Adams operations on the Green ring of a finite group

Marianne Johnson

Cambridge Algebra Seminar, 9th February 2011
Shameless self-promotion

 Joint work with Professor Roger Bryant.
Shameless self-promotion

Joint work with Professor Roger Bryant.

Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right KG-modules.

Notice that the one-dimensional module on which G acts trivially is the identity element in R_{KG}. Thus $K = 1$ in R_{KG}.
Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right KG-modules.

The **Green ring** (or representation ring) R_{KG} has \mathbb{Z}-basis consisting of the isomorphism classes of (f. d.) indecomposable KG-modules with multiplication coming from tensor product.

KG-modules: $U \oplus V \quad U \otimes K V \quad V^\otimes n$

Elements of R_{KG}: $U + V \quad UV \quad V^n$
Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right KG-modules.

The **Green ring** (or representation ring) R_{KG} has \mathbb{Z}-basis consisting of the isomorphism classes of (f. d.) indecomposable KG-modules with multiplication coming from tensor product.

KG-modules: $U \oplus V$ $U \otimes_K V$ $V \otimes^m$

Elements of R_{KG}: $U + V$ UV V^n

Notice that the one-dimensional module on which G acts trivially is the identity element in R_{KG}. Thus $K = 1$ in R_{KG}.

Let $G = \langle g \rangle$ be a cyclic p-group of order q. There are q indecomposable KG-modules up to isomorphism.
Let $G = \langle g \rangle$ be a cyclic p-group of order q. There are q indecomposable KG-modules up to isomorphism.

For $r = 1, \ldots, q$ write $V_r = KG/KG(g - 1)^r$. Then V_r is indecomposable of dimension r and hence R_{KG} has \mathbb{Z}-basis $\{V_1, \ldots, V_q\}$.

The Green ring of a cyclic p-group
Let $G = \langle g \rangle$ be a cyclic p-group of order q. There are q indecomposable KG-modules up to isomorphism. For $r = 1, \ldots, q$ write $V_r = KG/KG(g - 1)^r$. Then V_r is indecomposable of dimension r and hence R_{KG} has \mathbb{Z}-basis $\{V_1, \ldots, V_q\}$.

Each indecomposable V_r has basis $\{y_1, \ldots, y_r\}$ and the action of g on V_r with respect to this basis is given by the Jordan block

$$
\begin{pmatrix}
1 & 1 \\
& & \ddots & 1 \\
& & & 1 & 1 \\
& & & 1 & 1
\end{pmatrix}.
$$

(Notice that V_1 is the one-dimensional trivial module and V_q is the regular KC-module.)
Let V be a vector space over K with basis $\{x_1, \ldots, x_r\}$. Write

$S(V) = K[x_1, \ldots, x_r]$ (free associative commutative K-algebra),

$\Lambda(V) =$ free associative K-algebra on x_1, \ldots, x_r subject to

\[x_i \wedge x_i = 0 \text{ and } x_i \wedge x_j = -x_j \wedge x_i. \]
Symmetric and exterior powers

Let V be a vector space over K with basis $\{x_1, \ldots, x_r\}$. Write

\[
S(V) = K[x_1, \ldots, x_r] \text{ (free associative commutative } K\text{-algebra)},
\]

\[
\Lambda(V) = \text{ free associative } K\text{-algebra on } x_1, \ldots, x_r \text{ subject to }
\]

\[
x_i \wedge x_i = 0 \text{ and } x_i \wedge x_j = -x_j \wedge x_i.
\]

Take decompositions into homogeneous components:

\[
S(V) = S^0(V) \oplus S^1(V) \oplus \cdots \oplus S^n(V) \oplus \cdots,
\]

\[
\Lambda(V) = \Lambda^0(V) \oplus \Lambda^1(V) \oplus \cdots \oplus \Lambda^n(V) \oplus \cdots
\]

These components are the **symmetric powers** and **exterior powers** of V.
Symmetric and exterior powers

Let V be a vector space over K with basis $\{x_1, \ldots, x_r\}$. Write

$S(V) = K[x_1, \ldots, x_r]$ (free associative commutative K-algebra),

$\Lambda(V) = \text{free associative } K\text{-algebra on } x_1, \ldots, x_r \text{ subject to }$

\[x_i \wedge x_i = 0 \text{ and } x_i \wedge x_j = -x_j \wedge x_i. \]

Take decompositions into homogeneous components:

$S(V) = S^0(V) \oplus S^1(V) \oplus \cdots \oplus S^n(V) \oplus \cdots,$

$\Lambda(V) = \Lambda^0(V) \oplus \Lambda^1(V) \oplus \cdots \oplus \Lambda^n(V) \oplus \cdots$

These components are the **symmetric powers** and **exterior powers** of V.

