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1. Invariance groups in ordered abelian groups

By a cut ξ of a totally ordered set X we mean a pair ξ = (ξL, ξR), where
ξL ∪ ξR = X and ξL < ξR . If S is a subset of X, then the upper edge of S,
denoted by S+ is defined as the cut ξ of X with ξR = {x ∈ X | S < x}. Similarly,
the lower edge of S is defined and denoted by S−. In particular, the upper edge
of ∅ is (∅, X) (also denoted by −∞) and the upper edge of X itself is (X, ∅) (also
denoted by +∞). The principal cuts of X are defined to be +∞, −∞ and all
the cuts x+, x− where x ∈ X. If X ⊆ Y are totally ordered, then a cut ξ of X is
realized by y ∈ Y if ξL < y < ξR; if there is no such y we say that ξ is omitted
in Y . A cut η of Y extends ξ if ξL = ηL ∩X and ξR = ηR ∩X.

Let G be an abelian ordered group. If ξ is a cut of G, then −ξ denotes the cut
(−ξR,−ξL). If S ⊆ G, then −(S+) = (−S)−. Further, G acts on the set of its cuts
via g+ ξ := (g+ ξL, g+ ξR). We write g− ξ for g+ (−ξ). The stabilizer of ξ under
the action is called the invariance group of ξ and is denoted by G(ξ). Clearly
G(ξ) is a convex subgroup of G. The upper edge of G(ξ) is denoted by

ξ̂ := G(ξ)+.

If G ⊆ H is an extension of abelian ordered groups and h ∈ H \G, then we write
G(α/G) for the invariance group of the cut of H that is realized by h.

1.1. Lemma. Let G be an abelian ordered group and let U be a convex subgroup of
G. Then the following are equivalent.
(i) U+ is realized in the divisible hull G⊗Z Q.
(ii) G/U has a smallest positive element.
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(iii) there is some g ∈ G with U+ = g + U−.
(iv) there is some g ∈ G, g > U such that for all g0 ∈ G with U < 2g0 we have

2g0 > g. In other words, there is some g ∈ G with g > U such that no g0 ∈ G
satisfies U < 2g0 ≤ g.

(v) There is some g ∈ G with g > U which is not the sum of two elements > U .
(vi) there is some abelian ordered group H ⊇ G, such that the largest extension of

U+ on H is not the upper edge of a convex subgroup of H.

If this is the case, then for each g ∈ G the following are equivalent:

• U+ = g + U−.
• g

2 realizes U+.
• g

n realizes U+ for all n ≥ 2.
• gmodU is the smallest positive element of G/U .
• g > U and for all g0 ∈ G with U < 2g0 we have 2g0 > g.
• g > U is not the sum of two elements > U .

Note that it may happen that (i) holds, but the convex hull of U in some H ⊇ G is
not the only convex subgroup of H lying over U . For example if Z = G ⊆ Q((tQ))
and U = {0}. Then the infinitesimal elements of Q((tQ)) witness this.

Proof. Let g ∈ G, g > 0.
(i)⇒(ii). If U+ is realized in G⊗Z Q, then clearly there is some g0 ∈ G, such that
g0/2 realizes U+.

Suppose g/2 realizes U+ and 0 < hmodU < gmodU for some h ∈ G. Then
h > U and g − h > U , thus h > g/2 and g − h > g/2. But g − h > g/2 implies
2g − 2h > g, thus g > 2h, a contradiction.
(ii)⇒(iii). If gmodU is the smallest positive element of G/U and h ∈ G, h > U ,
then g − u ≤ h for some u ∈ U . In other words U+ = g + U−.
(iii)⇒(iv). If U+ = g + U− and g0 ∈ G with U < 2g0, then g0 > U and g − u ≤ g0
for some u ∈ U . Thus 2g0 ≥ g + g0 − u > g.
(iv)⇒(v). An element g as in (iv) cannot be the sum of two elements g1, g2 > U
because if g1 ≤ g2 we had 2g1 ≤ g.
(v)⇒(i). If g > U is not the sum of two elements > U , then g/2 realizes U+:
Otherwise there is h > U with h ≤ g/2, thus 2h ≤ g. But then g = h+ (g− h) and
g − h ≥ h > U , a contradiction.
(i)⇒(vi). Take H = G⊗Z Q.
(vi)⇒(i). Take h ∈ H realizing U+ such that 2h is not a realization of U+. Hence
there is some g ∈ G with U < g ≤ 2h and U+ is realized by g/2.

