GRÖBNER BASES

MARCUS TRESSL

ABSTRACT. A quick reference.

Contents

1.	Monomial orderings	1
2.	A division algorithm	4
3.	Monomial ideals	5
4.	Gröbner bases	6
5.	Characterisation of Gröbner bases via S-polynomials	6
6.	Buchberger's Algorithm	9
7.	Reduced Gröbner bases and the reduction process for minimal Gröbner	
	bases	9
Re	References	

1. Monomial orderings

We will use multi index notation for elements of \mathbb{N}_0^n (here $\mathbb{N} = \{1, 2, 3, ...\}$ and $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$: For $\alpha \in \mathbb{N}_0^n$, we write

$$\begin{aligned} \alpha! &= \alpha_1! \cdot \ldots \cdot \alpha_n! \\ |\alpha| &= \alpha_1 + \ldots + \alpha_n \end{aligned}$$

1.1. Definition. The monomials in *n* variables, formally is the monoid \mathbb{N}_0^n equipped with addition, written multiplicatively. We write $X = (X_1, ..., X_n)$ and the set of monomials as

$$Mon(X) = \{ X^{\alpha} \mid \alpha \in \mathbb{N}_0^n \},\$$

where $X^{\alpha} = X_1^{\alpha_1} \dots X_n^{\alpha_n}$. Mon(X) is partially ordered by $X^{\alpha} | X^{\beta} \iff \alpha \le \beta \iff \alpha_i \le \beta_i \ (1 \le \beta_i)$

$$X^{\alpha}|X^{\beta} \iff \alpha \leq \beta \iff \alpha_i \leq \beta_i \ (1 \leq i \leq n)$$

Note that

$$X^{\alpha}|X^{\beta} \iff$$
 there is $Y \in Mon(X)$ with $X^{\beta} = YX^{\alpha}$.

The neutral element of Mon(X) is $X^0 = X_1^0...X_n^0$ and denoted by 1. We denote by $\deg_{X_i} U$ the degree of $U \in Mon(X)$ in X_i .

Date: January 4, 2025.

²⁰⁰⁰ Mathematics Subject Classification. Primary: XXXXX, Secondary: XXXXX.

1.2. **Theorem.** (Dickson's Lemma)

Let $M \subseteq Mon(X)$. Then there is a finite subset $B \subseteq M$ such that

 $M \subseteq B \cdot \operatorname{Mon}(X) \ (:= \{ b \cdot a \mid b \in B, a \in \operatorname{Mon}(X) \}).$

Each such set B is called a **Dickson basis of** M.

Proof. By induction on n, where the case n = 1 is obvious.

 $\underline{n-1} \Rightarrow \underline{n}$. Pick $X^{\alpha} \in M$. For each pair $(i,p) \in \{1,...,n\} \times \{0,...,\alpha_i\}$, let

$$M_{(i,p)} = \{ U \in M \mid \deg_{X_i} U = p \}$$

and

$$M_{(i,p)}^* = \{ V \in Mon(X) \mid X_i^p \in M_{(i,p)} \}.$$

Thus $M_{(i,p)} = X_i^p \cdot M_{(i,p)}^*$ and the degree of X_i in any element of $M_{(i,p)}^*$ is 0. Thus $M_{(i,p)}^*$ is a set of monomial in at most n-1 variables and by the induction hypothesis there is a finite subset $C_{(i,p)}$ of $M_{(i,p)}^*$ with

$$M_{(i,p)}^* \subseteq C_{(i,p)} \cdot \operatorname{Mon}(X_1, ..., X_{i-1}, X_{i+1}, ..., X_n) \subseteq C_{(i,p)} \cdot \operatorname{Mon}(X).$$

Then $B_{(i,p)} := X_i^p \cdot C_{(i,p)} \subseteq X_i^p \cdot M^*_{(i,p)} \subseteq M$ and

$$B := \{X^{\alpha}\} \cup \bigcup_{(i,p)\in\{1,\dots,n\}\times\{0,\dots,\alpha_i\}} B_{(i,p)} \subseteq M$$

is finite. We claim that $M \subseteq B \cdot \operatorname{Mon}(X)$. Take $U \in M$. If there is some $i \in \{1, ..., n\}$ and some $p \in \{0, ..., \alpha_i\}$ with $\deg_{X_i} U = p$, then $U \in M_{(i,p)} = X_i^p M_{(i,p)}^* \subseteq X_i^p C_{(i,p)} \cdot \operatorname{Mon}(X) = B_{(i,p)} \cdot \operatorname{Mon}(X) \subseteq B \cdot \operatorname{Mon}(X)$.

If for each $i \in \{1, ..., n\}$ we have $\deg_{X_i} U \ge \alpha_i$, then $X^{\alpha} | U$, thus $U \in B \cdot Mon(X)$, too.

