Green’s J-order and the rank of tropical matrices

Marianne Johnson
(joint work with Mark Kambites)
arXiv:1102.2707v1 [math.RA]

Groups and Semigroups: Interactions and Computations,
Lisbon, 29th July 2011
Let \(\mathbb{T} = \mathbb{R} \cup \{-\infty\} \) and define two binary operations on \(\mathbb{T} \) by

\[
\begin{align*}
a \oplus b &:= \max(a, b), \\
a \otimes b &:= a + b,
\end{align*}
\]

\[
(a \oplus -\infty = -\infty \oplus a = a, \quad a \otimes -\infty = -\infty \otimes a = -\infty).
\]

We say that \(\mathbb{T} \) is a (commutative) idempotent semiring.
It is often referred to as the max-plus or tropical semiring.

We also define the finitary tropical semiring,
\(\mathbb{FT} = (\mathbb{R}, \oplus, \otimes) \).

Throughout let \(S = \mathbb{T} \) or \(\mathbb{FT} \).
We study the multiplicative semigroup \((M_n(S), \otimes) \) of all \(n \times n \) matrices with entries in \(S \).
Tropical convex sets

We write S^n to denote the set of all n-tuples $x = (x_1, \ldots, x_n)$ with $x_i \in S$ and extend \oplus to S^n componentwise:

$$(x \oplus y)_i = x_i \oplus y_i.$$

We also define a scaling action of S on S^n:

$$(\lambda \otimes x)_i = \lambda \otimes x_i, \text{ for all } \lambda \in S.$$

A tropical convex set X in S^n is a subset that is closed under \oplus and scaling.
Green’s relations

Let \(S = \mathbb{T} \) or \(\mathbb{F} \mathbb{T} \) and let \(A, B \in M_n(S) \).

(1) \(A \mathcal{L} B \iff \) row space of \(A \) = row space of \(B \).

(2) \(A \mathcal{R} B \iff \) col. space of \(A \) = col. space of \(B \).

(3) \(A \mathcal{D} B \iff \) row space of \(A \cong \) row space of \(B \\
\iff \) col. space of \(A \cong \) col. space of \(B \\
(Hollings and Kambites, 2010.)

We shall describe Green’s \(\mathcal{J} \)-order and hence the corresponding \(\mathcal{J} \)-relation.
Comparing \mathcal{D} and \mathcal{J}

First question should be is $\mathcal{D} = \mathcal{J}$?
Comparing \mathcal{D} and \mathcal{J}

First question should be is $\mathcal{D} = \mathcal{J}$?

Theorem. (Izhakian and Margolis)

$\mathcal{D} \neq \mathcal{J}$ in $M_n(\mathbb{T})$ for all $n \geq 3$.
Comparing \mathcal{D} and \mathcal{J}

First question should be is $\mathcal{D} = \mathcal{J}$?

Theorem. (Izhakian and Margolis)
$\mathcal{D} \neq \mathcal{J}$ in $M_n(\mathbb{T})$ for all $n \geq 3$.

- We have also constructed a nice example (with pictures!) to show that $\mathcal{D} \neq \mathcal{J}$ for all $n \geq 3$.
Comparing \(\mathcal{D} \) and \(\mathcal{J} \)

First question should be is \(\mathcal{D} = \mathcal{J} \)?

Theorem. (Izhakian and Margolis)
\(\mathcal{D} \neq \mathcal{J} \) in \(M_n(\mathbb{T}) \) for all \(n \geq 3 \).

- We have also constructed a nice example (with pictures!) to show that \(\mathcal{D} \neq \mathcal{J} \) for all \(n \geq 3 \).

Proposition. \(\mathcal{D} = \mathcal{J} \) in \(M_2(\mathbb{T}) \).
Comparing \mathcal{D} and \mathcal{J}

First question should be is $\mathcal{D} = \mathcal{J}$?

Theorem. (Izhakian and Margolis) $\mathcal{D} \neq \mathcal{J}$ in $M_n(\mathbb{T})$ for all $n \geq 3$.

- We have also constructed a nice example (with pictures!) to show that $\mathcal{D} \neq \mathcal{J}$ for all $n \geq 3$.

