not be

covered in this chapter. We highly recommend the interested reader to divulge in

some of the recommended reading (and further for the avid researcher; the papers

themselves) that follows these lecture notes.
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4.1 Finitary properties in direct products

Given an infinite algebraic structure, we would ideally like to be able to represent

it in some finite manner. For example, can we build every element of that structure

using only a finite subset of elements? Can we describe any relations governing the

structure from a finite number of relations? These are the ideas of finite generation

and finite presentation that play an important role in computational algebra. Finite

presentations for groups, for example, provide us with a finite set of symbols and

relations on which symbolic computation can be performed.

These properties are examples of finitary properties, which we now define.

Definition 4.1.1. For a class of algebras, a finitary property is one which is

satisfied for all finite algebras in that class. �

Examples 4.1.2. � Being a finite algebra is of course a finitary property;

� The ascending chain condition (and descending chain condition) on alge-

bras with a partial ordering is a finitary property, as any finite algebra

has a finite power set;

� Residual finiteness for groups (meaning the group can be embedded in a

direct product of a family finite groups) is a finiteness condition, as every

finite group can be embedded in itself;

� Being finitely generated for groups & semigroups (meaning every element

can be expressed as a finite product of elements from a finite subset of the

structure) is a finitary property, as the entire finite group or semigroup

can be used as a generating set;

� Local finiteness for groups (meaning every finitely generated subgroup is

finite) is a finiteness property, as indeed, every subgroup of a finite group

is necessarily finite;

� Similarly, finite presentability for groups & semigroups is a finiteness con-

dition, taking the relations of the presentation for the finite group or

semigroup to be the entire multiplication table. 4

Given an algebra with a finitary property P and a direct product representation for

that algebra, do the factors of that representation also have property P? Conversely,

give two algebras of the same type, each with finitary property P , does the direct

product also have property P?
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The latter is the concept of closure under direct products, and has been a question

of much interest classically. We will look at the groups case to begin.

4.1.1 Finitary properties for direct products of groups

For groups, we seek finitary properties P for which the statement

Groups G and H have property P if and only if G×H has property P

holds, and indeed there are many. We will highlight the proofs for three finitary

properties in particular.

Proposition 4.1.3. Groups G and H are residually finite if and only if G×H
is residually finite.

Proof. (⇒) If G is residually finite, there exists a family {Gi}i∈I of finite groups,

and an embedding ϕ : G →
∏

i∈I Gi. Similarly, there exists a family {Hj}j∈J
of finite groups, and an embedding ψ : H →

∏
j∈J Hj. The mapping θ from

G×H to the direct product
∏

i∈I Gi×
∏

j∈J Hj given by θ(g, h) = (ϕ(g), ψ(h))

is verifiably an embedding,

Moreover, without loss of generality, we can assume that I and J are disjoint.

So taking the disjoint union L = I t J of these indexing sets, we obtain the

new family of finite groups {Kl}l∈L, where

Kl =

Gl if l ∈ I,

Hl if l ∈ J .

Note that the direct product
∏

i∈I Gi ×
∏

j∈J Hj is embeddable in
∏

l∈LKl, by

taking the map ι :
∏

i∈I Gi ×
∏

j∈J Hj →
∏

l∈LKl given by ι(f, g) = h where

h : L →
⋃
l∈LKl is defined by

h(l) =

f(l) if l ∈ I

g(l), if l ∈ J .

Now the composition θ ◦ ι is also an embedding, and hence we have embedded

the direct product G × H into a family {Kl}l∈L of finite groups. Hence the

direct product is residually finite.

(⇐) As G is isomorphic to G× {1H}, it is certainly embeddable in G× {1H}.
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G×{1H} can clearly be embedded in G×H, which in turn can be embedded in a

direct product of a family of finite groups. The composition of these embeddings

will give an embedding of G into a direct product of a family of finite groups,

and hence G is residually finite. A similar argument also works for H.

Proposition 4.1.4. Groups G and H are locally finite if and only if G×H is

locally finite.

