Projectivity of Tropical Polytopes

Marianne Johnson
(joint work with Zur Izhakian and Mark Kambites)
arXiv:1106.4525v1 [math.RA]

6th December 2011

Research supported by EPSRC Grant EP/H000801/1, Israel Science Foundation grant number 448/09 and the Mathematisches Forschungsinstitut Oberwolfach.
The tropical semifield

Let $\mathbb{FT} = (\mathbb{R}, \oplus, \otimes)$ where \oplus and \otimes denote two binary operations defined by

$$a \oplus b := \max(a, b), \quad a \otimes b := a + b,$$

\mathbb{FT} is a commutative semigroup; (\mathbb{FT}, \oplus) is a commutative group with identity element 0; \otimes distributes over \oplus; for all $a \in \mathbb{FT}$ we have $a \oplus a = a$. We say that \mathbb{FT} is an idempotent semifield. It is often referred to as the max-plus or tropical semifield.
The tropical semifield

Let $\mathbb{FT} = (\mathbb{R}, \oplus, \otimes)$ where \oplus and \otimes denote two binary operations defined by

$$a \oplus b := \max(a, b), \quad a \otimes b := a + b,$$

- (\mathbb{FT}, \oplus) is a commutative semigroup;
- (\mathbb{FT}, \otimes) is a commutative group with identity element 0;
- \otimes distributes over \oplus;
Let $\mathbb{F}_T = (\mathbb{R}, \oplus, \otimes)$ where \oplus and \otimes denote two binary operations defined by

$$a \oplus b := \max(a, b), \quad a \otimes b := a + b,$$

- (\mathbb{F}_T, \oplus) is a commutative semigroup;
- (\mathbb{F}_T, \otimes) is a commutative group with identity element 0;
- \otimes distributes over \oplus;
- For all $a \in \mathbb{F}_T$ we have $a \oplus a = a$.

We say that \mathbb{F}_T is an idempotent semifield.
It is often referred to as the max-plus or tropical semifield.
The tropical semifield has applications in areas such as...

- analysis of discrete event systems
- combinatorial optimisation and scheduling problems
- formal languages and automata
- statistical inference
- algebraic geometry
- computing eigenvalues of matrix polynomials...
Motivation

The tropical semifield has applications in areas such as...

- analysis of discrete event systems
- combinatorial optimisation and scheduling problems
- formal languages and automata
- statistical inference
- algebraic geometry
- computing eigenvalues of matrix polynomials...

Problems in application areas typically involve finding solutions to a system of linear equations over the tropical semifield.
Motivation

The tropical semifield has applications in areas such as...

- analysis of discrete event systems
- combinatorial optimisation and scheduling problems
- formal languages and automata
- statistical inference
- algebraic geometry
- computing eigenvalues of matrix polynomials...

Problems in application areas typically involve finding solutions to a system of linear equations over the tropical semifield.

We are therefore interested in properties of matrices with entries in the tropical semifield and their action upon vectors.
Consider the set $M_n(\mathbb{FT})$ of all $n \times n$ matrices over \mathbb{FT}. We define multiplication \otimes of tropical matrices as follows:

$$(A \otimes B)_{i,j} = \bigoplus_{k=1}^{n} A_{i,k} \otimes B_{k,j}, \text{ for all } A, B \in M_n(\mathbb{FT}).$$
Tropical matrices

Consider the set $M_n(\mathbb{FT})$ of all $n \times n$ matrices over \mathbb{FT}. We define multiplication \otimes of tropical matrices as follows:

$$(A \otimes B)_{i,j} = \bigoplus_{k=1}^{n} A_{i,k} \otimes B_{k,j}, \text{ for all } A, B \in M_n(\mathbb{FT}).$$

Example.