Remark. Dickson's lemma 1.2 can also be proved by using the noetherianity of K[X] for any field K: Consider M as a subset of monomials from K[X]. Since K[X] is noetherian, there is a finite subset $B \subseteq M$ with (B) = (M). It then follows easily that B has the required properties (this will be made explicit in 3.3 below). However, we will see that we get the noetherianity of K[X] for free in our course on Gröbner bases (cf. 4.3)

1.3. **Definition.** A monomial ordering on Mon(X) is a total ordering < on Mon(X) satisfying

$$U < V \Rightarrow UW < VW$$

for all $U, V, W \in Mon(X)$.

Observe that a monomial ordering does not need to respect the poset structure given on monomials by multiplication. Moreover if < is a monomial ordering, then also > is a monomial ordering.

1.4. Lemma and Definition. The following are equivalent for every monomial ordering <:

(i) $1 < X_i$ for all $i \in \{1, ..., n\}$. (ii) 1 < U for all $U \in Mon(X)$, $U \neq 1$. (iii) < is compatible with |, i.e. U < UV for all $U, V \in Mon(X)$, $V \neq 1$. (iv) < is a well ordering

 $\mathbf{2}$

If this is the case, then < is called a global monomial ordering. If the reverse order of < is global, then < is called a local monomial ordering. If < is neither global nor local, then it is called a **mixed** ordering.

Proof. It is obvious that (i),(ii) and (iii) are equivalent.

(iv) \Rightarrow (i). Suppose $X_1 < 1$. Then $\cdots < X_i^3 < X_i^2 < X_i < 1$, hence < is not a well-ordering.

(iii) \Rightarrow (iv). Let $M \subseteq Mon(X)$ be non empty. By Dickson's lemma 1.2, there is a finite subset $B \subseteq M$ with $M \subseteq B \cdot Mon(X)$. Since < is compatible with |, this implies that for each $U \in M$ there is some $V \in B$ with $V \leq U$. Since B is finite and totally ordered by <, the <-smallest element of B is a smallest element of M w.r.t. <. \square

1.5. Definition. Let < be a monomial ordering on Mon(X). Let R be a ring and let $f \in R[X], f \neq 0$. Write

$$f = a_{\alpha_d} X^{\alpha_d} + \ldots + a_{\alpha_1} X^{\alpha_1}, \text{ with } X^{\alpha_d} > \ldots > X^{\alpha_1},$$

 $d \geq 1$ and $a_{\alpha_d} \in R \setminus \{0\}$. We define

- (i) $LM(f) = X^{\alpha_d}$, the leading monomial of f.
- (ii) $\deg_{\leq}(f) = \operatorname{LE}(f) = \alpha_d$, the **leading exponent** of f. We extend $\deg_{\leq}(f) = \alpha_d$ through 0 by $\deg_{<} 0 = -\infty$.
- (iii) $LT(f) = a_{\alpha_d} X^{\alpha_d}$, the **leading term** of f.
- (iv) $LC(f) = a_{\alpha_d}$, the leading coefficient of f.
- (v) $\operatorname{tail}(f) = f a_{\alpha_d} X^{\alpha_d}$, the **tail** of f.

Convention. We will also compare the exponents $\alpha \in \mathbb{N}_0^n$ with respect to a given monomial ordering, by

$$\alpha < \beta \iff X^{\alpha} < X^{\beta}.$$

1.6. Observation. Let < be a monomial ordering. Let R be a ring and let $f, g \in$ R[X].

- (i) If R is a domain, then $\deg_{\leq}(fg) = \deg_{\leq}(f) + \deg_{\leq}(g)$.
- (ii) $\deg_{\leq}(f+g) \leq \max\{\deg_{\leq} f, \deg_{\leq} g\}$ and if $\deg_{\leq} f \neq \deg_{\leq} g$ then $\deg_{\leq}(f+g) \leq \max\{\deg_{\leq} f, \deg_{\leq} g\}$ $g) = \max\{\deg_{\leq} f, \deg_{\leq} g\}.$

1.7. Notation. Let R be a ring and let $f \in R[X]$. We say that a monomial M occurs in f or appears in f, if there are $k \ge 0, a_i \in R$, monomials $U_i \ne M$ $(1 \le i \le k)$ and some $a \in R$, $a \ne 0$ such that $f = aM + \sum_{i=1}^{k} a_i U_i$. In particular no monomial occurs in the zero polynomial. Observe that by defi-

nition, the monomial X^{α} does **not** occur in $X^{\alpha+\beta}$ for every $\beta \neq (0, ..., 0)$.