Proposition. $\mathcal{D} = \mathcal{J}$ in $M_2(\mathbb{T})$.

Theorem. The \mathcal{J}-order in $M_n(\mathbb{FT})$ is inherited from the \mathcal{J}-order in $M_n(\mathbb{T})$.
Comparing \mathcal{D} and \mathcal{I}

First question should be is $\mathcal{D} = \mathcal{I}$?

Theorem. (Izhakian and Margolis)
$\mathcal{D} \neq \mathcal{I}$ in $M_n(\mathbb{T})$ for all $n \geq 3$.

- We have also constructed a nice example (with pictures!) to show that $\mathcal{D} \neq \mathcal{I}$ for all $n \geq 3$.

Proposition. $\mathcal{D} = \mathcal{I}$ in $M_2(\mathbb{T})$.

Theorem. The \mathcal{I}-order in $M_n(\mathbb{F}\mathbb{T})$ is inherited from the \mathcal{I}-order in $M_n(\mathbb{T})$.

However...

Theorem. $\mathcal{D} = \mathcal{I}$ in $M_n(\mathbb{F}\mathbb{T})$ for all $n \geq 1$.
We define tropical projective space \(\mathcal{P} \mathbb{FT}^n \) by identifying two elements of \(\mathbb{FT}^n \) if one is a finite tropical multiple of the other.
We define **tropical projective space** $\mathcal{P}^{\mathbb{FT}^n}$ by identifying two elements of \mathbb{FT}^n if one is a finite tropical multiple of the other.

Note that we may identify $\mathcal{P}^{\mathbb{FT}^n}$ with \mathbb{R}^{n-1} via

$$[x_1, \ldots, x_n] \mapsto (x_1 - x_n, \ldots, x_{n-1} - x_n).$$
We define **tropical projective space** $\mathcal{P}^{\mathbb{FT}_n}$ by identifying two elements of \mathbb{FT}_n if one is a finite tropical multiple of the other.

Note that we may identify $\mathcal{P}^{\mathbb{FT}_n}$ with \mathbb{R}^{n-1} via

$$[x_1, \ldots, x_n] \mapsto (x_1 - x_n, \ldots, x_{n-1} - x_n).$$

Recall that we have a “distance function” on \mathbb{FT}_n defined by $d_H(x, y) = 0$ if x is a finite tropical multiple of y and

$$d_H(x, y) = \max(y_i - x_i) - \min(y_i - x_i).$$
Tropical projective space

We define tropical projective space $\mathcal{P}^{\mathbb{FT}^n}$ by identifying two elements of \mathbb{FT}^n if one is a finite tropical multiple of the other.

Note that we may identify $\mathcal{P}^{\mathbb{FT}^n}$ with \mathbb{R}^{n-1} via

$$[x_1, \ldots, x_n] \mapsto (x_1 - x_n, \ldots, x_{n-1} - x_n).$$

Recall that we have a “distance function” on \mathbb{FT}^n defined by $d_H(x, y) = 0$ if x is a finite tropical multiple of y and

$$d_H(x, y) = \max(y_i - x_i) - \min(y_i - x_i).$$

It can be shown that d_H is a metric on $\mathcal{P}^{\mathbb{FT}^n}$.
1. Easy to check that d_H induces the **usual topology** on \mathbb{R}^{n-1}.

The key results used in the proof
1. Easy to check that d_H induces the **usual topology** on \mathbb{R}^{n-1}.

Each finitely generated convex set $X \subseteq FT^n$ induces a subset PX of PFT^n termed the **projectivisation** of X.

The key results used in the proof
1. Easy to check that d_H induces the **usual topology** on \mathbb{R}^{n-1}.

Each finitely generated convex set $X \subseteq \mathcal{F}\mathcal{T}^n$ induces a subset $\mathcal{P}X$ of $\mathcal{P}\mathcal{F}\mathcal{T}^n$ termed the **projectivisation** of X.
The key results used in the proof

1. Easy to check that d_H induces the **usual topology** on \mathbb{R}^{n-1}.

Each finitely generated convex set $X \subseteq FT^n$ induces a subset $\mathcal{P}X$ of $\mathcal{P}FT^n$ termed the **projectivisation** of X.