$$\begin{pmatrix} 0 & 1 & 2 \\ 7 & 19 & 3 \\ -5 & 2 & 6 \end{pmatrix} \otimes \begin{pmatrix} -1 & -1 & -2 \\ -20 & 4 & 5 \\ 1 & 2 & 9 \end{pmatrix}$$
Consider the set $M_n(\mathbb{FT})$ of all $n \times n$ matrices over \mathbb{FT}. We define multiplication \otimes of tropical matrices as follows:

$$(A \otimes B)_{i,j} = \bigoplus_{k=1}^{n} A_{i,k} \otimes B_{k,j}, \text{ for all } A, B \in M_n(\mathbb{FT}).$$

Example.

$$\begin{pmatrix}
0 & 1 & 2 \\
7 & 19 & 3 \\
-5 & 2 & 6
\end{pmatrix} \otimes \begin{pmatrix}
-1 & -1 & -2 \\
-20 & 4 & 5 \\
1 & 2 & 9
\end{pmatrix} = \begin{pmatrix}
3 & 5 & 11 \\
6 & 23 & 24 \\
7 & 8 & 15
\end{pmatrix}$$
Tropical matrices

Consider the set $M_n(\mathbb{F}_T)$ of all $n \times n$ matrices over \mathbb{F}_T. We define multiplication \otimes of tropical matrices as follows:

$$(A \otimes B)_{i,j} = \bigoplus_{k=1}^{n} A_{i,k} \otimes B_{k,j}, \text{ for all } A, B \in M_n(\mathbb{F}_T).$$

Example.

$$\begin{pmatrix} 0 & 1 & 2 \\ 7 & 19 & 3 \\ -5 & 2 & 6 \end{pmatrix} \otimes \begin{pmatrix} -1 & -1 & -2 \\ -20 & 4 & 5 \\ 1 & 2 & 9 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 11 \\ 6 & 23 & 24 \\ 7 & 8 & 15 \end{pmatrix}$$

It is easy to see that $(M_n(\mathbb{F}_T), \otimes)$ forms a semigroup.
Tropical vectors

We write \mathbb{FT}^n to denote the set of all n-tuples $x = (x_1, \ldots, x_n)$ with $x_i \in \mathbb{FT}$ and extend the addition \oplus to \mathbb{FT}^n componentwise:

$$(x \oplus y)_i = x_i \oplus y_i.$$
We write \mathbb{FT}^n to denote the set of all n-tuples $x = (x_1, \ldots, x_n)$ with $x_i \in \mathbb{FT}$ and extend the addition \oplus to \mathbb{FT}^n componentwise:

$$(x \oplus y)_i = x_i \oplus y_i.$$

We also define a scaling action of \mathbb{FT} on \mathbb{FT}^n:

$$(\lambda \otimes x)_i = \lambda \otimes x_i, \text{ for all } \lambda \in \mathbb{FT}.$$
Tropical vectors

We write \mathbb{FT}^n to denote the set of all n-tuples $x = (x_1, \ldots, x_n)$ with $x_i \in \mathbb{FT}$ and extend the **addition** \oplus to \mathbb{FT}^n componentwise:

$$(x \oplus y)_i = x_i \oplus y_i.$$

We also define a **scaling** action of \mathbb{FT} on \mathbb{FT}^n:

$$(\lambda \otimes x)_i = \lambda \otimes x_i, \text{ for all } \lambda \in \mathbb{FT}.$$

Thus \mathbb{FT}^n has the structure of an \mathbb{FT}-module.
A **tropical convex set** is a subset $X \subseteq \mathbb{FT}^n$ that is closed under \oplus and scaling (i.e. an \mathbb{FT}-submodule of \mathbb{FT}^n).
A **tropical convex set** is a subset $X \subseteq \mathbb{FT}^n$ that is closed under \oplus and scaling (i.e. an \mathbb{FT}-submodule of \mathbb{FT}^n).

If X is finitely generated, we say that X is a **tropical polytope**.
Tropical polytopes

A **tropical convex set** is a subset $X \subseteq \mathbb{FT}^n$ that is closed under \oplus and scaling (i.e. an \mathbb{FT}-submodule of \mathbb{FT}^n).

If X is finitely generated, we say that X is a **tropical polytope**.

