Lie representations of $GL(V)$

Marianne Johnson
University of Manchester
marianne.johnson@maths.man.ac.uk

Antalya Algebra Days IX
22nd-27th May 2007
Outline

▶ Tensor representations of $GL(V)$
▶ Lie representations of $GL(V)$
▶ Klyachko’s Theorem
▶ A combinatorial proof
Tensor representations of $GL(V)$

- V a finite dimensional vector space over a field of characteristic zero
Tensor representations of $GL(V)$

- V a finite dimensional vector space over a field of characteristic zero
- T the tensor algebra on V

\[
T = \bigoplus_{n \geq 0} T_n \quad T_n = V^\otimes n
\]
Tensor representations of $GL(V)$

- V a finite dimensional vector space over a field of characteristic zero
- T the tensor algebra on V
 \[T = \bigoplus_{n \geq 0} T_n \quad T_n = V^\otimes n \]
- V is the natural module for $GL(V)$
Tensor representations of $GL(V)$

- V a finite dimensional vector space over a field of characteristic zero
- T the tensor algebra on V
 \[T = \bigoplus_{n \geq 0} T_n \quad T_n = V^\otimes n \]
- V is the natural module for $GL(V)$
- T is a $GL(V)$-module
Tensor representations of $GL(V)$

- V a finite dimensional vector space over a field of characteristic zero
- T the tensor algebra on V

$$T = \bigoplus_{n \geq 0} T_n \quad T_n = V \otimes^n$$

- V is the natural module for $GL(V)$
- T is a $GL(V)$-module
- Each T_n is a $GL(V)$-submodule of T called the nth tensor representation.
Tensor representations of $GL(V)$

Schur (1901, 1923): The T_n are semisimple $GL(V)$-modules and the irreducible components are parameterised by partitions of n

$$T_n \cong \bigoplus_{\lambda \vdash n} t_\lambda[\lambda]$$
Tensor representations of $GL(V)$

Schur (1901, 1923): The T_n are semisimple $GL(V)$-modules and the irreducible components are parameterised by partitions of n

$$T_n \cong \bigoplus_{\lambda \vdash n} t_\lambda [\lambda]$$

$[\lambda]$ - irreducible $GL(V)$-module corresponding to λ
([\lambda] = 0 if \lambda has more than dim V parts).
t_λ - multiplicity
Tensor representations of $GL(V)$

Schur (1901, 1923): The T_n are semisimple $GL(V)$-modules and the irreducible components are parameterised by partitions of n

$$T_n \cong \bigoplus_{\lambda \vdash n} t_\lambda [\lambda]$$

$[\lambda]$ - irreducible $GL(V)$-module corresponding to λ
$([\lambda] = 0$ if λ has more than $\dim V$ parts).
t_λ - multiplicity

Recall that a partition of n is a sequence of positive integers $\lambda = (\lambda_1, \ldots, \lambda_k)$ such that $\lambda_1 \geq \cdots \geq \lambda_k$ and $\lambda_1 + \cdots + \lambda_k = n$
Tensor representations of $GL(V)$

Schur (1901, 1923): The T_n are semisimple $GL(V)$-modules and the irreducible components are parameterised by partitions of n

$$T_n \cong \bigoplus_{\lambda \vdash n} t_\lambda[\lambda]$$

$[\lambda]$ - irreducible $GL(V)$-module corresponding to λ ($[\lambda] = 0$ if λ has more than $\dim V$ parts).

t_λ - multiplicity

Recall that a partition of n is a sequence of positive integers $\lambda = (\lambda_1, \ldots, \lambda_k)$ such that $\lambda_1 \geq \cdots \geq \lambda_k$ and $\lambda_1 + \cdots + \lambda_k = n$

e.g. $\lambda = (4, 2, 2, 1, 1) = (4, 2^2, 1^2) \vdash 10$
Tensor representations of $GL(V)$

- A **Young diagram** of shape λ is a collection of n boxes arranged with λ_i boxes in the ith row.

```
1 2 5 6
3 7
4 8
9
10
```

It turns out that $t_\lambda = \text{number of standard tableaux of shape } \lambda$.
A Young diagram of shape λ is a collection of n boxes arranged with λ_i boxes in the ith row.