If V is a KG module then $S^n(V)$ and $\Lambda^n(V)$ become KG-modules by linear substitutions.
Properties of symmetric and exterior powers

The nth symmetric power $S^n(V)$ has K-basis

$$\{x_{i_1}x_{i_2}\cdots x_{i_n} : 1 \leq i_1 \leq i_2 \leq \cdots \leq i_n \leq r\}.$$

The nth exterior power $\Lambda^n(V)$ has K-basis

$$\{x_{i_1} \wedge x_{i_2} \wedge \cdots \wedge x_{i_n} : 1 \leq i_1 < i_2 < \cdots < i_n \leq r\}.$$

Thus $\dim S^n(V) = \binom{n+r-1}{n}$ and $\dim \Lambda^n(V) = \binom{r}{n}$.
Properties of symmetric and exterior powers

The \(n \)th symmetric power \(S^n(V) \) has \(K \)-basis

\[
\{x_{i_1}x_{i_2}\cdots x_{i_n} : 1 \leq i_1 \leq i_2 \leq \cdots \leq i_n \leq r\}.
\]

The \(n \)th exterior power \(\Lambda^n(V) \) has \(K \)-basis

\[
\{x_{i_1} \wedge x_{i_2} \wedge \cdots \wedge x_{i_n} : 1 \leq i_1 < i_2 < \cdots < i_n \leq r\}.
\]

Thus \(\dim S^n(V) = \binom{n+r-1}{n} \) and \(\dim \Lambda^n(V) = \binom{r}{n} \).

It is also easy to check that

\[
S^n(U \oplus V) \cong \bigoplus_{a+b=n} S^a(U) \otimes S^b(V)
\]

and

\[
\Lambda^n(U \oplus V) \cong \bigoplus_{a+b=n} \Lambda^a(U) \otimes \Lambda^b(V).
\]
We started with a finite-dimensional KG-module V and have created two families of KG-modules. What can we say about these new modules?

Problem. Determine $S^n(V)$ and $\Lambda^n(V)$ up to isomorphism, i.e. as elements of R_{KG}.
We started with a finite-dimensional KG-module V and have created two families of KG-modules. What can we say about these new modules?

Problem. Determine $S^n(V)$ and $\Lambda^n(V)$ up to isomorphism, i.e. as elements of R_{KG}.

Examples.

$S^0(V) \cong \Lambda^0(V) \cong K$, written as 1 in R_{KG}.

$S^1(V) \cong \Lambda^1(V) \cong V$.

Note that $S^n(V) \not\cong \Lambda^n(V)$ for $n > 1$, by dimensions.

In particular, $\Lambda^n(V) = 0$ for $n > r$, whilst $S^n(V) \neq 0$ for all n.
Adams operations

Consider the power series ring \((\mathbb{Q} \otimes R_{KG})[[t]]\).
Define \(\psi^n_S(V)\) and \(\psi^n_\Lambda(V)\) in \(\mathbb{Q} \otimes R_{KG}\) by

\[
\psi^1_S(V)t + \frac{1}{2} \psi^2_S(V)t^2 + \frac{1}{3} \psi^3_S(V)t^3 + \cdots \\
= \log(1 + S^1(V)t + S^2(V)t^2 + \cdots),
\]

\[
\psi^1_\Lambda(V)t - \frac{1}{2} \psi^2_\Lambda(V)t^2 + \frac{1}{3} \psi^3_\Lambda(V)t^3 - \cdots \\
= \log(1 + \Lambda^1(V)t + \Lambda^2(V)t^2 + \cdots).
\]
Consider the power series ring \((\mathbb{Q} \otimes R_{KG})[[t]]\).
Define \(\psi^m_S(V)\) and \(\psi^n_{\Lambda}(V)\) in \(\mathbb{Q} \otimes R_{KG}\) by

\[
\psi^1_S(V)t + \frac{1}{2}\psi^2_S(V)t^2 + \frac{1}{3}\psi^3_S(V)t^3 + \cdots \\
= \log(1 + S^1(V)t + S^2(V)t^2 + \cdots),
\]

\[
\psi^1_\Lambda(V)t - \frac{1}{2}\psi^2_\Lambda(V)t^2 + \frac{1}{3}\psi^3_\Lambda(V)t^3 - \cdots \\
= \log(1 + \Lambda^1(V)t + \Lambda^2(V)t^2 + \cdots).
\]