Example.
Let $A \in M_n(\mathbb{FT})$. We define the **row space** $R(A) \subseteq \mathbb{FT}^n$ to be the tropical polytope generated by the rows of A.

Similarly, we define the **column space** $C(A) \subseteq \mathbb{FT}^n$ to be the tropical polytope generated by the columns of A.

Caution: the row space need not be linearly isomorphic to the column space.
A tropical convex set is a subset $X \subseteq \mathbb{FT}^n$ that is closed under \oplus and scaling (i.e. an \mathbb{FT}-submodule of \mathbb{FT}^n).

If X is finitely generated, we say that X is a tropical polytope.

Example.
Let $A \in M_n(\mathbb{FT})$. We define the row space $R(A) \subseteq \mathbb{FT}^n$ to be the tropical polytope generated by the rows of A.

Similarly, we define the column space $C(A) \subseteq \mathbb{FT}^n$ to be the tropical polytope generated by the columns of A.

Caution: the row space need not be linearly isomorphic to the column space.
A module P is called **projective** if for every morphism $f : P \to M$ and every surjective morphism $g : N \to M$ there exists a morphism $h : P \to N$ such that $f = g \circ h$.

We say that $A \in \mathcal{M}_n(\mathbb{F}_T)$ is (von Neumann) **regular** if there exists $B \in \mathcal{M}_n(\mathbb{F}_T)$ such that $A \otimes B \otimes A = A$.

Theorem 1. A is regular \iff $R(A)$ is projective \iff $C(A)$ is projective.

Sketch proof:

\implies A is regular \iff it is "D-related" to an idempotent.

\implies Hollings and Kambites, 2010: Tropical matrices are "D-related" \iff their row spaces (dually, column spaces) are isomorphic.

\implies A tropical polytope $X \subseteq \mathcal{F}_T^n$ is projective if and only if it is isomorphic to the image of an idempotent.
A module P is called **projective** if for every morphism $f : P \to M$ and every surjective morphism $g : N \to M$ there exists a morphism $h : P \to N$ such that $f = g \circ h$.

We say that $A \in M_n(\mathbb{FT})$ is (von Neumann) **regular** if there exists $B \in M_n(\mathbb{FT})$ such that $A \otimes B \otimes A = A$.

Theorem 1. A is regular $\iff R(A)$ is projective $\iff C(A)$ is projective.

Sketch proof:
1. A is regular \iff it is "D-related" to an idempotent.
2. Hollings and Kambites, 2010: Tropical matrices are "D-related" \iff their row spaces (dually, column spaces) are isomorphic.
3. A tropical polytope $X \subseteq \mathbb{FT}^n$ is projective if and only if it is isomorphic to the image of an idempotent.
Projectivity and regularity

A module P is called **projective** if for every morphism $f : P \to M$ and every surjective morphism $g : N \to M$ there exists a morphism $h : P \to N$ such that $f = g \circ h$.

We say that $A \in M_n(\mathbb{F}T)$ is (von Neumann) **regular** if there exists $B \in M_n(\mathbb{F}T)$ such that $A \otimes B \otimes A = A$.

Theorem 1.

A is regular $\iff R(A)$ is projective $\iff C(A)$ is projective.
A module P is called **projective** if for every morphism $f : P \rightarrow M$ and every surjective morphism $g : N \rightarrow M$ there exists a morphism $h : P \rightarrow N$ such that $f = g \circ h$.

We say that $A \in M_n(\mathbb{FT})$ is (von Neumann) **regular** if there exists $B \in M_n(\mathbb{FT})$ such that $A \otimes B \otimes A = A$.

Theorem 1.

A is regular $\iff R(A)$ is projective $\iff C(A)$ is projective.

Sketch proof:

- A is regular \iff it is “\mathcal{D}-related” to an idempotent.
Projectivity and regularity

A module P is called **projective** if for every morphism $f : P \to M$ and every surjective morphism $g : N \to M$ there exists a morphism $h : P \to N$ such that $f = g \circ h$.