1.8. Examples. The following are examples of global monomial orderings.

(i) The **lexicographic ordering** $<_{lex}$, defined by

 $X^{\alpha} <_{\text{lex}} X^{\beta} \iff \exists i \in \{1, ..., n\}: \ \alpha_1 = \beta_1, ..., \alpha_{i-1} = \beta_{i-1} \text{ and } \alpha_i < \beta_i.$

To say this differently, $X^{\alpha} <_{\text{lex}} X^{\beta}$ if and only if the left most non-zero entry in $\beta - \alpha \in \mathbb{Z}^n$ is positive. Note that this ordering depends on our choice of ordering the variables $X_1, ..., X_n$. Here we have $X_1 > ... > X_n$ (note that $(1, 0, \ldots) > (0, 1, \ldots)).$

(ii) The graded lexicographic ordering $<_{grlex}$, defined by

$$X^{\alpha} <_{\text{grlex}} X^{\beta} \iff |\alpha| < |\beta| \text{ or } |\alpha| = |\beta|, \alpha <_{\text{lex}} \beta$$

(iii) The graded reverse lexicographic ordering $<_{grlex}$, defined by

$$X^{\alpha} <_{\text{grevlex}} X^{\beta} \iff |\alpha| < |\beta| \text{ or } |\alpha| = |\beta|, \beta <_{\text{lex}} \alpha$$

1.9. **Observation.** The order type of the graded lexicographic ordering is the order type of \mathbb{N} .

1.10. Theorem. (Robbiano)

4

Let \sqsubseteq be the lexicographic ordering on \mathbb{R}^n (with respect to some choice of coordinate axes). For $A \in \operatorname{GL}_n(\mathbb{R})$ define \leq_A on $\operatorname{Mon}(X)$ via

$$X^{\alpha} <_A X^{\beta} \iff A\alpha \sqsubset A\beta.$$

Then $<_A$ is a monomial ordering and every monomial ordering is of this form. Observe that $<_A$ is global if and only if the first non-zero entry in each column of A is positive.

Proof. [GrePfi2008, Remark 1.2.7]

2. A DIVISION ALGORITHM

Let $X = (X_1, ..., X_n)$ and let < be a global monomial ordering. Let K be a field and fix $f_1, ..., f_k \in K[X]$.

In this section we find for each $f \in K[X]$ polynomials $q_1, ..., q_k, r \in K[X]$ with

$$f = q_1 f_1 + \dots + q_k f_k + r, \quad \deg_{<} q_i f_i \le \deg_{<} f \ (1 \le i \le k),$$

 $(*)_{f}$ such that none of the leading monomials of any f_i

divides any monomial occurring in r.

Explicitly, the condition on r means r = 0 or $r = \sum a_i M_i$ with $a_i \in K$, $a_i \neq 0$ and monomials M_i such that $LM(f_j) \nmid M_i$ for all i, j. Also notice that by 1.6, we know $\deg_{<}(r) = \deg_{<}(f - \sum q_i f_i) \le \deg_{<}(f)^{[1]}$

2.1. Lemma. (Step 1: modifies one of the q_i) Let $g, f_1, ..., f_k \in K[X] \setminus \{0\}$. Let $i \in \{1, ..., n\}$ be such that $LM(f_i)$ divides LM(g). Define

$$\tilde{g} = g - \frac{\mathrm{LT}(g)}{\mathrm{LT}(f_i)} f_i$$

Then $\deg_{\leq} \tilde{g} < \deg_{\leq} g$ (by definition) and every solution $q_1, ..., q_k, r$ of $(*)_{\tilde{g}}$ gives the solution $q_1, ..., q_{i-1}, q_i + \frac{\mathrm{LT}(g)}{\mathrm{LT}(f_i)}, q_{i+1}, ..., q_k, r \text{ of } (*)_g$. In particular

$$g \equiv \tilde{g} \mod (f_1, \dots, f_k).$$

Proof. Obvious.

2.2. Lemma. (Step 2: modifies r)

Let $g, f_1, ..., f_k \in R[X] \setminus \{0\}$. Suppose for all $i \in \{1, ..., n\}$, $LM(f_i)$ does not divide LM(g). Define

$$\hat{g} := g - \mathrm{LT}(g).$$

Then $\deg_{\leq} \hat{g} < \deg_{\leq} g$ (by definition) and every solution $q_1, ..., q_k, r$ of $(*)_{\hat{g}}$ gives the solution $q_1, \ldots, q_k, r + LT(g)$ of $(*)_q$.

Proof. Obvious.

^[1]In the 1-variable case, the latter condition simply means deg $f_j > \deg r$. Hence in this case the division algorithm is the ordinary division with remainder for univariate polynomials.

Iterating 2.1 and 2.2 starting with g = f as long as the output \tilde{g} , \hat{g} , resp. is non zero will terminate, since at each step the leading exponent of the output is strictly smaller than the leading monomial of the input g (observe that \langle is global, hence a well ordering by 1.4).

Thus, when the iteration stops we have g = 0, we choose $q_1 = ...q_k = r = 0$ and work back to obtain a solution of $(*)_f$.

3. Monomial ideals

Again, let K be a field and let $X = (X_1, ..., X_n)$.