Example:
$\lambda = (4, 2^2, 1^2)$

\[
\begin{array}{cccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}
\]
A **Young diagram** of shape λ is a collection of n boxes arranged with λ_i boxes in the ith row

Example:
$\lambda = (4, 2^2, 1^2)$

A **standard tableau** of shape λ is a Young diagram numbered with $\{1, \ldots, n\}$ such that the entries increase along every row and down every column.
A **Young diagram** of shape λ is a collection of n boxes arranged with λ_i boxes in the ith row.

Example:

$\lambda = (4, 2^2, 1^2)$

A **standard tableau** of shape λ is a Young diagram numbered with $\{1, \ldots, n\}$ such that the entries increase along every row and down every column.
Tensor representations of $GL(V)$

- A **Young diagram** of shape λ is a collection of n boxes arranged with λ_i boxes in the ith row.

 Example: $\lambda = (4, 2^2, 1^2)$

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A **standard tableau** of shape λ is a Young diagram numbered with $\{1, \ldots, n\}$ such that the entries increase along every row and down every column.

- It turns out that $t_\lambda = \text{number of standard tableaux of shape } \lambda$.
Tensor representations of $\text{GL}(V)$

Example:

$T_4 \cong [4] \oplus 3 [3, 1] \oplus 2 [2^2] \oplus 3 [2, 1^2] \oplus [1^4]$
Lie representations of $Gl(V)$

- Turn T into a Lie algebra by setting $[u, v] = u \otimes v - v \otimes u$
Lie representations of $GL(V)$

- Turn T into a Lie algebra by setting $[u, v] = u \otimes v - v \otimes u$
- L the Lie subalgebra generated by V in T

$$L = \bigoplus_{n \geq 1} L_n \quad L_n = L \cap T_n$$
Lie representations of $GL(V)$

- Turn T into a Lie algebra by setting $[u, v] = u \otimes v - v \otimes u$
- L the Lie subalgebra generated by V in T

$$L = \bigoplus_{n \geq 1} L_n \quad L_n = L \cap T_n$$

- L_n is a $GL(V)$-submodule of T_n called the nth Lie representation.
Lie representations of $GL(V)$

- Turn T into a Lie algebra by setting $[u, v] = u \otimes v - v \otimes u$
- Let L be the Lie subalgebra generated by V in T

\[L = \bigoplus_{n \geq 1} L_n \quad \text{and} \quad L_n = L \cap T_n \]

- L_n is a $GL(V)$-submodule of T_n called the \textit{nth Lie representation}.
- Hence

\[L_n \cong \bigoplus_{\lambda \vdash n} l_\lambda [\lambda] \quad 0 \leq l_\lambda \leq t_\lambda \]
Lie representations of $GL(V)$

- Turn T into a Lie algebra by setting $[u, v] = u \otimes v - v \otimes u$
- L the Lie subalgebra generated by V in T

$$L = \bigoplus_{n \geq 1} L_n \quad L_n = L \cap T_n$$

- L_n is a $GL(V)$-submodule of T_n called the nth Lie representation.
- Hence

$$L_n \cong \bigoplus_{\lambda \vdash n} l_\lambda[\lambda] \quad 0 \leq l_\lambda \leq t_\lambda$$

- What is l_λ?
Lie representations of $GL(V)$

<table>
<thead>
<tr>
<th>Decomposition into irreducibles</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_1 \cong [1]$</td>
<td></td>
</tr>
<tr>
<td>$L_2 \cong [1^2]$</td>
<td>[2]</td>
</tr>
<tr>
<td>$L_3 \cong [2, 1]$</td>
<td>[3], [1^3]</td>
</tr>
<tr>
<td>$L_4 \cong [3, 1] \oplus [2, 1^2]$</td>
<td>[4], [2^2], [1^4]</td>
</tr>
<tr>
<td>$L_5 \cong [4, 1] \oplus [3, 2] \oplus [3, 1^2] \oplus [2^2, 1] \oplus [2, 1^3]$</td>
<td>[5], [1^5]</td>
</tr>
<tr>
<td>$L_6 \cong [5, 1] \oplus [4, 2] \oplus 2[4, 1^2] \oplus [3^2] \oplus 3[3, 2, 1]$ $\oplus [3, 1^3] \oplus 2[2^2, 1^2] \oplus [2, 1^4]$</td>
<td>[6], [2^3], [1^6]</td>
</tr>
</tbody>
</table>
Lie representations of $GL(V)$