It turns out that \(\psi^n_S(V), \psi^n_{\Lambda}(V) \in R_{KG}\) and

\[
\psi^n_S(U + V) = \psi^n_S(U) + \psi^n_S(V), \quad \psi^n_{\Lambda}(U + V) = \psi^n_{\Lambda}(U) + \psi^n_{\Lambda}(V).
\]

Thus we get \(\mathbb{Z}\)-linear functions called the **Adams operations**:

\[
\psi^n_S, \psi^n_{\Lambda} : R_{KG} \to R_{KG}.
\]
Adams operations

Clearly $\psi^1_S(V), \ldots, \psi^n_S(V)$ are polynomials in $S^1(V), \ldots, S^n(V)$ and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in R_{KG} is equivalent to knowledge of the Adams operations (assuming we know how to multiply in R_{KG}).
Adams operations

Clearly $\psi^1_S(V), \ldots, \psi^n_S(V)$ are polynomials in $S^1(V), \ldots, S^n(V)$ and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in R_{KG} is equivalent to knowledge of the Adams operations (assuming we know how to multiply in R_{KG}).

Problem. For given G and K determine ψ^n_S and ψ^n_Λ.
Adams operations

Clearly $\psi^1_S(V), \ldots, \psi^n_S(V)$ are polynomials in $S^1(V), \ldots, S^n(V)$ and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in R_{KG} is equivalent to knowledge of the Adams operations (assuming we know how to multiply in R_{KG}).

Problem. For given G and K determine ψ^*_S and ψ^*_Λ.

Of course, this is a bit of a cheat! Our only definition of the Adams operations involves the symmetric and exterior powers.
Clearly \(\psi^1_S(V), \ldots, \psi^n_S(V) \) are polynomials in \(S^1(V), \ldots, S^n(V) \) and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in \(R_{KG} \) is equivalent to knowledge of the Adams operations (assuming we know how to multiply in \(R_{KG} \)).

Problem. For given \(G \) and \(K \) determine \(\psi^n_S \) and \(\psi^n_\Lambda \).

Of course, this is a bit of a cheat! Our only definition of the Adams operations involves the symmetric and exterior powers.

For now it is perhaps best to think of Adams operations as providing an attractive re-packaging of results on exterior and symmetric powers rather than a tool for proving theorems about these modules.
The main properties of the Adams operations on R_{KG} were given by Benson (1984) and RMB (2003) following ideas of Adams, Frobenius and others.

Linearity.
As we have seen, ψ^n_S and ψ^n_Λ are \mathbb{Z}-linear maps.

‘Nice’ behaviour when n is not divisible by p.
For $p \nmid n$, $\psi^n_S = \psi^n_\Lambda$, and ψ^n_S is a ring endomorphism of R_{KG}.

Factorisation property.
If $n = kp^d$ where $p \nmid k$ then

$$\psi^n_S = \psi^k_S \circ \psi^{p^d}_S, \quad \psi^n_\Lambda = \psi^k_\Lambda \circ \psi^{p^d}_\Lambda.$$
Theorem 1. ψ^n_Λ is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the Sylow p-subgroups are cyclic then there are only finitely many indecomposables (Higman) and the Green ring is semi-simple (Green and O’Reilly).
Theorem 1. \(\psi_A^n \) is periodic in \(n \) if and only if the Sylow \(p \)-subgroups of \(G \) are cyclic.

The proof is fairly elementary, relying on the facts that if the Sylow \(p \)-subgroups are cyclic then there are only finitely many indecomposables (Higman) and the Green ring is semi-simple (Green and O’Reilly).

There is also a corresponding result for \(\psi_S^n \).

Theorem 2. \(\psi_S^n \) is periodic in \(n \) if and only if the Sylow \(p \)-subgroups of \(G \) are cyclic.

The proof of this is more difficult. It relies on deep work of Symonds (2007), based on previous work of Karagueuzian and Symonds.
Suppose now that the Sylow p-subgroups of G are cyclic. Thus ψ_S^n and ψ_A^n are both periodic in n and we would like to calculate the minimum periods. Let e denote the exponent of G.
Minimum period

Suppose now that the Sylow p-subgroups of G are cyclic. Thus ψ^n_S and ψ^n_Λ are both periodic in n and we would like to calculate the minimum periods. Let e denote the exponent of G.