3.1. **Definition.** A monomial ideal of K[X] is an ideal of K[X] generated (as an ideal) by a set of monomials.

3.2. Lemma. Let I be a monomial ideal generated by $M \subseteq Mon(X)$ and let $f \in K[X]$. The following are equivalent:

(i) $f \in I$.

(ii) Every monomial that occurs in f lies in I.

(iii) f is a K-linear combination of monomials from I.

(iv) Every monomial that occurs in f is divisible by some monomial from M.

Proof. $(iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i)$ is clear.

(i) \Rightarrow (iv). Let $U_1, ..., U_k \in M$ and $f_1, ..., f_k \in K[X]$ with $f = f_1U_1 + ... + f_kU_k$. Let V be a monomial occurring in f. Then V also occurs in $f_1U_1 + ... + f_kU_k$. However, every monomial occurring in $f_1U_1 + ... + f_kU_k$ is divisible by some monomial from M.

3.3. Corollary. Let $M \subseteq Mon(X)$ and let U be another monomial. Then $U \in (M) \iff V|U$ for some $V \in A$.

Let < be a global monomial ordering.

3.4. **Definition.** Let Z be a subset of K[X]. We define the **leading ideal** L(Z) of Z as

the ideal of K[X] generated by all the LM(f) with $f \in Z$.

Obviously, L(Z) is a monomial ideal.

3.5. Warning. If $f, g \in K[T, Y]$, T, Y single variables, then in general L(f, g) is **not** equal to L(I), with I = (f, g).

Proof. We work with $<_{\text{grlex}}$. Take $f = T^3 - 2TY$, $g = T^2Y - 2Y^2 + T$. Then $T^2 = T \cdot g - Y \cdot f \in I$, but $T^2 \notin (T^3, T^2Y) = L(f, g)$.

3.6. **Proposition.** Let $I \subseteq K[X]$ be an ideal. Then there is a finite subset G of I with L(G) = L(I).

Proof. By noetherianity or by Dickson's lemma 1.2.

MARCUS TRESSL

4. Gröbner bases

Wolfgang Gröbner, 1899-1980 (Österreich)

4.1. **Definition.** Let $I \subseteq K[X]$ be an ideal. A **Gröbner basis** of I is a finite subset G of I with L(G) = L(I).

A subset G of K[X] is called a Gröbner basis, if G is a Gröbner basis of the ideal generated by G.

4.2. **Theorem.** Let $f_1, ..., f_k$ be a Gröbner basis of an ideal I and let $f \in K[X]$. Let $q_1, ..., q_k, r \in K[X]$ with

$$f = q_1 f_1 + \dots + q_k f_k + r$$

such that none of the leading monomials of any f_i divides the leading monomial of r. (Notice that by section 2 there are $q_1, ..., q_k, r \in K[X]$ with this property; in fact we have much more information, but for this theorem we only need a weak assumption.)

Then

$$f \in I \iff r = 0.$$

In particular, every Gröbner basis of I generates I as an ideal.

Proof. If $f \in I$ then also $r \in I$ and so $LM(r) \in (I)$. Since $f_1, ..., f_k$ is a Gröbner basis of I, $LM(r) \in (LM(f_1), ..., LM(f_r))$. Now if $r \neq 0$, then by 3.2, LM(r) is divisible by some $LM(f_i)$, a contradiction.

4.3. Corollary. K[X] is noetherian.

Proof. Let I be an ideal of K[X]. By 3.6 (which has a proof not using the noetherianity of K[X]), I has a finite Gröbner basis. By 4.2, I is generated by such a basis.

4.4. Corollary. Let $\{g_1, ..., g_k\} \subseteq K[X]$ be a Gröbner basis and let $f \in K[X]$. Then there is a unique $r \in K[X]$ with the following two properties:

(i) $f \equiv r \mod (g_1, \dots, g_k)$.

(ii) No leading term of any of the g_i divides any monomial occurring in r.

In particular, r is the remainder on division of f by G no matter how the elements of G are listed when using the division algorithm of section 2.

r is called the normal form of f with respect to $\{g_1, ..., g_k\}$.

Proof. Existence of r has been shown in section 2. If $r' \in K[X]$ also has properties (i) and (ii), then $r - r' \in I := (g_1, ..., g_k)$ and no leading term of any of the g_i divides any monomial occurring in r - r'. By 4.2, r - r' = 0.

5. Characterisation of Gröbner bases via S-polynomials

Throughout we work with a global monomial ordering $\langle .$ For $\alpha, \beta \in \mathbb{N}_0^n$ let $\alpha \lor \beta = (\max\{\alpha_1, \beta_1\}, ..., \max\{\alpha_1, \beta_1\})$. Hence $X^{\alpha \lor \beta} = \operatorname{lcm}(X^{\alpha}, X^{\beta})$ (in Mon(X) and in K[X]).