Proof. (⇒) If K is a finitely generated subgroup of G × H, then the image

πG(K) is a finitely generated subgroup of G, where

πG : G×H → G := (g, h) 7→ g.

Hence πG(K) is finite, as G is locally finite. Similarly as H is locally finite, then

πH(K) is finite, where

πH : G×H → H := (g, h) 7→ h.

Hence it must be that K itself is finite, as |K| ≤ |πG(K)||πH(K)|. Thus G×H
is locally finite.

(⇐) Given a subgroup G′ of G, generated by a finite set X ⊆ G′, it is isomorphic

to the subgroup G′×{1H} of G×H. G′×{1H} is finitely generated by X×{1H},
whence the subgroup G′×{1H} must be finite as G×H is locally finite. Hence

G′ must be finite, being in bijection with G′ × {1H}. Thus G is locally finite.

A similar argument applies to H.

Proposition 4.1.5. Groups G and H are finitely generated if and only if G×H
is finitely generated.

Proof. (⇒) If X and Y are generating sets for G and H respectively, then the

set (X × {1H}) ∪ ({1G} × Y ) is a generating set for G×H, which is finite.

(⇐) If X is a finite generating set for G×H, then the images πG(X) and πH(X)

are finite generating sets for G and H respectively, where

πG : G×H → G := (g, h) 7→ g,

πH : G×H → H := (g, h) 7→ h.

The theory of group presentations (or indeed, presentations more broadly in semi-

group theory and universal algebra) has not been included in these lectures, and so
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we will state the following simply for noting, without proof.

Proposition 4.1.6. Groups G and H are finitely presented if and only if G×H
is finitely presented. �

Alongside these results come many other properties P , not necessarily finitary, for

which the statement

Groups G and H have property P if and only if G×H has property P

holds. These include (and are not limited to) commutativity, nilpotency, solvability,

and decidability of the word problem. In this sense, direct products of groups are

particulary well behaved: we can construct new groups with any of these properties

using the direct product of a family of groups we know that have them. Conversely,

given a group with any of these properties, the factors of any direct representation

must also have that property.

4.1.2 Finitary properties for direct products of semigroups

The question of properties P for which statements of the form

Semigroups S and T have property P if and only if S × T has property P

hold have been of interest in recent years, and have been comparably more elusive

or harder to obtain than for groups. The reasoning is often as, unlike in the cases of

groups or monoids, semigroups S and T are not necessarily present as isomorphic

subsemigroups of the direct product S × T .

For example, in the case of the proof of the statement for P being residual finiteness

of two groups, the reverse implication was obtained only knowing that G and H

could be respectively embedded in G ×H. For semigroups and residual finiteness,

the above is indeed still true, but was only proved (for non-obvious reasons) as

recently as 2009.

Theorem 4.1.7 (Gray, Ruškuc (2009) [6, Theorem 2]). The direct product of

semigroups S and T is residually finite if and only if S and T are residually

finite. �

The same cannot be said for algebras in general, however.

Theorem 4.1.8 (Gray, Ruškuc (2009) [6, Example 1]). Let A be the monounary

algebra on N with operation f(x) = x+ 1, and B be the monounary algebra on
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N with operation

g(x) =

x− 1 if x > 1

1 if x = 1

Then A is residually finite, A × B is residually finite, but B is not residually

finite. �

Finite generation for the direct product of semigroups was indeed classified in terms

of finite generation for the factors, but in this case we do not necessarily have a

statement of the above form. The result is only true for infinite semigroups S which

have no indecomposable elements. That is, S2 = S, where

S2 = {ss′ ∈ S : s, s′ ∈ S}.

Theorem 4.1.9 (Robertson, Ruškuc, Wiegold (1998) [8, Theorem 2.1]). The

direct product S × T of infinite semigroups S and T is finitely generated if and

only if S and T are finitely generated, and S2 = S, T 2 = T �

In that same paper, the authors also gave the case for finite presentation of a direct

product of semigroups, requiring the technical definition of “stable” which we will

not cover.