$|G|$ not divisible by p.

ψ^n_S and ψ^n_Λ are periodic in n with minimum period e.
Minimum period

Suppose now that the Sylow p-subgroups of G are cyclic. Thus ψ_S^n and ψ_Λ^n are both periodic in n and we would like to calculate the minimum periods. Let e denote the exponent of G.

$|G|$ not divisible by p.

ψ_S^n and ψ_Λ^n are periodic in n with minimum period e.

G a cyclic p-group.

(i) ψ_S^n is periodic in n with minimum period lcm(2, e);

(ii) ψ_Λ^n is periodic in n with minimum period $2e$.

Suppose now that the Sylow p-subgroups of G are cyclic. Thus ψ^n_S and ψ^n_Λ are both periodic in n and we would like to calculate the minimum periods. Let e denote the exponent of G.

$|G|$ not divisible by p.

ψ^n_S and ψ^n_Λ are periodic in n with minimum period e.

G a cyclic p-group.

(i) ψ^n_S is periodic in n with minimum period $\text{lcm}(2, e)$;

(ii) ψ^n_Λ is periodic in n with minimum period $2e$.

G has proper cyclic Sylow p-subgroup.

We obtain a lower bound; ψ^n_S and ψ^n_Λ are periodic in n with minimum period divisible by $\text{lcm}(2, e)$.

Let G be a cyclic p-group of order $q > 1$. Recall that R_{KG} has \mathbb{Z}-basis \{${V_1, V_2, \ldots, V_q}$\}.

What are $\psi^n_S(V_r)$ and $\psi^n_\Lambda(V_r)$?

We start with the case where $p \nmid n$ and write $\psi^n = \psi^n_S = \psi^n_\Lambda$.
Let G be a cyclic p-group of order $q > 1$.
Recall that R_{KG} has \mathbb{Z}-basis $\{V_1, V_2, \ldots, V_q\}$.

What are $\psi^n_S(V_r)$ and $\psi^n_\Lambda(V_r)$?
We start with the case where $p \nmid n$ and write $\psi^n = \psi^n_S = \psi^n_\Lambda$.

Theorem 3. Suppose that $p \nmid n$ and let $r \in \{1, \ldots, q\}$.
Write $r = kp^i + s$ where $1 \leq k \leq p - 1$ and $1 \leq s \leq p^i$.
Then there is a formula (involving only elementary arithmetic) giving $\psi^n(V_r)$ in terms of $\psi^n(V_s)$ and $\psi^n(V_{p^i - s})$.

(Here we take $V_0 = 0$ to cover the case where $p^i - s = 0$.)
This theorem gives $\psi^n(V_r)$ recursively on r.
Cyclic p-groups

Let G be a cyclic p-group of order $q > 1$. Recall that R_{KG} has \mathbb{Z}-basis $\{V_1, V_2, \ldots, V_q\}$.

What are $\psi^n_S(V_r)$ and $\psi^n_\Lambda(V_r)$?
We start with the case where $p \nmid n$ and write $\psi^n = \psi^n_S = \psi^n_\Lambda$.

Theorem 3. Suppose that $p \nmid n$ and let $r \in \{1, \ldots, q\}$.
Write $r = kp^i + s$ where $1 \leq k \leq p - 1$ and $1 \leq s \leq p^i$.
Then there is a formula (involving only elementary arithmetic) giving $\psi^n(V_r)$ in terms of $\psi^n(V_s)$ and $\psi^n(V_{p^i - s})$.

(Here we take $V_0 = 0$ to cover the case where $p^i - s = 0$.)
This theorem gives $\psi^n(V_r)$ recursively on r.

The proof uses and extends work of Almkvist & Fossum, Kouwenhoven, Hughes & Kemper, and Gow & Laffey.
Patterns for cyclic p-groups

When we calculated ψ^n using Theorem 3 we noticed some interesting patterns, which we were later able to prove.