We say that $A \in M_n(\mathbb{FT})$ is (von Neumann) **regular** if there exists $B \in M_n(\mathbb{FT})$ such that $A \otimes B \otimes A = A$.

Theorem 1.

A is regular $\iff R(A)$ is projective $\iff C(A)$ is projective.

Sketch proof:

- A is regular \iff it is “D-related” to an idempotent.
- Hollings and Kambites, 2010:
 Tropical matrices are “D-related” \iff their row spaces (dually, column spaces) are isomorphic.
A module P is called **projective** if for every morphism $f : P \to M$ and every surjective morphism $g : N \to M$ there exists a morphism $h : P \to N$ such that $f = g \circ h$.

We say that $A \in M_n(\mathbb{FT})$ is (von Neumann) **regular** if there exists $B \in M_n(\mathbb{FT})$ such that $A \otimes B \otimes A = A$.

Theorem 1.

A is regular $\iff R(A)$ is projective $\iff C(A)$ is projective.

Sketch proof:

- A is regular \iff it is “\mathcal{D}-related” to an idempotent.
- Hollings and Kambites, 2010:
 Tropical matrices are “\mathcal{D}-related” \iff their row spaces (dually, column spaces) are isomorphic.
- A tropical polytope $X \subseteq \mathbb{FT}^n$ is projective if and only if it is isomorphic to the image of an idempotent.
Projectivity and regularity

Recall that \(A \in M_n(\mathbb{F}_T) \) is regular if there exists \(B \in M_n(\mathbb{F}_T) \) such that \(A \otimes B \otimes A = A \).

Example.

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
2 & 2 & 0
\end{pmatrix} \otimes \begin{pmatrix}
-2 & -2 & -2 \\
-2 & -2 & -4 \\
0 & -2 & -2
\end{pmatrix} \otimes \begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
2 & 2 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
2 & 2 & 0
\end{pmatrix}
\]
Projectivity and regularity

Recall that $A \in M_n(\mathbb{F}_T)$ is **regular** if there exists $B \in M_n(\mathbb{F}_T)$ such that $A \otimes B \otimes A = A$.

Example.

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
2 & 2 & 0 \\
\end{pmatrix} \otimes \begin{pmatrix}
-2 & -2 & -2 \\
-2 & -2 & -4 \\
0 & -2 & -2 \\
\end{pmatrix} \otimes \begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
2 & 2 & 0 \\
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
2 & 2 & 0 \\
\end{pmatrix}
\]

Can we give a **geometric** characterisation of the projective tropical polytopes (and hence, the regular matrices in $M_n(\mathbb{F}_T)$)?
Let \(X \subseteq \mathbb{FT}^n \) be a tropical polytope.
Dimensions of tropical polytopes

Let $X \subseteq \mathbb{FT}^n$ be a tropical polytope.

The **tropical dimension** of X is the maximum topological dimension of X regarded as a subset of \mathbb{R}^n.
Dimensions of tropical polytopes

Let $X \subseteq \mathbb{FT}^n$ be a tropical polytope.

The **tropical dimension** of X is the maximum topological dimension of X regarded as a subset of \mathbb{R}^n.

We say that X has **pure tropical dimension** k if every open subset of X has topological dimension k.
Let $X \subseteq \mathbb{FT}^n$ be a tropical polytope.

The **tropical dimension** of X is the maximum topological dimension of X regarded as a subset of \mathbb{R}^n.

We say that X has **pure tropical dimension** k if every open subset of X has topological dimension k.

The **generator dimension** of X is the minimum cardinality of a generating set for X.

Lemma. The dual dimension of X is equal to the generator dimension of $\mathcal{C}(A)$, where A is any matrix satisfying $X = \mathbb{R}(A)$.

Let $X \subseteq \mathbb{FT}^n$ be a tropical polytope.

The **tropical dimension** of X is the maximum topological dimension of X regarded as a subset of \mathbb{R}^n.

We say that X has **pure tropical dimension** k if every open subset of X has topological dimension k.