Theorem 4.1.10 (Robertson, Ruškuc, Wiegold (1998) [8, Theorem 3.5]). The

direct product S × T of infinite semigroups S and T is finitely presented if and

only if the following all hold:

(1) S2 = S, T 2 = T ;

(2) S and T are (finitely presented and) stable. �

Turning to decision problems (asking whether or not an algorithm taking a finite set

of information, and giving a yes or no answer to a specified question in finite time

exists) for finite presentability now, we also have the following result.

Theorem 4.1.11 (I. Araújo, Ruškuc (2000) [1]). Let S and T be semigroups,

where S is finite in particular. Then it is decidable whether or not S × T is

finitely presented. �

The following is also still an open question, however.

Question 4.1.12. Is it possible to algorithmically determine if the direct prod-

uct of two finitely presented semigroups (given by their finite presentations) is
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finitely presented?

4.2 Finitary properties in subdirect products

Comparatively to the previous section, we will see in this section that subdirect

products have less tame behaviour than direct products with respect to preserva-

tion of finitary properties. That is, we will exhibit many counterexamples to the

statement

A subdirect product C of algebras A and B has property P if and only if A and B

have property P ,

and indeed even counterexamples to both implication directions. We will start in

the case of groups.

4.2.1 Finitary properties of subdirect products of groups

Even for “nice” infinite groups such as free groups, subdirect products have provided

a tool for interesting counterexamples over the years. For example, in the case of

finite presentation, the following is an example of a non-finitely generated subdirect

product of two finitely presented groups.

Example 4.2.1 (Bridson, Miller (2009) [3, Example 3]). Let A = 〈a1, a2 : ∅〉
and

B = 〈b1, b2 : ∅〉 be two free groups of rank 2, and let

Q = 〈c1, c2 : q1(c), q2(c), . . . 〉

be any two-generated group which is not finitely presented. Let ϕ : A → Q

and ψ : B → Q be the unique epimorphisms extending the maps defined by

ϕ(ai) = ci and ψ(bi) = ci. The fiber product Π(ϕ, ψ) of A × B is not finitely

generated. 4

Further to this, in 1978 Grunewald gave examples of finitely generated subdirect

products of two free groups of rank 2 which are not presented. The theorem giving

these examples was extended by Baumslag & Roseblade in 1984, classifying the

finitely presented subdirect products of free groups.

Theorem 4.2.2 (Baumslag, Roseblade (1984) [2, Theorem 2]). Every finitely

presented subgroup of a direct product of two free groups is a finite extension of

a direct product of two free groups of finite rank. �
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A final example we mention is due to Mikhăılova, who in 1966 gave a set of defining

relations for a group which is a finitely generated subdirect product of two free

groups, but has undecidable word problem.

4.2.2 Finitary properties of subdirect products of semigroups and alge-

bras

The above examples are of course also counterexamples of semigroups and indeed of

algebras. The study of finitary properties for subdirect products of semigroups and

algebras however is a much more recent topic. For groups of course, every question

involving subdirect products can be framed in terms of fiber products. We have the

following results concerning finitary properties of fiber products.

Example 4.2.3 (Mayr, Ruškuc (2019) [7, Example 7.1]). We will see an exam-

ple of a fiber product of two finitely presented monoids over a finite quotient,

which is not finitely generated.

Let F1 be the free monoid on a single generator a with identity 1, and let T

be the two element monoid {0, 1} under the standard multiplication. Define a

homomorphism φ : F1 → {0, 1} by a 7→ 0. The fiber product of F1 and F1 with

respect to φ is not finitely generated, as any generating set for it must contain

the pairs (ai, a) for i ∈ N, of which there are infinitely many. 4

In this same work, the authors also exhibit a finitely presented subdirect product

of two non-finitely presented monoids. They further give sufficient conditions for

finite generation of a fiber product in the context of universal algebra. Note that

A,B,C and D in the following theorem must all be algebras of the same type, and

further that these algebras must belong to a congruence permutable variety, which

heuristically is a class of algebras for which any pair of congruences commute under

composition (such as the classes of groups and rings).

