Idempotent tropical matrices:
graphs, groups and metric spaces

Marianne Johnson
(joint work with Zur Izhakian and Mark Kambites)
arXiv:1203.2449v1 [math.GR]

28th June 2012

Research supported by EPSRC Grant EP/H000801/1 and the Alexander von Humboldt Foundation.
Let \mathbb{F}_T denote the tropical semifield $\mathbb{F}_T = (\mathbb{R}, \oplus, \otimes)$, where

$$a \oplus b := \max(a, b), \quad a \otimes b := a + b.$$

and let $M_n(\mathbb{F}_T)$ denote the set of all $n \times n$ matrices over \mathbb{F}_T, with multiplication \otimes defined in the obvious way.

It is easy to see that $(M_n(\mathbb{F}_T), \otimes)$ is a semigroup.

We are interested in the algebraic structure of this semigroup, much of which can be neatly described using some geometric ideas.
Let \mathbb{FT}^n denote the set of all real n-tuples $v = (v_1, \ldots, v_n)$ with obvious operations of addition and scalar multiplication:

$$(v \oplus w)_i = v_i \oplus w_i, \quad (\lambda \otimes v)_i = \lambda \otimes v_i.$$

Given a finite subset $X = \{x_1, \ldots, x_r\} \subset \mathbb{FT}^n$, the tropical polytope generated by X is the \mathbb{FT}-linear span of X:

$$\{\lambda_1 \otimes x_1 \oplus \cdots \oplus \lambda_r \otimes x_r : \lambda_i \in \mathbb{FT}\}.$$
Let \mathbb{FT}^n denote the set of all real n-tuples $v = (v_1, \ldots, v_n)$ with obvious operations of addition and scalar multiplication:

$$(v \oplus w)_i = v_i \oplus w_i, \quad (\lambda \otimes v)_i = \lambda \otimes v_i.$$

Given a finite subset $X = \{x_1, \ldots, x_r\} \subset \mathbb{FT}^n$, the tropical polytope generated by X is the \mathbb{FT}-linear span of X:

$$\{\lambda_1 \otimes x_1 \oplus \cdots \oplus \lambda_r \otimes x_r : \lambda_i \in \mathbb{FT}\}.$$

Let $A \in M_n(\mathbb{FT})$. We define the row space $R(A) \subseteq \mathbb{FT}^n$ to be the tropical polytope generated by the rows of A.

Similarly, we define the column space $C(A) \subseteq \mathbb{FT}^n$ to be the tropical polytope generated by the columns of A.
Some tropical polytopes in \mathbb{FT}^3
On the structure of semigroups

Green’s relations: Equivalence relations that can be defined upon any semigroup S and encapsulate the **ideal and subgroup structure** of S.

For $A, B \in S$...

- $A \mathrel{L} B$ if $\exists X, Y \in S^1$ such that $A = XB$ and $B = YA$.
- $A \mathrel{R} B$ if $\exists X, Y \in S^1$ such that $A = BX$ and $B = AY$.
- $A \mathrel{H} B$ if $A \mathrel{L} B$ and $A \mathrel{R} B$.

Green’s relations: Equivalence relations that can be defined upon any semigroup S and encapsulate the ideal and subgroup structure of S.

For $A, B \in S$...

- $A \mathcal{L} B$ if $\exists X, Y \in S^1$ such that $A = XB$ and $B = YA$.
- $A \mathcal{R} B$ if $\exists X, Y \in S^1$ such that $A = BX$ and $B = AY$.
- $A \mathcal{H} B$ if $A \mathcal{L} B$ and $A \mathcal{R} B$.

In $M_n(\mathbb{FT})$:

$A \mathcal{L} B$ if and only if $R(A) = R(B)$.

$A \mathcal{R} B$ if and only if $C(A) = C(B)$.

$A \mathcal{H} B$ if and only if $R(A) = R(B)$ AND $C(A) = C(B)$.
Let S be a semigroup.
The **idempotent elements** $(E \in S, E^2 = E)$ play a special role in the study of the subgroup structure of S.

Around every idempotent element there is a unique **maximal subgroup** H_E. This is the \mathcal{H}-equivalence class of E.

$$H_E = \{A \in S : A \mathcal{H} E\}$$
Let S be a semigroup.
The **idempotent elements** ($E \in S$, $E^2 = E$) play a special role in the study of the subgroup structure of S.