Example. Let $G = C_{25}$ where $p = 5$.

\[
\begin{align*}
\psi^3(V_1) &= V_1 \\
\psi^3(V_2) &= V_4 - V_2 \\
\psi^3(V_3) &= V_5 - V_3 + V_1 \\
\psi^3(V_4) &= V_4 \\
\psi^3(V_5) &= V_5 \\
\psi^3(V_6) &= V_{16} - V_{14} + V_4 \\
\psi^3(V_7) &= V_{19} - V_{17} + V_{13} - V_{11} + V_5 - V_3 + V_1 \\
\psi^3(V_8) &= V_{20} - V_{18} + V_6 - V_14 + V_{12} - V_{10} + V_4 - V_2 \\
\psi^3(V_9) &= V_{19} - V_{11} + V_1 \\
\psi^3(V_{10}) &= V_{20} - V_{10} \\
\psi^3(V_{11}) &= V_{21} - V_{11} + V_1 \\
\psi^3(V_{12}) &= V_{24} - V_{22} + V_{20} - V_{14} + V_{12} - V_{10} + V_4 - V_2 \\
\psi^3(V_{13}) &= V_{25} - V_{23} + V_21 - V_{15} + V_{13} - V_{11} + V_5 - V_3 + V_1
\end{align*}
\]
Patterns for cyclic p-groups

When we calculated ψ^n using Theorem 4 we noticed some interesting patterns, which we were later able to prove.

Example. Let $G = C_{25}$ where $p = 5$.

\[
\begin{align*}
\psi^3(V_1) &= V_1 \\
\psi^3(V_2) &= V_4 - V_2 \\
\psi^3(V_3) &= V_5 - V_3 + V_1 \\
\psi^3(V_4) &= V_4 \\
\psi^3(V_5) &= V_5 \\
\psi^3(V_6) &= V_{16} - V_{14} + V_4 \\
\psi^3(V_7) &= V_{19} - V_{17} + V_{13} - V_{11} + V_5 - V_3 + V_1 \\
\psi^3(V_8) &= V_{20} - V_{18} + V_{16} - V_{14} + V_{12} - V_{10} + V_4 - V_2 \\
\psi^3(V_9) &= V_{19} - V_{11} + V_1 \\
\psi^3(V_{10}) &= V_{20} - V_{10} \\
\psi^3(V_{11}) &= V_{21} - V_{11} + V_1 \\
\psi^3(V_{12}) &= V_{24} - V_{22} + V_{20} - V_{14} + V_{12} - V_{10} + V_4 - V_2 \\
\psi^3(V_{13}) &= V_{25} - V_{23} + V_{21} - V_{15} + V_{13} - V_{11} + V_5 - V_3 + V_1
\end{align*}
\]
Recall that for a KG-module V, $\Omega(V)$ is defined up to isomorphism as the kernel of any map $P(V) \to V$ where $P(V)$ is the projective cover of V.

Hence

$$\Omega(V_r) = V_{q-r} \text{ for } r = 1, \ldots, q$$

with the convention that $V_0 = 0$.
Heller translates

Recall that for a KG-module V, $\Omega(V)$ is defined up to isomorphism as the kernel of any map $P(V) \twoheadrightarrow V$ where $P(V)$ is the projective cover of V.
Hence

$$\Omega(V_r) = V_{q-r} \text{ for } r = 1, \ldots, q$$

with the convention that $V_0 = 0$.

We extend Ω to a \mathbb{Z}-linear map $\Omega : R_{KG} \rightarrow R_{KG}$. Also we write Ω^n for the composite of Ω taken n times. It is easily seen that

$$\Omega^n(V) = \begin{cases} V + aV_q & \text{if } n \text{ is even}, \\ \Omega(V) + aV_q & \text{if } n \text{ is odd}, \end{cases}$$

where a is some integer.
Reduction of ψ^n_S to ψ^n_Λ

Peter Symonds (2007) gave a recursive way of finding $S^n(V_r)$ in terms of exterior powers. His result leads to a corresponding result for Adams operations which is somewhat easier to state.
Reduction of ψ_S^n to ψ_Λ^n

Peter Symonds (2007) gave a recursive way of finding $S^n(V_r)$ in terms of exterior powers. His result leads to a corresponding result for Adams operations which is somewhat easier to state.

Theorem 4. Suppose that $q/p \leq r \leq q$. Then, for all n,

$$
\psi_S^n(V_r) = (-1)^{n-1} \Omega^n(\psi_\Lambda^n(V_{q-r})) + (n,q)V_q/(n,q) + cV_q
$$

where the integer c may be calculated by a dimension count if $\psi_\Lambda^n(V_{q-r})$ is known and (n,q) denotes the gcd of n and q.
Peter Symonds (2007) gave a recursive way of finding $S^n(V_r)$ in terms of exterior powers. His result leads to a corresponding result for Adams operations which is somewhat easier to state.

