Green’s J-order and the rank of tropical matrices

Marianne Johnson
(joint work with Mark Kambites)
arXiv:1102.2707v1 [math.RA]

Potsdam, 25th June 2011
Let $T = \mathbb{R} \cup \{-\infty\}$ and define two binary operations on T by

$$a \oplus b := \max(a, b), \quad \text{and} \quad a \otimes b := a + b,$$

for all $a, b \in T$ (where $a \oplus -\infty = -\infty \oplus a = a$ and $a \otimes -\infty = -\infty \otimes a = -\infty$).
The tropical semiring

Let \(T = \mathbb{R} \cup \{-\infty\} \) and define two binary operations on \(T \) by
\[
a \oplus b := \max(a, b), \quad \text{and} \quad a \otimes b := a + b,
\]
for all \(a, b \in T \) (where \(a \oplus -\infty = -\infty \oplus a = a \) and \(a \otimes -\infty = -\infty \otimes a = -\infty \)).

- \((T, \oplus)\) is a commutative monoid with identity element \(-\infty\);
- \((T, \otimes)\) is a (commutative) monoid with identity element 0;
- \(\otimes \) distributes over \(\oplus \);
- \(-\infty\) is an absorbing element with respect to \(\otimes \);
- For all \(a \in T \) we have \(a \oplus a = a \).

We say that \(T \) is a (commutative) idempotent semiring. It is often referred to as the max-plus or tropical semiring.
Motivation

The tropical semiring has applications in diverse areas such as...

- analysis of discrete event systems
- combinatorial optimisation and scheduling problems
- formal languages and automata
- statistical inference
- algebraic geometry...

Typically problems in application areas involve finding solutions to a system of linear equations over the tropical semiring.

Thus it is natural to consider matrices with entries in the tropical semiring...
Consider the set $M_n(\mathbb{T})$ of all $n \times n$ matrices with entries in \mathbb{T}. The operations \oplus and \otimes can be extended to such matrices in the usual way:

\[
(A \oplus B)_{i,j} = A_{i,j} \oplus B_{i,j}, \text{ for all } A, B \in M_n(\mathbb{T})
\]

\[
(A \otimes B)_{i,j} = \bigoplus_{k=1}^{l} A_{i,k} \otimes B_{k,j}, \text{ for all } A, B \in M_n(\mathbb{T}).
\]

We study the multiplicative semigroup $(M_n(\mathbb{T}), \otimes)$.
Tropical convex sets

We write \mathbb{T}^n to denote the set of all n-tuples $x = (x_1, \ldots, x_n)$ with $x_i \in \mathbb{T}$ and extend \oplus to \mathbb{T}^n componentwise:

$$(x \oplus y)_i = x_i \oplus y_i.$$

We also define a scaling action of \mathbb{T} on \mathbb{T}^n:

$$(\lambda \otimes x)_i, \ldots, x_n) = \lambda \otimes x_i, \text{ for all } \lambda \in \mathbb{T}.$$

A tropical convex set X in \mathbb{T}^n is a subset that is closed under \oplus and scaling. We say that a subset $V \subseteq X$ is a generating set for X if every element of X can be written as a tropical linear combination of finitely many elements of V.
Let $A, B \in M_n(\mathbb{T})$.

(1) $A \mathcal{L} B \iff \text{row space of } A = \text{row space of } B$.

(2) $A \mathcal{R} B \iff \text{col. space of } A = \text{col. space of } B$.

(3) $A \mathcal{H} B \iff \text{row space of } A = \text{row space of } B$ and
 \text{col. space of } A = \text{col. space of } B.

(4) $A \mathcal{D} B \iff \text{row space of } A \cong \text{row space of } B$
 \iff \text{col. space of } A \cong \text{col. space of } B
 \iff \text{Recent result of Hollings and Kambites.}$

(Note: The row space need not be linearly isomorphic to the column space.)

We describe Green’s \mathcal{J}-order (and hence the corresponding \mathcal{J}-relation).
Is $\mathcal{D} = \mathcal{J}$?

Example AJB but $A\emptyset B$.

$$A = \begin{pmatrix} -\infty & 0 & 1 & -\infty \\ -\infty & -\infty & 1 & -\infty \\ 0 & 0 & 0 & -\infty \\ -\infty & -\infty & -\infty & -\infty \end{pmatrix}, \quad B = \begin{pmatrix} -\infty & 0 & 1 & 1 \\ -\infty & -\infty & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -\infty & -\infty & -\infty & -\infty \end{pmatrix}$$

- Claim there exist matrices $P, Q, R, S \in M_4(\mathbb{T})$ such that $A = PBQ$ and $B = RAS$.
- It is easy to check that $C(A)$ can be generated by three elements, whilst $C(B)$ cannot be generated by fewer than four elements.
- Thus the column spaces $C(A)$ and $C(B)$ are not linearly isomorphic and hence $A\emptyset B$.