The **generator dimension** of X is the minimum cardinality of a generating set for X.

The **dual dimension** of X is the minimum k such that X embeds linearly into \mathbb{FT}^k.

Lemma. The dual dimension of X is equal to the generator dimension of $C(A)$, where A is any matrix satisfying $X = R(A)$.

Let $X \subseteq \mathbb{F}_T^n$ be a tropical polytope.

The **tropical dimension** of X is the maximum topological dimension of X regarded as a subset of \mathbb{R}^n.

We say that X has **pure tropical dimension** k if every open subset of X has topological dimension k.

The **generator dimension** of X is the minimum cardinality of a generating set for X.

The **dual dimension** of X is the minimum k such that X embeds linearly into \mathbb{F}_T^k.

Lemma. The dual dimension of X is equal to the generator dimension of $C(A)$, where A is any matrix satisfying $X = R(A)$.
Theorem 2. Let $X \subseteq \mathbb{FT}^n$ be a tropical polytope. Then
X is projective $\iff X$ has pure tropical dimension and
trop. dim $=$ gen. dim $=$ dual dim.
Theorem 2. Let $X \subseteq \mathbb{FT}^n$ be a tropical polytope. Then X is projective \iff X has pure tropical dimension and $\text{trop. dim} = \text{gen. dim} = \text{dual dim}$.

Sketch proof:
We make use of the fact that a tropical polytope $X \subseteq \mathbb{FT}^n$ is projective \iff it is isomorphic to the image of an idempotent.
Theorem 2. Let $X \subseteq \mathbb{FT}^n$ be a tropical polytope. Then X is projective $\iff X$ has pure tropical dimension and $\text{trop. dim} = \text{gen. dim} = \text{dual dim}$.

Sketch proof:
We make use of the fact that a tropical polytope $X \subseteq \mathbb{FT}^n$ is projective \iff it is isomorphic to the image of an idempotent.

\Rightarrow: Enough to show that the column space of any idempotent matrix has pure tropical dimension $= \text{generator dimension} = \text{dual dimension}$.

\Leftarrow: If X has dual dimension is k then, by definition, $X \sim Y$ for some $Y \subseteq \mathbb{FT}^k$ with all dimensions equal to k. Enough to show that every such maximal-dimension tropical polytope in \mathbb{FT}^k is isomorphic to the image of an idempotent.
Theorem 2. Let \(X \subseteq \mathbb{T}^n \) be a tropical polytope. Then
\(X \) is projective \(\iff \) \(X \) has pure tropical dimension and
trop. dim = gen. dim = dual dim.

Sketch proof:
We make use of the fact that a tropical polytope \(X \subseteq \mathbb{T}^n \) is
projective \(\iff \) it is isomorphic to the image of an idempotent.

\(\Rightarrow \): Enough to show that the column space of any idempotent
matrix has pure tropical dimension = generator dimension =
dual dimension.

\(\Leftarrow \): If \(X \) has dual dimension is \(k \) then, by definition, \(X \cong Y \) for
some \(Y \subseteq \mathbb{T}^k \) with all dimensions equal to \(k \).
Theorem 2. Let $X \subseteq \mathbb{FT}^n$ be a tropical polytope. Then X is projective \iff X has pure tropical dimension and $\text{trop. dim} = \text{gen. dim} = \text{dual dim}$.

Sketch proof:
We make use of the fact that a tropical polytope $X \subseteq \mathbb{FT}^n$ is projective \iff it is isomorphic to the image of an idempotent.

\Rightarrow: Enough to show that the column space of any idempotent matrix has pure tropical dimension $= \text{generator dimension} = \text{dual dimension}$.

\Leftarrow: If X has dual dimension is k then, by definition, $X \cong Y$ for some $Y \subseteq \mathbb{FT}^k$ with all dimensions equal to k.