2. The projectivisation of each finitely generated convex set $X \subseteq FT^n$, denoted $\mathcal{P}X$, is a closed and bounded (and hence **compact**) subset of $\mathcal{P}FT^n$.
The key results used in the proof

1. Easy to check that d_H induces the **usual topology** on \mathbb{R}^{n-1}.

Each finitely generated convex set $X \subseteq \mathbb{FT}^n$ induces a subset $P X$ of $P \mathbb{FT}^n$ termed the **projectivisation** of X.

2. The projectivisation of each finitely generated convex set $X \subseteq \mathbb{FT}^n$, denoted $P X$, is a closed and bounded (and hence **compact**) subset of $P \mathbb{FT}^n$.

3. **Metric Duality Theorem:**
Let $A \in M_n(\mathbb{FT})$. There exist mutually inverse isometric embeddings between $P R(A)$ and $P C(A)$.

Comparing \mathcal{D} and \mathcal{J}

Theorem. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{F} \mathbb{T})$.

Sketch proof Clearly $A\mathcal{D}B \Rightarrow A\mathcal{J}B$.
Suppose for contradiction that $A\mathcal{J}B$, but $A\mathcal{D}B$.
Comparing \mathcal{D} and \mathcal{J}

Theorem. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{FT})$.

Sketch proof Clearly $A\mathcal{D}B \Rightarrow A\mathcal{J}B$.
Suppose for contradiction that $A\mathcal{J}B$, but $A\mathcal{D}B$.
Then there is a non-surjective isometric embedding

$$f : \mathcal{P}R(A) \to \mathcal{P}R(A).$$
Comparing \mathcal{D} and \mathcal{J}

Theorem. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{F} \mathcal{T})$.

Sketch proof Clearly $A \mathcal{D} B \Rightarrow A \mathcal{J} B$.
Suppose for contradiction that $A \mathcal{J} B$, but $A \mathcal{D} B$.
Then there is a non-surjective isometric embedding

$$f : \mathcal{P} R(A) \rightarrow \mathcal{P} R(A).$$

Since f is not surjective and has closed image we may choose
$x_0 \in \mathcal{P} R(A)$ and $\varepsilon > 0$ such that $x_0 \notin f(\mathcal{P} R(A))$ and
distance $d_H(x_0, z) \geq \varepsilon$ for all $z \in f(X_0)$.
Comparing \mathcal{D} and \mathcal{J}

Theorem. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{FT})$.

Sketch proof Clearly $A \mathcal{D} B \Rightarrow A \mathcal{J} B$.

Suppose for contradiction that $A \mathcal{J} B$, but $A \mathcal{D} B$.

Then there is a non-surjective isometric embedding

$$f : \mathcal{P} R(A) \to \mathcal{P} R(A).$$

Since f is not surjective and has closed image we may choose $x_0 \in \mathcal{P} R(A)$ and $\varepsilon > 0$ such that $x_0 \notin f(\mathcal{P} R(A))$ and $d_H(x_0, z) \geq \varepsilon$ for all $z \in f(X_0)$.

Now set $X_i = f^i(\mathcal{P} R(A))$ and let $x_i = f^i(x_0) \in X_i$. Since f is an isometric embedding we have $d_H(x_i, y) \geq \varepsilon$ for all $y \in X_{i+1}$.
Comparing \mathcal{D} and \mathcal{J}

Theorem. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{FT})$.

Sketch proof Clearly $A \mathcal{D} B \Rightarrow A \mathcal{J} B$.
Suppose for contradiction that $A \mathcal{J} B$, but $A \mathcal{D} B$.
Then there is a non-surjective isometric embedding

$$f : \mathcal{PR}(A) \rightarrow \mathcal{PR}(A).$$

Since f is not surjective and has closed image we may choose $x_0 \in \mathcal{PR}(A)$ and $\varepsilon > 0$ such that $x_0 \notin f(\mathcal{PR}(A))$ and $d_H(x_0, z) \geq \varepsilon$ for all $z \in f(X_0)$.