Hence we know that (i)-(vi) are equivalent. Moreover, our proof shows the second
set of equivalences. �

1.2. Corollary. Let G be an abelian ordered group and let U be a convex subgroup
of G. The convex hull of U in G ⊗Z Q is the unique convex subgroup of G ⊗Z Q,
lying over U .

Proof. This is clear if U+ is not realized in G ⊗Z Q and follows from 1.1 in the
other case. �
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1.3. Definition. Let G be an ordered abelian group and let ξ be a cut of G. We
define the signature of ξ as

sign ξ :=


1 if ξ = g + ξ̂ for some g ∈ G and ξ̂ is omitted in G⊗Z Q.
−1 if ξ = g − ξ̂ for some g ∈ G and ξ̂ is omitted in G⊗Z Q.
0 if there is no g ∈ G with ξ = g + ξ̂ or ξ = g − ξ̂.
∞ otherwise.

Observe that by 1.1(i)⇔(iii), the first two cases in this definition cannot occur
simultaneously. Therefore sign ξ is a well defined element of {−1, 0, 1,∞}.

If G ⊆ H is an extension of abelian ordered groups and h ∈ H \G, then we write
sign(α/G) for the signature of the cut of H that is realized by h.

1.4. Remarks.
(i) If ξ is a cut of G, g ∈ G and U is a convex subgroups of G with ξ = g + U+

or ξ = g − U+ (which is equal to g + U−), then obviously U = G(ξ).
(ii) If G is divisible by n for some n ∈ N, n ≥ 2, then no edge of a subgroup of G

is realized in G⊗Q, in particular no cut of G has signature ∞. This follows
immediately from the equivalent conditions characterizing realisations in 1.1.

1.5. Corollary. Let G be an abelian ordered group and let ξ be a cut of G. If
sign ξ = 0, then ξ̂ is omitted in G⊗Z Q.

Proof. Let U := G(ξ) and suppose U+ is realized in G⊗ZQ. By 1.1, there is some
g ∈ G, such that g > U and gmodU is the least positive element in G/U . As
g > G(ξ) there is some h ∈ G with h < ξ < h + g. We claim that ξ = h + ξ̂.
Clearly h + ξ̂ ≤ ξ. Conversely let g1 ∈ G with h + ξ̂ < g1. Then g1 − h > ξ̂, thus
(g1−h) modU > 0 in G/U . So (g1−h) modU ≥ gmodU and there is some u ∈ U
with g1 − h ≥ g − u. It follows g1 ≥ h+ g + u > ξ + u = ξ. �

Hence by 1.5, the signature of a cut ξ is ∞ if and only if ξ̂ is realized in G⊗Z Q.
In general, there are cuts ξ of G with sign ξ = 0 which are realized in G ⊗Z Q.

For example if n ∈ N, n ≥ 2 and G is the additive group of the localizatin of Z at
n. Then for any prime p, which does not divide n, the cut ξ of G realized by 1

p ,
has signature 0: G is dense in Q and divisible by n.

1.6. Example. Here is an example, where the signature is ∞. Let ω > R be an infi-
nite element and letK := Q(ω). LetG := (K>0, ·, 1,≤) andH := (K(

√
ω)>0, ·, 1,≤

). Let U be the convex hull of Q in K and let ξ := U+. Then U <
√
ω < ξR but

ω = (
√
ω)2 ∈ ξR. Note that G and H are densely ordered in this example. Related

to this example, also see 2.3 (and 2.4), and 2.5.

1.7. Observation. Let G be an abelian ordered group and let ξ be a cut of G. The
following are equivalent.
(i) For all ξ < a there is some ξ < b < a with 2b− a < ξ.
(ii) sign(ξ) ∈ {0, 1}.
(iii) ξ 6= g − ξ̂ for all g ∈ G.

Proof. (ii) and (iii) are equivalent by definition and 1.1.
(iii)⇒(i). Let U = G(ξ) and pick ξ < a. Since ξ 6= a− ξ̂, there is some c ∈ G with
ξ < c < a − ξ̂. Since a − c > U , there is some b > ξ with b − (a − c) < ξ. By
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shrinking b if necessary we may assume that b ≤ c. Then ξ < b ≤ c < a and

2b− a = b− (a− c) + b− c ≤ b− (a− c) < ξ.