Theorem. For the subsemigroup of matrices without $-\infty$ entries we have that $\mathcal{D} = \mathcal{J}$.
Is \(D = J \)?

Example \(AJB \) but \(A \not\sim B \).

\[
A = \begin{pmatrix}
-\infty & 0 & 1 & -\infty \\
-\infty & -\infty & 1 & -\infty \\
0 & 0 & 0 & -\infty \\
-\infty & -\infty & -\infty & -\infty
\end{pmatrix},
B = \begin{pmatrix}
-\infty & 0 & 1 & 1 \\
-\infty & -\infty & 1 & 0 \\
0 & 0 & 0 & 0 \\
-\infty & -\infty & -\infty & -\infty
\end{pmatrix}
\]

- Claim there exist matrices \(P, Q, R, S \in \text{M}_4(\mathbb{T}) \) such that \(A = PBQ \) and \(B = RAS \).
- It is easy to check that \(C(A) \) can be generated by three elements, whilst \(C(B) \) cannot be generated by fewer than four elements.
- Thus the column spaces \(C(A) \) and \(C(B) \) are not linearly isomorphic and hence \(A \not\sim B \).

Theorem. For the subsemigroup of matrices without \(-\infty \) entries we have that \(D = J \).
Green’s \mathcal{J}-order on $M_n(\mathbb{T})$

Theorem. Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

(i) $A \leq_{\mathcal{J}} B$;

(ii) There is a \mathbb{T}-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;

(iii) There is a \mathbb{T}-linear convex set Y such that the col. space of A embeds linearly into Y and the col. space of B surjects linearly onto Y.
Lemma. Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

(i) $R(A)$ embeds linearly into $R(B)$;
(ii) $C(B)$ surjects linearly onto $C(A)$;
(iii) There exists $C \in M_n(\mathbb{T})$ with $ARC \leq L B$.
Lemma. Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

(i) $R(A)$ embeds linearly into $R(B)$;
(ii) $C(B)$ surjects linearly onto $C(A)$;
(iii) There exists $C \in M_n(\mathbb{T})$ with $ARC \leq_L B$.

Lemma. Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

(i) $C(A)$ embeds linearly into $C(B)$;
(ii) $R(B)$ surjects linearly onto $R(A)$;
(iii) There exists $C \in M_n(\mathbb{T})$ with $ALC \leq_R B$.
The rank of a tropical matrix

There are several (non-equivalent) notions of the rank of a tropical matrix. We define three such here...

\[
\text{factor rank}(A) = \text{the minimum } k \text{ such that } A \text{ can be factored as } A = CR \text{ where } C \text{ is } n \times k \text{ and } R \text{ is } k \times n
\]

\[
\text{det rank}(A) = \text{the maximum } k \text{ such that } A \text{ has a } k \times k \text{ minor } M \text{ with } |M|^+ \neq |M|^-
\]

\[
\text{tropical rank}(A) = \text{the maximum } k \text{ such that } A \text{ has a } k \times k \text{ minor } M \text{ where the max. is achieved twice in the permanent of } M.
\]
Let $A, B \in M_n(\mathbb{T})$. Then it is known that

\[
\begin{align*}
\text{factor rank}(AB) & \leq \min(\text{factor rank}(A), \text{factor rank}(B)) \\
\text{det rank}(AB) & \leq \min(\text{det rank}(A), \text{det rank}(B)) \\
\text{tropical rank}(AB) & \leq \min(\text{tropical rank}(A), \text{tropical rank}(B))
\end{align*}
\]

from which it follows easily that...
Let $A, B \in M_n(\mathbb{T})$. Then it is known that

\[
\begin{align*}
\text{factor rank}(AB) & \leq \min(\text{factor rank}(A), \text{factor rank}(B)) \\
\text{det rank}(AB) & \leq \min(\text{det rank}(A), \text{det rank}(B)) \\
\text{tropical rank}(AB) & \leq \min(\text{tropical rank}(A), \text{tropical rank}(B))
\end{align*}
\]

from which it follows easily that...

Theorem. The factor rank, det rank and tropical rank are all \mathcal{J}-class invariants in $M_n(\mathbb{T})$.