Enough to show that every such maximal-dimension tropical polytope in \mathbb{FT}^k is isomorphic to the image of an idempotent.
Corollary. Let $A \in M_n(\mathbb{F}_T)$. Then

A is regular $\iff R(A)$ and $C(A)$ have the same pure tropical dimension equal to their generator dimension.
Corollary. Let $A \in M_n(\mathbb{FT})$. Then

A is regular $\iff R(A)$ and $C(A)$ have the same pure tropical dimension equal to their generator dimension.

Proof:

- Theorem 1: A is regular $\iff R(A)$ and $C(A)$ are projective.
Corollary. Let $A \in M_n(\mathbb{FT})$. Then

A is regular $\iff R(A)$ and $C(A)$ have the same pure tropical dimension equal to their generator dimension.

Proof:

- Theorem 1: A is regular $\iff R(A)$ and $C(A)$ are projective.

- Theorem 2: $R(A)$ projective $\iff R(A)$ has pure tropical dim. and tropical dim. $=$ generator dim. $=$ dual dim.
Corollary. Let $A \in M_n(\mathbb{FT})$. Then

A is regular $\iff R(A)$ and $C(A)$ have the same pure tropical dimension equal to their generator dimension.

Proof:

- **Theorem 1:** A is regular $\iff R(A)$ and $C(A)$ are projective.
- **Theorem 2:** $R(A)$ projective $\iff R(A)$ has pure tropical dim. and tropical dim. $=$ generator dim. $=$ dual dim.
- **Lemma:** The dual dimension of $R(A)$ is equal to the generator dimension of $C(A)$.
The rank of a tropical matrix

There are several (non-equivalent) notions of the rank of a tropical matrix:

- **tropical rank** \(\text{tropical rank}(A) \) = tropical dimension of its row or col. space.
- **row rank** \(\text{row rank}(A) \) = generator dimension of row space of \(A \).
- **column rank** \(\text{column rank}(A) \) = generator dimension of col. space of \(A \).
- **factor rank** \(\text{factor rank}(A) \) = the minimum \(k \) such that \(A \) can be factored as \(A = CR \) where \(C \) is \(n \times k \) and \(R \) is \(k \times n \).
- **det rank** \(\text{det rank}(A) \) = the maximum \(k \) such that \(A \) has a \(k \times k \) minor \(M \) with \(|M|^+ \neq |M|^− \)
The rank of a tropical matrix

There are several (non-equivalent) notions of the rank of a tropical matrix:

- **tropical rank** \(A \) = tropical dimension of its row or col. space.
- **row rank** \(A \) = generator dimension of row space of \(A \).
- **column rank** \(A \) = generator dimension of col. space of \(A \).
- **factor rank** \(A \) = the minimum \(k \) such that \(A \) can be factored as \(A = CR \) where \(C \) is \(n \times k \) and \(R \) is \(k \times n \).
- **det rank** \(A \) = the maximum \(k \) such that \(A \) has a \(k \times k \) minor \(M \) with \(|M|^+ \neq |M|^− \).

Also, Kapranov rank, Gondran-Minoux row rank, Gondran-Minoux column rank etc.
The rank of a tropical matrix

There are several (non-equivalent) notions of the rank of a tropical matrix:

- **tropical rank** \(\text{tropical rank}(A) \) = tropical dimension of its row or col. space.
- **row rank** \(\text{row rank}(A) \) = generator dimension of row space of \(A \).
- **column rank** \(\text{column rank}(A) \) = generator dimension of col. space of \(A \).
- **factor rank** \(\text{factor rank}(A) \) = the minimum \(k \) such that \(A \) can be factored as \(A = CR \) where \(C \) is \(n \times k \) and \(R \) is \(k \times n \).
- **det rank** \(\text{det rank}(A) \) = the maximum \(k \) such that \(A \) has a \(k \times k \) minor \(M \) with \(|M|^+ \neq |M|^− \).

Also, Kapranov rank, Gondran-Minoux row rank, Gondran-Minoux column rank etc.

Corollary. Let \(A \in M_n(\mathbb{FT}) \) be a regular matrix. Then all these notions of rank coincide.