(i)⇒(iii). Assume ξ = g − ξ̂ for some g ∈ G. Then ξ < g and by (i) there is some
b ∈ G with g− ξ̂ < b < g and 2b− g < ξ. But then g− ξ̂ < b < g implies b− g ∈ U
and so g − ξ̂ < b implies ξ = g − ξ̂ < b+ (b− g) = 2b− g, which is impossible. �

1.8. Proposition. Let G ⊆ H be an extension of abelian ordered groups and let ξ
be a cut of G. Then
(i) If η is an extension of ξ on H, then G(η) ∩G ⊆ G(ξ).
(ii) If η is the least or the largest extension of ξ on H then η̂ is the least or the

largest extension of ξ̂ on H.
(iii) If ξ is omitted in H and η is the unique extension of ξ on H, then η̂ is the

largest extension of ξ̂ on H. If in addition sign ξ = 0, then sign η = 0, too.
(iv) Let sign ξ = 0 and let η1, η2 be the least and the largest extension of ξ on H.

Then η̂1 = η̂2 is the largest extension of ξ̂on H and for every realization h of
ξ in H we have η1 = h− η̂1, η2 = h+ η̂2 and η2 = 2h− η1.

(v) Let sign ξ = 1 and let η1, η2 be the least and the largest extension of ξ on H.
Then η̂1 is the least extension of ξ̂ on H and η̂2 is the largest extension of ξ̂
on H.

Moreover, if g ∈ G with ξ = g + ξ̂, then η1 = g + η̂1 is of signature 1 and
η2 = g + η̂2 is of signature 1.

(vi) Let sign ξ = −1 and let η1, η2 be the least and the largest extension of ξ on H.
Then η̂1 is the largest extension of ξ̂ on H and η̂2 is the least extension of ξ̂
on H.

(vii) Let sign ξ =∞ and let g ∈ G such that gmodG(ξ) is the least positive element
of G/G(ξ). Let η1, η2 be the least and the largest extension of ξ on H. Then
η̂1 = η̂2 is the least extension of ξ̂ on H and η̂2 = g − η̂1.

Further, there is some g0 ∈ G such that ξ = g0 + ξ̂ = g0 + g − ξ̂ and for
each such g0 we have η1 = g0 + V + and η2 = g0 + g + V −, where V is the
convex hull of G(ξ) in H.

Proof. If g ∈ G and g + η = η, then g + ξL ⊆ (g + ηL) ∩ G ⊆ ηL ∩ G = ξL. This
proves (i).

Claim. If η is the least or the largest extension of ξ on H, then η̂ extends ξ̂.

Proof. Let g ∈ G(ξ) be positive. If ηL = conv.hullH ξ
L then g + ηL = ηL. If

ηR = conv.hullH ξ
R then −g + ηR = ηR. In any case g + η = η. This proves the

claim. �

(iii). Take some h ∈ H with h + η > η. Since ξ is omitted in H, there is g1 ∈ G
with g1 < ξ such that h + g1 > η. Since ξ is omitted in H there is g2 ∈ G with
h + g1 ≥ g2 > η. Hence h ≥ g2 − g1 > G(ξ) and h cannot be a realization of ξ̂.
Now the claim implies that η̂ is the largest extension of ξ̂ on H.

Suppose now that ξ is omitted in H and sign ξ = 0. Suppose η = h+ η̂ for some
h ∈ H. As ξ is omitted in H, there is some g ∈ G with h ≤ g < ξ. Thus η = g + η̂

and this implies that ξ = g + ξ̂, a contradiction.
(iv). By 1.5, and 1.1(v), the largest extension of ξ̂ on H is the upper edge of a
convex subgroup H0 of H. By the claim we know that η̂i extends ξ̂. Let h0 ∈ H0
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be a realization of ξ̂. Since sign ξ = 0, and k·h0 ∈ H0 for all k ∈ Z, ξ is omitted in
the subgroup G(h0) generated by G and h0 of H. Let η be the unique extension
of ξ on G(h0). Hence η1, η2 are the least and the largest extension of η on H. By
the claim we know that h0 + η = η. By the claim applied to η we get h0 + ηi = ηi
(i = 1, 2). This shows that η̂1 = η̂2 = H+

0 .
Now let h ∈ H be a realization of ξ. We already know h + H+

0 ≤ η2. Suppose
there is some h1 ∈ H with h + H0 < h1 < η2. Then h1 − h is not a realization of
ξ̂. Take g ∈ G with h1 − h ≥ g > ξ̂. Then h+ g ≤ h1, but h+ g does not realize ξ,
a contradiction.
(v) and (vi) are immediate consequences of 1.1.
(vii). We write U = G(ξ). Using 1.5, we know that ξ = g1 +U+ or ξ = g1 +U− for
some g1 ∈ G. By 1.1 we know that U+ = g + U−. Hence if ξ = g1 + U+, then we
may choose g0 = g1 and get ξ = g0 +U+. If ξ = g1 +U−, then ξ = g1 + (−g+U+)
and we may choose g0 = g1 − g, thus ξ = g0 + U+.