Wever (1949):

$$l_{\lambda} = \frac{1}{n} \sum_{d \mid n} \mu(d)\chi_{\lambda}(\tau^{n/d})$$
Lie representations of $GL(V)$

Wever (1949):

$$l_\lambda = \frac{1}{n} \sum_{d|n} \mu(d) \chi_\lambda(\tau^{n/d})$$

μ - the Möbius function
χ_λ - the character of the irreducible S_n-module corresponding to λ
τ - a cycle of length n in S_n
Lie representations of $GL(V)$

Wever (1949):

$$l_\lambda = \frac{1}{n} \sum_{d|n} \mu(d) \chi_\lambda(\tau^{n/d})$$

μ - the Möbius function
χ_λ - the character of the irreducible S_n-module corresponding to λ
τ - a cycle of length n in S_n

It is difficult to see in general which modules actually occur in the decomposition of L_n, that is, for which λ we have $l_\lambda > 0$.
Klyachko’s Theorem (1974)

Let \(n \geq 3 \) and let \(\lambda \vdash n \) with no more than \(\dim(V) \) parts. Then

\[l_\lambda > 0 \iff \lambda \neq (1^n), (n), (2^2), (2^3). \]
Let $n \geq 3$ and let $\lambda \vdash n$ with no more than $\dim(V)$ parts. Then

$$l_{\lambda} > 0 \iff \lambda \neq (1^n), (n), (2^2), (2^3).$$

In other words, almost every irreducible $GL(V)$ module occurs in the Lie representation.
It turns out that l_λ also has a nice combinatorial description in terms of standard tableaux.
It turns out that λ also has a nice combinatorial description in terms of standard tableaux.

Let T be a standard tableau. An entry i is a descent in T if $i + 1$ occurs in any row below the row containing i.

We shall write $D(T)$ for the set of all descents in T. We define the major index of T to be the sum of all descents in T:

$$\text{maj}(T) = \sum_{i \in D(T)} i$$
It turns out that \(l_\lambda \) also has a nice combinatorial description in terms of standard tableaux.

Let \(T \) be a standard tableau. An entry \(i \) is a descent in \(T \) if \(i + 1 \) occurs in any row below the row containing \(i \).
Standard tableaux, descents and major index

- It turns out that I_λ also has a nice combinatorial description in terms of standard tableaux.

- Let T be a standard tableau. An entry i is a descent in T if $i + 1$ occurs in any row below the row containing i.

We shall write $D(T)$ for the set of all descents in T.
It turns out that l_λ also has a nice combinatorial description in terms of standard tableaux.

Let T be a standard tableau. An entry i is a descent in T if $i + 1$ occurs in any row below the row containing i.

We shall write $D(T)$ for the set of all descents in T.

We define the major index of T to be the sum of all descents in T.

\[\text{maj}(T) = \sum_{i \in D(T)} i \]
Standard tableaux, descents and major index

- It turns out that l_{λ} also has a nice combinatorial description in terms of standard tableaux.

- Let T be a standard tableau. An entry i is a descent in T if $i + 1$ occurs in any row below the row containing i.

 We shall write $D(T)$ for the set of all descents in T.

 We define the major index of T to be the sum of all descents in T.

 \[\text{maj}(T) = \sum_{i \in D(T)} i \]
Standard tableaux, descents and major index

Example: $\lambda = (5, 3, 2, 1) \vdash 11$
Example: $\lambda = (5, 3, 2, 1) \vdash 11$

\[
\begin{array}{cccccc}
\hline
5 & 3 & 2 & 1 & \text{} & \text{}\\
\hline
\end{array}
\]
Standard tableaux, descents and major index

Example: \(\lambda = (5, 3, 2, 1) \vdash 11 \)

\[
\begin{array}{cccc}
1 & 2 & 4 & 8 \ 9 \\
3 & 5 & 11 \\
6 & 10 \\
7 \\
\end{array}
\]

\(\text{maj}(T) = 2 + 4 + 5 + 6 + 9 = 26 \)

Remarks:

\(D(T) \subseteq \{1, \ldots, n-1\} \)

\(k - 1 \leq |D(T)| \leq n - \lambda_1 \)
Example: $\lambda = (5, 3, 2, 1) \vdash 11$

\[
\begin{array}{cccc}
1 & 2 & 4 & 8 & 9 \\
3 & 5 & 11 \\
6 & 10 \\
7
\end{array}
\]