5.1. Definition. Let $f, g \in K[X] \setminus \{0\}$. Let $\alpha = \deg_{\leq} f$ and $\beta = \deg_{\leq} g$. The *S*-polynomial of f and g is defined as

$$S(f,g) = \frac{X^{\alpha \vee \beta}}{LT(f)}f - \frac{X^{\alpha \vee \beta}}{LT(g)}g.$$

5.2. Remark. Let $f_1, f_2 \in K[X] \setminus \{0\}$. By definition, $S(f_1, f_2)$ is of the form $q_1f_1 + q_2f_2$ for some $q_1, q_2 \in K[X]$. However, this in general is not the representation of $S(f_1, f_2)$ that we obtain from our division algorithm in section 2 for f_1, f_2 .

The reason is that the division algorithm produces a representation

$$S(f_1, f_2) = q_1 f_1 + q_2 f_2 + r_3$$

where $\deg_{\leq} g_i f_i \leq \deg_{\leq} S(f_1, f_2)$.

On the other hand in the representation of $S(f_1, f_2)$ of definition 5.1, this always fails if deg $f_1 = \deg_{\leq} f_2$!

5.3. **Observation.** Let
$$f, g \in K[X] \setminus \{0\}, \alpha = \text{LE}(f), \beta = \text{LE}(g)$$
.

(i) $\deg_{\leq} S(f,g) < \alpha \lor \beta$.

(*ii*) S(f,f) = 0, S(f,g) = -S(g,f) and S(cf,g) = S(f,g) for all $c \in K \setminus \{0\}$.

(iii) If $\gamma, \delta \in \mathbb{N}_0^n$ then

$$S(X^{\gamma}f, X^{\delta}g) = X^{(\alpha+\gamma)\vee(\beta+\delta)} - {}^{\alpha\vee\beta}S(f,g)$$

5.4. Lemma. Let $\alpha \in \mathbb{N}_0^n$ and let $f_1, ..., f_k \in K[X]$ be with $\deg_{\leq} f_i = \alpha$. Let $c_1, ..., c_k \in K$ and $f := \sum_{i=1}^k c_i f_i$.

If deg $f < \alpha$, then f is a K-linear combination of all the $S(f_i, f_{i+1})$ with $1 \le i < k$.

Proof. Let $d_i = LC(f_i)$ and let $p_i = \frac{1}{d_i}f_i$. As $\deg_{\leq} f_i = \alpha$ for all *i* we have

(*)
$$p_i - p_{i+1} = S(f_i, f_{i+1})$$
 for all $1 \le i < k$.

Now

(5.1)
$$f = \sum_{i=1}^{k} c_i d_i p_i = c_1 d_1 (p_1 - p_2) + (c_1 d_1 + c_2 d_2) (p_2 - p_3) + \dots + (c_1 d_1 + \dots + c_{k-1} d_{k-1}) (p_{k-1} - p_k) + (c_1 d_1 + \dots + c_k d_k) p_k.$$

Since $\deg_{\leq} f_i = \alpha$ for all i and $\deg_{\leq} f < \alpha$ it is clear that $\sum_{i=1}^{k} c_i d_i = 0$. Hence the last summand in the sum (5.1) above vanishes. Thus, using (*), equation (5.1) reads as $f = c_1 d_1 S(f_1, f_2) + \ldots + (c_1 d_1 + \ldots + c_{k-1} d_{k-1}) S(f_{k-1}, f_k)$ as required. \Box

5.5. Theorem. (Buchberger's criterion for Gröbner bases)

Let $g_1, ..., g_k \in K[X]$. Then $\{g_1, ..., g_k\}$ is a Gröbner bases if and only if the remainder on division of $S(g_i, g_j)$ by $g_1, ..., g_k$ using the division algorithm of section 2 (in some order) is zero.

Proof. If $\{g_1, ..., g_k\}$ is a Gröbner bases then by 4.4, the remainder is 0 as $S(g_i, g_j) \in (g_1, ..., g_k)$.

Conversely suppose for all $i, j \in \{1, ..., k\}$ the remainder on division of $S(g_i, g_j)$ by $g_1, ..., g_k$ using the division algorithm of section 2 is zero. We have to show that for every $f \in I := (g_1, ..., g_k)$ we have $LT(f) \in (LT g_1, ..., LT g_k)$. We write $f = \sum h_i g_i$ with $h_i \in K[X]$ and proceed by induction on $\alpha = \max_{i=1}^k \deg_k h_i g_i$. Note that this makes sense since \langle is global, hence a well ordering. Let $I \subseteq \{1, ..., k\}$ be the set of all indices with $\deg_k h_i g_i = \alpha$.

Case 1. $\deg_{\leq} f = \alpha$.

Then LT(f) is a k-linear combination of the $LT(h_ig_i)$ with $i \in I$. But this is only possible if one of the $LT(g_i)$ divides LT(f).