Hence there i some g0 as claimed and for the rest of the proof of (vii) we may
thus assume that g0 = 0, hence ξ = U+ = g + U− with U = G(ξ). It is then clear
that η1 is the upper edge of the convex hull V of U in H. and that η2 = g + V −.
Thus (vii) follows.
(ii) follows by the descriptions of the invariance groups of the least and the largest
extension of ξ on H in (iv)-(vii). �

1.9. Definition. Let G ⊆ H be totally ordered abelian groups and let ξ be a cut
of G. We define

RH(ξ) = {h ∈ H | h realizes ξ}.

Hence RH(ξ) ⊆ H \G is the set of realizations of ξ in H. Further we define

GH(ξ) = RH(ξ)−RH(ξ) = {h1 − h2 | h1, h2 ∈ RH(ξ)}.

1.10. Corollary. Suppose RH(ξ) 6= ∅.
(i) If sign(ξ) 6= ∞, then GH(ξ) is the largest convex subgroup of H lying over

G(ξ).
(ii) If sign(ξ) = ∞, then there is some g ∈ G such that ξ̂ = g − ξ̂ and for each

such g we have

GH(ξ) = {h ∈ H | |h| < g +G(ξ)}.

Notice that if H contains a realization of ξ̂ from the divisible hull of G, then
GH(ξ) is not a convex subgroup of H.

Proof. (i). Let W be the largest convex subgroup of H lying over G(ξ).
If sign ξ = 0 and h ∈ RH(ξ), then RH(ξ) = h + W by 1.8(iv) and so GH(ξ) =
RH(ξ)−RH(ξ) = W .
If sign ξ = 1 and h ∈ RH(ξ), then by 1.8(v) we have RH(ξ)∩ [h,+∞)H = h+W≥0.
Hence

GH(ξ) = ⋃
h|=ξ

RH(ξ) ∩ [h,+∞)H −RH(ξ) ∩ [h,+∞)H = W.

If sign ξ = −1, apply the previous case and GH(ξ) = GH(−ξ).
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(ii). If sign(ξ) = ∞, then let V be the convex hull of G(ξ) in H and take g, g0 as
in 1.8(vii). By 1.8(vii) we then have RH(ξ) = g0 + {h ∈ H | V < h < g + V }. It is
then straightforward to see that

GH(ξ) = RH(ξ)−RH(ξ) = {h ∈ H | |h| < g + V }.
�

1.11. Definition. Let f : X −→ Y be a monotone map between totally ordered
sets let η be a cut of Y . Then clearly (f−1(ηL), f−1(ηR)) is a cut of X, which we
denote by f−1(η). Hence by definition f−1(η)L = f−1(ηL) and f−1(η)R = f−1(ηR).

1.12. Lemma. Let f : G −→ H be a homomorphism between totally ordered abelian
groups.
(i) If S1, S2 ⊆ G, then f(S1 + S2) = f(S1) + f(S2).
(ii) If T1 ⊆ f(G) and T2 ⊆ H, then f−1(T1 + T2) = f−1(T1) + f−1(T2).
Notice that the sets Si and Ti considered here may also be empty, because the
complex operation induced by addition of G on the powerset of G is defined as
S1+S2 = {g ∈ G | ∃s1 ∈ S1, s2 ∈ S2 : g = s1+s2}. In particular ∅+S = S+∅ = ∅.

Proof. (i) is clear. To see (ii), take g ∈ G. If gi ∈ f−1(Ti) with g = g1 + g2,
then f(g) = f(g1) + f(g2) ∈ T1 + T2, thus g ∈ f−1(T1 + T2). Conversely, if
g ∈ f−1(T1 +T2), then there are t1 ∈ T1, t2 ∈ T2 with f(g) = t1 + t2. As T1 ⊆ f(G),
there is some g1 ∈ G with f(g1) = t1. Then g = g1 + g2 with g2 = g − g1 and
f(g2) = f(g)− f(g1) = t1 + t2 − t1 = t2, confirming g ∈ f−1(T1) + f−1(T2). �

1.13. Proposition. Let G be a totally ordered abelian group and let U be a convex
subgroup of G.
(i) If η is a cut of G/U , then G(π−1(η)) = π−1(G(η)) and sign(π−1(η)) = sign(η).
(ii) If ξ is a cut of G, then ξ = π−1(η) for some cut η of G/U if and only if

U ⊆ G(ξ).