Around every idempotent element there is a unique **maximal subgroup** H_E. This is the \mathcal{H}-equivalence class of E.

$$H_E = \{ A \in S : A \mathcal{H} E \}$$

- What are the maximal subgroups of $M_n(\mathbb{F}T)$? (i.e. What are the \mathcal{H}-equivalence classes of idempotents?)
- What *kinds* of group arise? (i.e. What are these groups up to isomorphism?)
Maximal subgroups of $M_n(\mathbb{F}_2)$

Given an idempotent $E \in M_n(\mathbb{F}_2)$ it is clear from the previous definitions that

$$H_E = \{ A \in M_n(\mathbb{F}_2) : R(A) = R(E) \text{ and } C(A) = C(E) \}$$
Maximal subgroups of $M_n(\mathbb{F}_T)$

Given an idempotent $E \in M_n(\mathbb{F}_T)$ it is clear from the previous definitions that

$$H_E = \{ A \in M_n(\mathbb{F}_T) : R(A) = R(E) \text{ and } C(A) = C(E) \}$$

Theorem Let E be an idempotent in $M_n(\mathbb{F}_T)$. Then

- H_E is isomorphic to the group of \mathbb{F}_T-linear automorphisms of the column space $C(E)$
- H_E is isomorphic to the group of \mathbb{F}_T-linear automorphisms of the row space $R(E)$.
Three notions of dimension

Let $V \subseteq \mathbb{FT}^n$ be a tropical polytope.

- The tropical dimension of V is the maximum topological dimension of V regarded as a subset of \mathbb{R}^n. We say that the tropical dimension is pure if the open (within V) subsets of V all have the same topological dimension.

- The generator dimension of V is the minimum cardinality of a generating set for V.

- The dual dimension of V is the minimum k such that V embeds linearly into \mathbb{FT}^k.

In general, these dimensions can differ.
Dimensions of tropical polytopes

<table>
<thead>
<tr>
<th>trop dim</th>
<th>gen dim</th>
<th>dual dim</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

![Diagram of tropical polytopes]
Theorem Let $V \subseteq \mathbb{FT}^n$ be a tropical polytope.

There is a positive integer k such that V has pure tropical dimension k, generator dimension k and dual dimension k

if and only if

V is the column space of an idempotent

if and only if

V is projective as an \mathbb{FT}-module.
Theorem Let $V \subseteq \mathbb{FT}^n$ be a tropical polytope.

There is a positive integer k such that V has pure tropical dimension k, generator dimension k and dual dimension k if and only if V is the column space of an idempotent if and only if V is projective as an \mathbb{FT}-module.

If E is an idempotent in $M_n(\mathbb{FT})$, we say that E has rank k if the dimension (in any sense) of $C(E)$ is k. (Note: $1 \leq \text{rank}(E) \leq n$)
Theorem Let $V \subseteq \mathbb{FT}^n$ be a tropical polytope.

There is a positive integer k such that V has pure tropical dimension k, generator dimension k and dual dimension k

if and only if

V is the column space of an idempotent

if and only if

V is projective as an \mathbb{FT}-module.

- If E is an idempotent in $M_n(\mathbb{FT})$, we say that E has rank k if the dimension (in any sense) of $C(E)$ is k.
 (Note: $1 \leq \text{rank}(E) \leq n$)

- Idempotents of full rank n have a particularly nice structure; their row and column spaces are convex in the ordinary sense.
Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$.
The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices.
Maximal subgroups for idempotents of full rank

Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$.
The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices.

Theorem
Let E be an idempotent of rank n in $M_n(\mathbb{FT})$ and define $G_E = \{G : G \text{ is a unit in } M_n(\mathbb{T}) \text{ and } GE = EG\}$. Then $H_E \cong G_E$.
Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$.
The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices.

Theorem

Let E be an idempotent of rank n in $M_n(\mathbb{FT})$ and define $G_E = \{G : G$ is a unit in $M_n(\mathbb{T})$ and $GE = EG\}$.
Then $H_E \cong G_E$.

Corollary

Every \mathbb{FT}-module automorphism of $C(E)$

(i) extends to an automorphism of \mathbb{FT}^n and

(ii) is a (classical) affine linear map.
Maximal subgroups for idempotents of full rank

Let E be an idempotent of rank n in $M_n(\mathbb{F} \mathbb{T})$, so that $H_E \cong G_E$.