Case 2. $\deg_{\leq} f < \alpha$.

Then

$$f^* := \sum_{i \in I} \operatorname{LT}(h_i) g_i$$

has to satisfy $\deg_{<} f^* < \alpha$ as well, since

$$f - f^* = \sum_{i \in I} (h_i - \operatorname{LT}(h_i))g_i + \sum_{i \notin I} h_i g_i$$

has leading exponent $< \alpha$.

For each $i \in I$, $LT(h_i)g_i$ has leading exponent α and we can apply 5.4: There are $c_{ij} \in K$ $(i, j \in I)$ with

(*)
$$f^* = \sum_{i,j \in I} c_{ij} S(\mathrm{LT}(h_i)g_i, \mathrm{LT}(h_j)g_j).$$

By 5.3(ii) and (iii) we have

$$S(\mathrm{LT}(h_i)g_i, \mathrm{LT}(h_j)g_j) = X^{\alpha - \beta(i,j)}S(g_i, g_j),$$

where $\beta(i, j) = \text{LE}(g_i) \vee \text{LE}(g_j)$.

By assumption, the remainder on division of $S(g_i, g_j)$ by $g_1, ..., g_k$ using the division algorithm of section 2 is zero. Hence for all $i, j \in I$, there are $q_{ijl} \in K[X]$ with

$$\deg_{<} q_{ijl}g_{l} \le \deg_{<} S(g_{i}, g_{j}) \ (l \in \{1, ..., k\})$$

such that

$$S(g_i, g_j) = \sum_{l=1}^k q_{ijl} g_l.$$

Substituting this in (*) gives

$$(+) f^* = \sum_{i,j\in I} c_{ij} X^{\alpha-\beta(i,j)} S(g_i,g_j) = \sum_{i,j\in I, l\in\{1,\dots,k\}} c_{ij} X^{\alpha-\beta(i,j)} q_{ijl} g_l$$

Since $\deg_{\leq} S(g_i, g_j) < \deg_{\leq} S(g_i) \lor \deg_{\leq} S(g_j) = \beta(i, j)$ we get $\deg_{\leq} q_{ijl}g_l < \beta(i, j)$ from the choice of the q_{ijl} . Therefore $\deg_{\leq} c_{ij}X^{\alpha-\beta(i,j)}q_{ijl}g_l < \alpha$.

Hence in equation (+) we have rewritten f^* as a K[X]-linear combination of the g_1, \ldots, g_k where each summand has leading exponent $< \alpha$. Since also every summand in $f - f^*$ has leading exponent $< \alpha$, f itself can be written as a K[X]linear combination of the g_1, \ldots, g_k where each summand has leading exponent $< \alpha$. Thus, we may apply the induction hypothesis.

5.6. Corollary. A finite subset $\{g_1, ..., g_k\}$ of K[X] is a Gröbner basis if and only if for all $f, q_1, ..., q_k, r \in K[X]$ with

$$f = q_1 g_1 + \dots + q_k g_k + r$$

such that $\deg_{\leq} q_i f_i \leq \deg_{\leq} f$ and none of the leading monomials of any g_i divides the leading monomial of r, we have

$$f \in (g_1, \dots, g_k) \iff r = 0.$$

8

Proof. Every Gröbner bases has this property by 4.2. Conversely, the property implies that the remainder on division of $S(g_i, g_j)$ by $g_1, ..., g_k$ using the division algorithm of section 2 is zero. Hence by 5.5, G is a Gröbner basis.

6. Buchberger's Algorithm

Throughout we work with a global monomial ordering <.

6.1. Lemma. Let $f_1, ..., f_k \in K[X]$. Let $i, j \in \{1, ..., k\}$ and let r be the remainder on division of $S(f_i, f_j)$ by $f_1, ..., f_k$ using the division algorithm of section 2. If $r \neq 0$, then $LT(r) \notin (LT(f_1), ..., LT(f_k))$.

Proof. The division algorithm, says that none of the leading monomials of any f_i divides any monomial occurring in r. Now apply 3.3.

6.2. **Theorem.** (Buchberger's Algorithm) Let $f_1, ..., f_k \in K[X]$. Write $F := \{f_1, ..., f_k\}$ and define

$$F^{\dagger} = \begin{cases} F & \text{if the remainder on division of } S(f_i, f_j) \text{ by } f_1, ..., f_k \text{ using the} \\ & \text{division algorithm of section } 2 \text{ is } 0 \text{ for all } i, j \in \{1, ..., k\}, \\ F \cup \{r\} & \text{otherwise, where } r \text{ is some remainder as above, } r \neq 0. \end{cases}$$

Define $F^0 := F$ and $F^{m+1} = (F^m)^{\dagger}$. Then

- (i) $(F^m) = (F)$ for all m
- (ii) For some m we have $F^m = F^{m+1}$ and F^m is a Gröbner basis of (F).