Theorem 4. Suppose that $q/p \leq r \leq q$. Then, for all n,

$$
\psi^n_S(V_r) = (-1)^{n-1}\Omega^n(\psi^n_\Lambda(V_{q-r})) + (n,q)V_{q/(n,q)} + cV_q
$$

where the integer c may be calculated by a dimension count if $\psi^n_\Lambda(V_{q-r})$ is known and (n,q) denotes the gcd of n and q.

This is easily seen to give ψ^n_S in terms of ψ^n_Λ.
(For $r < q/p$ the module V_r may be regarded as a module for a proper factor group of G.)

Reduction of ψ^n_S to ψ^n_Λ
The Adams operations are certain linear maps on the Green ring R_{KG} that encapsulate the behaviour of symmetric and exterior powers.
Recap

- The Adams operations are certain linear maps on the Green ring R_{KG} that encapsulate the behaviour of symmetric and exterior powers.
- The Adams operations have many nice properties.

- We have shown that $\psi_n S$ and $\psi_n \Lambda$ are periodic in n if and only if the Sylow p-subgroups of G are cyclic.
- We gave a lower bound for the minimum periods.
- When G is a cyclic p-group we gave recursive formula to calculate $\psi_n S = \psi_n \Lambda$ for n not divisible by p.
- This recursion gives rise to some nice patterns.
- For cyclic p-groups we also showed that $\psi_n S (V_r)$ can be expressed in terms of $\psi_n \Lambda (V_q - r)$, where $V_q - r$ is the Heller translate of V_r.
The Adams operations are certain linear maps on the Green ring R_{KG} that encapsulate the behaviour of symmetric and exterior powers.

The Adams operations have many nice properties.

We have shown that ψ^n_S and ψ^n_Λ are periodic in n if and only if the Sylow p-subgroups of G are cyclic. We gave a lower bound for the minimum periods.

For cyclic p-groups we also showed that $\psi^n_S(V_r)$ can be expressed in terms of $\psi^n_\Lambda(V_{q-r})$, where V_{q-r} is the Heller translate of V_r. This recursion gives rise to some nice patterns.
The Adams operations are certain linear maps on the Green ring R_{KG} that encapsulate the behaviour of symmetric and exterior powers.

The Adams operations have many nice properties.

We have shown that ψ^n_S and ψ^n_Λ are periodic in n if and only if the Sylow p-subgroups of G are cyclic. We gave a lower bound for the minimum periods.

When G is a cyclic p-group we gave recursive formula to calculate $\psi^n_S = \psi^n_\Lambda$ for n not divisible by p. This recursion gives rise to some nice patterns.
Recap

- The Adams operations are certain linear maps on the Green ring R_{KG} that encapsulate the behaviour of symmetric and exterior powers.
- The Adams operations have many nice properties.
- We have shown that ψ^n_S and ψ^n_Λ are periodic in n if and only if the Sylow p-subgroups of G are cyclic. We gave a lower bound for the minimum periods.
- When G is a cyclic p-group we gave recursive formula to calculate $\psi^n_S = \psi^n_\Lambda$ for n not divisible by p. This recursion gives rise to some nice patterns.
- For cyclic p-groups we also showed that $\psi^n_S(V_r)$ can be expressed in terms of $\psi^n_\Lambda(V_{q-r})$, where V_{q-r} is the Heller translate of V_r.
The determination of $\Lambda^n(V_r)$ and $\psi^n\Lambda(V_r)$ for a cyclic p-group is still open in general. Frank Himstedt and Peter Symonds have recently discovered a way of evaluating $\Lambda^n(V_r)$ in the case $p = 2$. This leads to a description of $\psi^n\Lambda$ as follows.

- It can be shown that $\psi^n\Lambda$ is equal to the identity function for all odd n.
- Also, if $n = k2^d$ where k is odd then $\psi^n\Lambda = \psi^k\Lambda \circ \psi^{2^d}\Lambda$.
- Thus it remains to describe $\psi^{2^d}\Lambda$ for $d \geq 1$.

Theorem 5. Let G be a cyclic 2-group. Write $r = 2^i + s$ where $1 \leq s \leq 2^i$. Then

$$\psi^2\Lambda(V_r) = 2V_{2i+1} - 2V_{2i+1-s} + \psi^2\Lambda(V_{2i-s})$$

and

$$\psi^{2^d}\Lambda(V_r) = 2\psi^{2^{d-1}}\Lambda(V_s) + \psi^{2^d}\Lambda(V_{2i-s}) \text{ for } d \geq 2.$$

($\psi^2\Lambda$ can also be obtained from work of Gow and Laffey (2006)).