Proof. (i) To verify G(π−1(η)) = π−1(G(η)) it suffices to check that for g ∈ G we
have

g + π−1(ηL) = π−1(ηL) ⇐⇒ π(g) + ηL = ηL.

Since π is surjective we know that ηL = π(π−1(ηL)).

⇒. π(g) + ηL = π(g) + π(π−1(ηL))
1.12(i)

= π(g + π−1(ηL)) = π(π−1(ηL)) = ηL.

⇐. π−1(ηL) = π−1(π(g) + ηL)
1.12(ii)

= π−1(π(g)) + π−1(ηL) = g + U + π−1(ηL) =
g + π−1(ηL).

Now we show sign(π−1(η)) = sign(η). Firstly sign(η) = ∞ ⇐⇒ η̂ is realized
in (G/U)⊗Q iff (G/U)/G(η) has a smallest positive element iff G/π−1(G(η)) has
a smallest positive element iff sign(π−1(η)) = ∞. Hence we may assume that
sign(η), sign(π−1(η)) 6=∞. But then sign(π−1(η)) = sign(η) is immediate from 1.5
and definition 1.3.
(ii) is an easy exercise. �

1.14. Proposition. Let G ⊆ H be totally ordered abelian groups and let U be a
convex subgroup of H. Let π : H −→ H/U be the natural map and let h ∈ H with
π(h) 6∈ π(G). Let η be the cut of π(G) realized by π(h). Let ξ be the cut of G
realized by h. Let π0 be the restriction of π to G. Then
(i) ξL = π−10 (ηL) and ξR = π−10 (ηR).
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(ii) G(ξ) = π−10 (G(η)).
(iii) sign(ξ) = sign(η).

Proof. (i) To see ξL = π−10 (ηL), we need to show that g < h ⇐⇒ π(g) < π(h)
for all g ∈ G. This is obvious, since π is order preserving and π(g) = π(h) cannot
occur by assumption. Similarly ξR = π−1(ηR).
(ii) We assume that ηL 6= ∅, otherwise we proceed with −ξ and −η. For g ∈ G we
clearly have

(∗) π0(g + π−10 (ηL)) = π0(g) + ηL and π−10 (π0(g) + ηL) = g + π−10 (ηL).

Hence

g ∈ G(ξ) ⇐⇒ g + ξL = ξL
by (i)⇐⇒ g + π−10 (ηL) = π−10 (ηL) ⇐⇒

(∗)⇐⇒ π0(g) + ηL = ηL ⇐⇒ g ∈ π−10 (G(η)).

(iii) follows (i),(ii) and 1.13. (Exercise) �

2. Cuts in ordered fields, G(ξ) and V (ξ)

2.1. Lemma. Let K be an ordered field, let G be the multiplicative group of positive
elements of K. If H is a convex subgroup of G with 2 6∈ H, then H+ is omitted in
G⊗Z Q.

Recall from 1.6 that the assumption 2 6∈ H cannot be dropped.

Proof. Suppose H+ is realized in G ⊗Z Q. By 1.1, there is some realization γ of
H+ in the real closure R of K, such that γ2 ∈ K. Since 2 6∈ H, H − 1 is a convex
subgroup of (K,+,≤). Since (K,+) is divisible, 3·(γ − 1) realizes (H − 1)+. Since
1 ≤ 1 +γ ≤ 3 we have (γ−1) ≤ (γ−1)(γ+ 1) ≤ 3·(γ−1), hence also (γ−1)(γ+ 1)
realizes (H − 1)+. But this is impossible, since (γ − 1)(γ + 1) = γ2 − 1 ∈ K. �

2.2. Definition. If K is an ordered field and ξ is a cut of K then we define the
multiplicative invariance group of ξ, written as G∗(ξ), as the invariance group
of |ξ| w.r.t. (K>0, ·,≤). Explicitly we have

G∗(ξ) = {a ∈ K | a·ξ = ξ}
(This also applies if ξ < 0).
The multiplicative signature of ξ is defined as

sign∗ ξ := the signature of |ξ| w.r.t. (K>0, ·, <).