$D(T) = \{2, 4, 5, 6, 9\}$

$maj(T) = 2 + 4 + 5 + 6 + 9 = 26$
Standard tableaux, descents and major index

Example: \(\lambda = (5, 3, 2, 1) \vdash 11 \)

\[
\begin{array}{cccc}
1 & 2 & 4 & 8 & 9 \\
3 & 5 & 11 \\
6 & 10 \\
7 \\
\end{array}
\]

\(D(T) = \{2, 4, 5, 6, 9\} \)

\[\text{maj}(T) = 2 + 4 + 5 + 6 + 9 = 26 \]

Remarks:

- \(D(T) \subseteq \{1, \ldots, n - 1\} \)
Standard tableaux, descents and major index

Example: \(\lambda = (5, 3, 2, 1) \vdash 11 \)

\[
\begin{array}{cccc}
1 & 2 & 4 & 8 \\
3 & 5 & 11 & \\
6 & 10 & \\
7 & \\
\end{array}
\]

\[D(T) = \{2, 4, 5, 6, 9\} \]

\[\text{maj}(T) = 2 + 4 + 5 + 6 + 9 = 26 \]

Remarks:

- \(D(T) \subseteq \{1, \ldots, n-1\} \)
- \(k - 1 \leq |D(T)| \leq n - \lambda_1 \)
Kraśkiewicz-Weyman Theorem (1987)

Let i and n be coprime.

$$l_{\lambda} = \text{number of standard tableaux } T \text{ of shape } \lambda \text{ with } \text{maj}(T) \equiv i \mod n.$$
Kraśkiewicz-Weyman Theorem (1987)

Let i and n be coprime.

$$l_\lambda = \text{number of standard tableaux } T \text{ of shape } \lambda \text{ with } \text{maj}(T) \equiv i \mod n.$$

- Note that i can be any fixed number which is coprime to n.
Kraśkiewicz-Weyman Theorem (1987)

Let i and n be coprime.

\[l_\lambda = \text{number of standard tableaux } T \text{ of shape } \lambda \text{ with } \text{maj}(T) \equiv i \mod n. \]

- Note that i can be any fixed number which is coprime to n.
- It is natural to try to prove Klyachko’s Theorem using the Kraśkiewicz-Weyman Theorem.
Theorem

Let $n \geq 3$, $\lambda \vdash n$.

\exists a standard tableau of shape λ with major index coprime to n

$\iff \lambda \neq (1^n), (n), (2^2), (2^3)$
Theorem

Let $n \geq 3$, $\lambda \vdash n$.

\exists a standard tableau of shape λ with major index coprime to n

$\iff \lambda \neq (1^n), (n), (2^2), (2^3)$
Main Idea

- We look at standard tableaux with “small” descent sets.
Main Idea

- We look at standard tableaux with “small” descent sets.
- Let $\lambda \vdash n$ into k parts.
 We can construct a standard tableau of shape λ with at most k descents which has major index coprime to n.
We look at standard tableaux with “small” descent sets.

Let \(\lambda \vdash n \) into \(k \) parts. We can construct a standard tableau of shape \(\lambda \) with at most \(k \) descents which has major index coprime to \(n \).

Strategy:

- Two part partitions.
Main Idea

- We look at standard tableaux with “small” descent sets.
- Let $\lambda \vdash n$ into k parts.
 We can construct a standard tableau of shape λ with at most k descents which has major index coprime to n.

Strategy:
- Two part partitions.
- Rectangles.
Main Idea

- We look at standard tableaux with “small” descent sets.
- Let $\lambda \vdash n$ into k parts.
 We can construct a standard tableau of shape λ with at most k descents which has major index coprime to n.

Strategy:
- Two part partitions.
- Rectangles.
- Non-rectangular partitions into more than two parts.
Two part partitions

\[n = 2m + 1, \; \lambda = (n - s, s): \]

<table>
<thead>
<tr>
<th>1</th>
<th>...</th>
<th>s</th>
<th>...</th>
<th>m</th>
<th>m+s+1</th>
<th>...</th>
<th>2m+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>m+1</td>
<td>...</td>
<td>m+s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[n = 2m, \; \lambda = (n - s, s), \; 1 < s < m: \]