Explicitly we may choose m to be the number of monomials that are of \deg_{\leq} at most $\max\{\deg_{\leq} f_1, \ldots, \deg_{\leq} f_k\}$ for the global monomial ordering \leq .

Proof. (i) is obvious since $S(f,g) \in (f,g)$ for all polynomials f,g.

(ii) We have $F^0 \subseteq F^1 \subseteq F^2 \subseteq \dots$ If this chain is proper, then by 6.1 also the sequence of leading ideals $L(F^0) \subseteq L(F^1) \subseteq L(F^2) \subseteq \dots$ is proper, which contradicts noetherianity of K[X]. For the explicit estimate of m let $\gamma = \max\{\deg_{\leq} f_1, \dots, \deg_{\leq} f_k\}$. We first show that each polynomial $p \in F^i$ has \deg_{\leq} at most γ . This is true for $F = F^0$. If it is true for F^i , then the remainder rthat is added to get to F^{i+1} also has \deg_{\leq} at most γ as follows from 5.3(i) and the degree estimate of r from the algorithm in 2. Hence $p \in F^i$ has \deg_{\leq} at most γ . But now, 6.1 implies that it is only possible to add at most m successive remainders to F. Hence $F^m = F^{m+1}$.

Hence we have $F^m = F^{m+1}$ for some m which means that the remainder on division of S(f,g) by F^m (listed in some order) using the division algorithm of section 2 is 0 for all $f, g \in F^m$. By 5.5, we know that F^m is a Gröbner basis. \Box

7. Reduced Gröbner bases and the reduction process for minimal Gröbner bases

Throughout we work with a global monomial ordering <.

7.1. **Lemma.** Let G be a Gröbner bases of an ideal I of K[X]. If $g \in G$ such that $LT(g) \in L(G \setminus \{g\})$, then also $G \setminus \{g\}$ is a Gröbner basis of I.

Proof. We have to show that $L(G \setminus \{g\}) = L(G)$. We have $L(G) = (LT(f) \mid f \in G) \subseteq (LT(f) \mid f \in G \setminus \{g\}) + (LT(g)) \subseteq (LT(f) \mid f \in G \setminus \{g\}) = L(G \setminus \{g\})$. \Box

7.2. Definition. A minimal Gröbner basis of an ideal of K[X] is a Gröbner basis of I with the properties

M1: LC(g) = 1 for all $g \in G$ and M2: $LT(g) \notin L(G \setminus \{g\})$ for all $g \in G$.

By 7.1, every Gröbner basis contains a minimal Gröbner basis.

7.3. Lemma. If G and G' are minimal Gröbner bases of I, then

$$\{\mathrm{LT}(g) \mid g \in G\} = \{\mathrm{LT}(g') \mid g' \in G'\}.$$

Proof. By symmetry we only need to show $LT(g) \in \{LT(g') \mid g' \in G'\}$ for each $g \in G$. Since $LT(g) \in L(I) = L(G')$ there is some $g' \in G'$ with $LT(g') \mid LT(g)$ (cf. 3.3). Since $LT(g') \in L(I) = L(G)$ there is some $g_1 \in G$ with $LT(g_1) \mid LT(g')$. We get $LT(g_1) \mid LT(g)$. Since G is minimal, this can only be if $g = g_1$. Since LC(g) = LC(g') = 1, $LT(g') \mid LT(g)$ and $LT(g) \mid LT(g')$ implies $g = g' \in G'$.

7.4. **Proposition.** (Reduction process for minimal Gröbner bases) Let G be a minimal Gröbner basis of an ideal I of K[X] and let $g \in G$. Let $g' \in K[X]$ such that

there are $q_h \in K[X]$ for $h \in G \setminus \{g\}$ with $\deg_{\leq} q_h h \leq \deg_{\leq} g$ and

$$g = \sum_{h \in G \setminus \{g\}} q_h h + g'$$

(Note that such q_h and g' exists by the division algorithm of section 2).

Then also $(G \setminus \{g\}) \cup \{g'\}$ is a minimal Gröbner basis of I.

Proof. We may assume that $g' \neq g$. Certainly $G \cup \{g'\}$ is a Gröbner basis of I. We first show that LT(g) = LT(g').

As $\deg_{\leq} q_h h \leq \deg_{\leq} g$ for all $h \in G \setminus \{g\}$ we have $\deg_{\leq} g' \leq \deg_g$. Moreover, since $\deg_{\leq} q_h h \leq \deg_{\leq} g$, the monomial $\operatorname{LM}(g)$ can not occur in $q_h h$ for any $h \in G \setminus \{g\}$ (otherwise there would be monomials U, V, U occurring in q_h, V occurring in h such that $UV = \operatorname{LM}(g)$ - as $\deg_{\leq} q_h h \leq \deg_{\leq} g$ this means that $UV = \operatorname{LM}(q_h h)$ so $V = \operatorname{LM}(h)$ divides $\operatorname{LM}(g)$ in contradiction to our assumption that G is a minimal Gröbner basis). Hence $\operatorname{LM}(g)$ occurs in g' and $\deg_{\leq} g' \leq \deg_g$ implies $\operatorname{LT}(g') = \operatorname{LT}(g)$.