Theorem 4.2.4 (Mayr, Ruškuc (2019) [7, Example 7.1]). If C is a fiber product

of A and B over a common quotient D, and if A,B and D are finitely presented,

then C is finitely generated. �

Particular considerations for finitary properties of fiber products of free semigroups

in particular have been given in [5].
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4.3 Further open questions for subdirect products

We saw previously that fiber products and subdirect products do not coincide for

semigroups, and hence not in general in universal algebra. They do coincide in vari-

eties of algebras which are congruence permutable (where every pair of congruences

commutes under composition). This limits our ability to construct examples of sub-

direct products of algebras with desirable properties. We hence give the following

open problems.

Question 4.3.1. For a subdirect product of two algebras A and B which is not

a fiber product, what fiber-like constructions can be used to obtain them? How

do these constructions relate to the join relation on pairs of congruences?

Question 4.3.2. What finitary properties are preserved when taking subdirect

products of algebras? Conversely, which properties of a subdirect product of

two algebras will those algebras always inherit?

Question 4.3.3. How do the congruences on a direct product of semigroups (or

algebras) relate to the congruences of the factors, and vice versa? What about

the congruences on a subdirect product of semigroups (or algebras)?
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Recommended further reading

To conclude these lecture notes, we will outline some of the recommended reading

that covers the topics of semigroup theory and universal algebra we did not include,

but alluded to in the lectures. We strongly encourage any reader interested in these

topics to delve into this material, which is vast and particularly well written in our

opinion. These are also followed by a bibliography of the papers covering the results

of Chapter 4 in particular.

For more about the theory of semigroups, including on congruences, direct & sub-

direct products, we recommend the following:

� J.M. Howie, “Fundamentals of Semigroup Theory”. LMS Mono-

graphs. 12, The Clarendon Press, New York. (1995)

- Much more about the theory of semigroups in general can be found in this

more recent monograph, than was given in these notes. In particular, it follows

the notation we set out for congruences, and gives much more detail on gen-

erating congruences, congruence lattices, and the relation to the theory of free

semigroups and semigroup presentations particularly well. It also has a very

broad and celebrated overview on the algebraic theory of semigroups, includ-

ing a rigorous treatment of “Green’s relations” which we did not mention in

these notes. Particular attention is also given to classes of semigroups includ-

ing inverse semigroups, regular semigroups, clifford semigroups and also Rees’

theorems on 0-simple semigroups. There are a number of results on direct and

subdirect products, too, which we did not mention in these notes, as well as

other related product constructions in the chapter on “semigroup amalgams”.

� A.H. Clifford, G.B. Preston, “The Algebraic Theory of Semigroups,

Vol. 1”. Surveys Amer. Math. Soc. 7. Providence, Rhode Island.

(1961)

- One of the “original” monographs on semigroup theory, this Clifford & Pre-

ston work is another much cited and celebrated staple of the theory. In partic-
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ular, it starts with a nice history of the theory of semigroups and how it came

about, and then of course again covers many more of the preliminaries, further

ideas and theorems from semigroup theory than were covered in these notes.

Particular focus on representing semigroups in other ways (using matrices, and

as unions of subsemigroups) is given in this first edition. There is also a much

deeper second volume:

� A.H. Clifford, G.B. Preston, “The Algebraic Theory of Semigroups,

Vol. 2”. Surveys Amer. Math. Soc. 7. Providence, Rhode Island.

(1967).

For more about the theory of Universal algebra, congruences on algebras, direct and

subdirect products of algebras, we recommend the following:

� S. Burris, H.P. Sankappanavar, “A course in universal algebra”.

Amer. Math. Monthly. 78, Springer-Verlag, New York. (1981)

- This monograph gives an excellent overview to get into universal algebra.

Many concepts that you will be familiar with from algebra are generalised and

exemplified in this book with a precise and well explained treatment, including

the notions of subalgebras, homomorphisms, direct products, subdirect prod-

ucts, congruences, isomorphism theorems, and many many more. It also covers

more specifically the theory of lattices, and connects the topics in the book to

the related study of Model theory. In particular, the entire text is published

online for free.
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