Now set $X_i = f^i(\mathcal{PR}(A))$ and let $x_i = f^i(x_0) \in X_i$.
Since f is an isometric embedding we have $d_H(x_i, y) \geq \varepsilon$ for all $y \in X_{i+1}$.

In particular $d_h(x_i, x_j) \geq \varepsilon$ for all $j > i$.
This contradicts the compactness of $\mathcal{PR}(A) \subseteq \mathcal{PR}\mathbb{FT}^n = \mathbb{R}^{n-1}$.
Green’s \mathcal{J}-order on $M_n(\mathbb{T})$

Theorem. Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

(i) $A \leq_{\mathcal{J}} B$;

(ii) There is a \mathbb{T}-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;

(iii) There is a \mathbb{T}-linear convex set Y such that the column space of A embeds linearly into Y and the column space of B surjects linearly onto Y.
Theorem. Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

(i) $A \preceq J B$;

(ii) There is a \mathbb{T}-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;

(iii) There is a \mathbb{T}-linear convex set Y such that the col. space of A embeds linearly into Y and the col. space of B surjects linearly onto Y.
The rank of a tropical matrix

There are several (non-equivalent) notions of the rank of a tropical matrix. We define three such here...

factor rank \(A \) = the minimum \(k \) such that \(A \) can be factored as \(A = CR \) where \(C \) is \(n \times k \) and \(R \) is \(k \times n \)

det rank \(A \) = the maximum \(k \) such that \(A \) has a \(k \times k \) minor \(M \) with \(|M|^+ \neq |M|^− \)

tropical rank \(A \) = the maximum \(k \) such that \(A \) has a \(k \times k \) minor \(M \) where the max. is achieved uniquely in the permanent of \(M \).
The rank of a tropical matrix

There are several (non-equivalent) notions of the rank of a tropical matrix. We define three such here...

\[
\text{factor rank}(A) = \text{the minimum } k \text{ such that } A \text{ can be factored as } A = CR \text{ where } C \text{ is } n \times k \text{ and } R \text{ is } k \times n
\]

\[
\text{det rank}(A) = \text{the maximum } k \text{ such that } A \text{ has a } k \times k \text{ minor } M \text{ with } |M|^+ \neq |M|^-
\]

\[
\text{tropical rank}(A) = \text{the maximum } k \text{ such that } A \text{ has a } k \times k \text{ minor } M \text{ where the max. is achieved uniquely in the permanent of } M.
\]

Observation. The factor rank, det rank, tropical rank (and others) are all \(\mathcal{J}\)-class invariants in \(M_n(\mathbb{T})\).
Comparing \mathcal{D} and \mathcal{J}

Example.

$$A = \begin{pmatrix} -\infty & 0 & 1 \\ -\infty & -\infty & 1 \\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} -\infty & 0 & 2 \\ -\infty & -\infty & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

- It is easy to see that $C(A) \subseteq C(B)$. Hence $A \leq_{\mathcal{R}} B$.
- It is also easy to see that $R(B) \subseteq R(A)$. Hence $B \leq_{\mathcal{L}} A$.
- Thus we have shown that $A \mathcal{J} B$.

Claim that $P_{C}(A)$ is not isometric to $P_{C}(B)$. Thus, $A \not\sim_{\mathcal{D}} B$ since any isomorphism between the column spaces would induce an isometry between the projective column spaces.

It follows that $D \neq J$ in $M_{n}(T)$ for all $n \geq 3$.
Example.

\[A = \begin{pmatrix} -\infty & 0 & 1 \\ -\infty & -\infty & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -\infty & 0 & 2 \\ -\infty & -\infty & 2 \\ 0 & 0 & 0 \end{pmatrix} \]

- It is easy to see that \(C(A) \subseteq C(B) \). Hence \(A \preceq R B \).
- It is also easy to see that \(R(B) \subseteq R(A) \). Hence \(B \preceq L A \).
- Thus we have shown that \(A \leq J B \).
- Claim that \(PC(A) \) is not isometric to \(PC(B) \). Thus, \(A \not\simeq B \) since any isomorphism between the column spaces would induce an isometry between the projective column spaces.
- It follows that \(D \neq J \) in \(M_n(\mathbb{T}) \) for all \(n \geq 3 \).