Since LT(g) = LT(g') and $g \neq g'$ we have $LT(g) \in L((G \cup \{g'\}) \setminus \{g\})$. Hence by 7.1, also $(G \cup \{g'\}) \setminus \{g\}$ is a Gröbner basis of *I*. As $g \neq g'$ we have $(G \cup \{g'\}) \setminus \{g\} = (G \setminus \{g\}) \cup \{g'\}$. Since LT(g) = LT(g'), we have

 $\{\mathrm{LT}(h) \mid h \in G\} = \{\mathrm{LT}(h') \mid h' \in (G \setminus \{g\}) \cup \{g'\}\}.$

Hence by 7.3, $(G \setminus \{g\}) \cup \{g'\}$ is again a minimal Gröbner basis (any minimal Gröbner bases contained in $(G \setminus \{g\}) \cup \{g'\}$ must have the same leading terms as G).

7.5. Definition. A reduced Gröbner basis of an ideal of K[X] is a Gröbner basis of I with the properties

R1: LC(g) = 1 for all $g \in G$ and

R2: For all $g \in G$, no monomial occurring in g lies in $L(G \setminus \{g\})$.

7.6. **Observation.** If G, G' are minimal Gröbner bases of I, both containing $g \in K[X]$ and no monomial occurring in g lies in $L(G \setminus \{g\})$, then also no monomial occurring in g lies in $L(G' \setminus \{g\})$.

Proof. By 7.3.

7.7. **Theorem.** Every ideal I of K[X] has a unique (only depending on the global monomial ordering <) reduced Gröbner basis.

Proof. We first show uniqueness. Let G, G' be reduced Gröbner bases of I. By symmetry we only need to show $G \subseteq G'$. Pick $g \in G$. Since G and G' are also minimal Gröbner bases of I there is some $g' \in G'$ with $\mathrm{LT}(g) = \mathrm{LT}(g')$ by 7.3. We claim that g = g'. Otherwise, as $g - g' \in I$, $\mathrm{LT}(g - g') \in L(G)$ and by 3.3, $\mathrm{LT}(g_1)|\mathrm{LT}(g - g') < \deg_{\leq} \mathrm{LT}(g)$ (recall that < is compatible with | by 1.4). Since G is a reduced Gröbner basis, $\mathrm{LT}(g_1)|\mathrm{LT}(g - g')$ and $g_1 \neq g$, $\mathrm{LM}(g - g')$ does not occur in g.

The same argument with interchanged role of G and G' shows that LM(g - g') does not occur in g', which contradicts $g - g' \neq 0$.

Hence we know that I has at most one reduced Gröbner basis and it remains to show that it actually has one. Let $G_0 = \{g_1, ..., g_k\}$ be a minimal Gröbner bases of I. Let g'_1 be the remainder on division of g_1 by $G_0 \setminus \{g_1\}$ according to the division algorithm of section 2 and let $G_1 := \{g'_1, g_2, ..., g_k\}$. Then no leading term of $g_2, ..., g_k$ divides any monomial occurring in g'_1 . By 7.4, G_1 is again a minimal Gröbner bases of I. Hence G_1 is aminimal Gröbner bases of I such that condition R2 of 7.5 holds for g'_1 and G_1 .

Now we repeat the same argument for g_2 and G'_1 instead of g_1 and G_0 . We get a minimal Gröbner basis $G_2 := \{g'_1, g'_2, g_3, ..., g_k\}$ of I such that condition R2 of 7.5 holds for g'_2 and G_2 . By 7.6 applied to G_1, G_2 and g'_1 , condition R2 of 7.5 also holds for g'_1 and G_2 .

Continuing in this way, we obtain after k steps a Gröbner bases $G_k = \{g'_1, ..., g'_k\}$ of I such that condition R2 of 7.5 holds for all $g'_1, ..., g'_k$ and G_k . But this means, G_k is a reduced Gröbner bases of I.

References

[GrePfi2008] Gert-Martin Greuel and Gerhard Pfister. <u>A Singular introduction to commutative</u> <u>algebra</u>. Springer, Berlin, extended edition, 2008. With contributions by Olaf Bachmann, <u>Christoph Lossen and Hans Schönemann, With 1 CD-ROM (Windows, Macintosh and UNIX)</u>. <u>4</u>

The University of Manchester, Department of Mathematics, Oxford Road, Manchester M13 9PL, UK

 $Email \ address: marcus.tressl@manchester.ac.uk$