Theorem

Let $R = \{ \lambda \otimes I_n \}$ and $\Sigma = \{ G \in G_E : G$ has eigenvalue 0$\}$. Then $G_E = R \times \Sigma$.
Let E be an idempotent of rank n in $M_n(\mathbb{F}T)$, so that $H_E \cong G_E$.

Theorem

Let $R = \{\lambda \otimes I_n\}$ and $\Sigma = \{G \in G_E : G$ has eigenvalue 0\}. Then $G_E = R \times \Sigma$.

It is clear that $R \cong \mathbb{R}$ and not hard to show that the map $\Sigma \to S_n$ sending each unit G to its associated permutation is injective, giving:

Theorem

Let E be an idempotent of rank n in $M_n(\mathbb{F}T)$. Then $H_E \cong \mathbb{R} \times \Sigma$, for some $\Sigma \leq S_n$.
Maximal subgroups of $M_n(\mathbb{F}T)$

So, for an idempotent E of full rank n, the corresponding maximal subgroup is isomorphic to a direct product of \mathbb{R} with a finite group $\Sigma \leq S_n$. What about when E has rank $< n$?
Maximal subgroups of $M_n(\mathbb{F}T)$

So, for an idempotent E of full rank n, the corresponding maximal subgroup is isomorphic to a direct product of \mathbb{R} with a finite group $\Sigma \leq S_n$. What about when E has rank $< n$?

Theorem

Let E be an idempotent of rank k in $M_n(\mathbb{F}T)$. Then there is an idempotent $F \in M_k(\mathbb{F}T)$ such that F has rank k and $H_E \cong H_F$.
Maximal subgroups of $M_n(\mathbb{F}T)$

So, for an idempotent E of full rank n, the corresponding maximal subgroup is isomorphic to a direct product of \mathbb{R} with a finite group $\Sigma \leq S_n$. What about when E has rank $< n$?

Theorem
Let E be an idempotent of rank k in $M_n(\mathbb{F}T)$. Then there is a idempotent $F \in M_k(\mathbb{F}T)$ such that F has rank k and $H_E \cong H_F$.

Corollary
Let H be a maximal subgroup of $M_n(\mathbb{F}T)$ containing a rank k idempotent. Then $H \cong \mathbb{R} \times \Sigma$, for some $\Sigma \leq S_k$.
Let \([n] = \{1, \ldots, n\}\) and let \(d: [n] \times [n] \to \mathbb{R}\) be a metric. Consider the \(n \times n\) matrix \(E\) with \(E_{i,j} = -d(i, j)\).

Then

- \(E \otimes E = E\);
- \(E\) has full rank \(n\).
Let $[n] = \{1, \ldots, n\}$ and let $d : [n] \times [n] \to \mathbb{R}$ be a metric. Consider the $n \times n$ matrix E with $E_{i,j} = -d(i,j)$. Then

- $E \otimes E = E$;
- E has full rank n.

Theorem [JK]
The columns of E with respect to d_H form a metric space isometric to $([n], d)$.
Idempotents, groups and finite metrics

Let \([n] = \{1, \ldots, n\}\) and let \(d : [n] \times [n] \to \mathbb{R}\) be a metric. Consider the \(n \times n\) matrix \(E\) with \(E_{i,j} = -d(i,j)\). Then
- \(E \otimes E = E\);
- \(E\) has full rank \(n\).

Theorem [JK]
The columns of \(E\) with respect to \(d_H\) form a metric space isometric to \(([n], d)\).

Theorem [JK]
\(H_E \cong \mathbb{R} \times I\), where \(I\) is the isometry group of the finite metric space \(([n], d)\).
Let $[n] = \{1, \ldots, n\}$ and let $d : [n] \times [n] \to \mathbb{R}$ be a metric. Consider the $n \times n$ matrix E with $E_{i,j} = -d(i, j)$. Then

- $E \otimes E = E$;
- E has full rank n.

Theorem [JK]

The columns of E with respect to d_H form a metric space isometric to $([n], d)$.

Theorem [JK]

$H_E \cong \mathbb{R} \times I$, where I is the isometry group of the finite metric space $([n], d)$.

Corollary [JK]

Let G be a finite group. Then $\mathbb{R} \times G$ is a maximal subgroup of $M_n(\mathbb{F}_T)$, for n sufficiently large.