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>...</th>
<th>s</th>
<th>...</th>
<th>m-1</th>
<th>m+1</th>
<th>m+2</th>
<th>m+s+2</th>
<th>...</th>
<th>2m</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>m+3</td>
<td>...</td>
<td>m+s+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
1 \quad 3 \quad ... \quad 2m
group\[1, 2\]
\]

\[
1 \quad 2 \quad 3 \quad ... \quad m-1 \quad m+2
group\[\{1, 2, 3\}\]
\]

\[
1 \quad 2 \quad 3 \quad ... \quad m-1 \quad m+2
\]

\[
1 \quad 2 \quad 3 \quad ... \quad m-1 \quad m+2
\]

\[m \quad m+1 \quad m+3 \quad ... \quad 2m-1 \quad 2m \]
Rectangles

Let \(n = mk \), \(\lambda = (m^k) \vdash n \) \(0 \leq i \leq k - 2 \) \(1 \leq s \leq m - 1 \).

\[
T = \begin{array}{cccc}
1 & \cdots & \cdots & m \\
\vdots & & & \vdots \\
(i-1)m+1 & \cdots & \cdots & im \\
im+1 & im+2 & \cdots & im+s im+s+2 \cdots (i+1)m+1 \\
im+s+1 & (i+1)m+2 & \cdots & (i+2)m \\
& \vdots & & \vdots \\
(k-2)m+1 & \cdots & \cdots & (k-1)m \\
(k-1)m+1 & \cdots & \cdots & km
\end{array}
\]

\[\text{maj}(T) = \frac{mk(k-1)}{2} + im + s + 1 \]

Show that one of these is coprime to \(n \) (technical)
Let λ be a non-rectangular partition of n into $k > 2$ parts.
The rest

- Let λ be a non-rectangular partition of n into $k > 2$ parts.
- Write $n = mk + r$ where $0 \leq r < k < n$
The rest

- Let λ be a non-rectangular partition of n into $k > 2$ parts.
- Write $n = mk + r$ where $0 \leq r < k < n$
- Let $m_1 + \cdots + m_k = n$, $m_i \in \{m, m + 1\}$.
The rest

- Let \(\lambda \) be a non-rectangular partition of \(n \) into \(k > 2 \) parts.
- Write \(n = mk + r \) where \(0 \leq r < k < n \)
- Let \(m_1 + \cdots + m_k = n, \ m_j \in \{m, m+1\} \).
- Set \(\lambda^{(k)} = \lambda \)
The rest

- Let λ be a non-rectangular partition of n into $k > 2$ parts.
- Write $n = mk + r$ where $0 \leq r < k < n$
- Let $m_1 + \cdots + m_k = n$, $m_i \in \{m, m + 1\}$.
- Set $\lambda^{(k)} = \lambda$

The lower rim
The rest

- Let λ be a non-rectangular partition of n into $k > 2$ parts.
- Write $n = mk + r$ where $0 \leq r < k < n$
- Let $m_1 + \cdots + m_k = n$, $m_i \in \{m, m+1\}$.
- Set $\lambda^{(k)} = \lambda$

Can remove m_i boxes from the lower rim of $\lambda^{(i)}$ to obtain a Young diagram $\lambda^{(i-1)}$ which has $i - 1$ rows.
The rest

- For every choice m_1, \ldots, m_k we can construct a standard tableau T of shape λ with descent set

$$D(T) = \{m_1, m_1 + m_2, \ldots, m_1 + m_2 + \cdots + m_{k-1}\}$$
The rest

For every choice m_1, \ldots, m_k we can construct a standard tableau T of shape λ with descent set

$$D(T) = \{m_1, m_1 + m_2, \ldots, m_1 + m_2 + \cdots + m_{k-1}\}$$

Put the entries

$$m_1 + \cdots + m_{i-1} + 1, \ldots, m_1 + \cdots + m_{i-1} + m_i$$

from left to right in $\lambda^{(i)} \setminus \lambda^{(i-1)}$
For every choice m_1, \ldots, m_k we can construct a standard tableau T of shape λ with descent set

$$D(T) = \{ m_1, m_1 + m_2, \ldots, m_1 + m_2 + \cdots + m_{k-1} \}$$

Put the entries

$$m_1 + \cdots + m_{i-1} + 1, \ldots, m_1 + \cdots + m_{i-1} + m_i$$

from left to right in $\lambda(i) \setminus \lambda(i-1)$

It can be shown that one of these descent sets gives major index which is coprime to n.