IfK ⊆ L is an extension of ordered fields and α ∈ L\K, then we write G∗(α/K) and
sign∗(α/K) for the multiplicative invariance group and the multiplicative signature
of the cut of K that is realized by α.

2.3. Corollary. Let K be an ordered field and let ξ > 0 be a cut of K with
sign∗(ξ) =∞. Then ξ = ξ̂ and ξ > Q or ξ−1 > Q.

Proof. By 2.1 we have 2 ∈ G∗(ξ), which is equivalent to ξ = ξ̂.
If ξ > 1, then 2 ∈ G∗(ξ) also implies ξ > Q. If ξ < 1, then as sign∗(ξ−1) = sign∗(ξ)
we get ξ−1 > Q. �

The multiplicative signature is only a new invariant for cuts with |ξ| = ξ̂:

2.4. Proposition. If ξ is a cut of an ordered field with ξ > ξ̂, then

sign ξ = sign∗ ξ.
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Proof. By 2.3 we know that sign∗ ξ 6=∞. Since (K,+) is divisible, also sign ξ 6=∞.

Let G := G(ξ). If sign ξ = 1, then there is some a ∈ K, a > G with ξ =
a + G+. Since 1 6∈ 1

a ·G, 1 + 1
a ·G is a convex subgroup of (K>0, ·,≤). Hence

ξ = a·(1 + 1
a ·G

+) = a·(1 + 1
a ·G)+ has multiplicative signature 1.

If sign ξ = −1, then there is some a ∈ K, a > G with ξ = a+G−. Since 1 6∈ 1
a ·G,

1+ 1
a ·G is a convex subgroup of (K>0, ·,≤). Hence ξ = a·(1+ 1

a ·G
−) = a·(1+ 1

a ·G)−

has multiplicative signature -1.
If sign∗ ξ = 1, then ξ = a·H+ for a convex subgroup H of (K>0, ·,≤) and some

a > 0. Since ξ > ξ̂, 2 6∈ H and G := H − 1 is a convex subgroup of (K,+,≤).
Hence ξ = a·(1 +G+) = a+ (a·G)+ has signature 1.

If sign∗ ξ = −1, then ξ = a·H− for a convex subgroup H of (K>0, ·,≤) and some
a > 0. Since ξ > ξ̂, 2 6∈ H and G := H − 1 is a convex subgroup of (K,+,≤).
Hence ξ = a·(1 +G−) = a+ (a·G)− has signature −1.

Hence we know that sign ξ = 1 ⇐⇒ sign∗ ξ = 1 and sign ξ = −1 ⇐⇒ sign∗ ξ =
−1. This shows the proposition. �

2.5. Example. Let K be an ordered field and let α 6∈ K, α > 0 be an element from
the real closure of K such that αn ∈ K. Suppose 1 ≤ α ≤ n for some n ∈ N. Let ξ
be the cut of K realized by α. Then sign ξ = sign∗ ξ = 0.

Proof. Since 1 ≤ α ≤ n, we have ξ > ξ̂, hence by 2.4, sign∗ ξ = sign ξ 6= ∞. Since
ξ is realized in the divisible hull of the multiplicative group of positive elements of
K, ξ cannot have signature 1 (otherwise 1

b ·ξ would be the upper edge of a convex
subgroup of K>0, realized in the divisible hull of K>0). The same argument shows
that sign∗ ξ 6= −1. Hence sign∗ ξ = 0. �

The multiplicative invariance group can be computed from the additive invariance
group, provided |ξ| > ξ̂: Let K be an ordered field. Firstly, recall from [6, proof of
(3.5)]:

The set of convex subgroups of (K,+,≤) that do not contain 1 is in bijection
with the convex subgroups of (K>0, ·,≤) that do not contain 2. The bijection is
given by G 7→ 1 +G. Moreover we have

2.6. Proposition. Let K be an ordered field and let ξ be a cut of K with |ξ| > ξ̂.
There is some c ∈ K such that

G∗(ξ) = c·G(ξ) + 1 (= {c·a+ 1 | a ∈ G(ξ)}).

Proof. By [6, (3.5)]. This is included here for completeness:

We may assume that ξ > ξ̂. Let H := G∗(ξ). Since ξ > ξ̂ we have 2 6∈ H.

Claim 1. H − 1 is a convex subgroup of (K,+,≤).
H−1 is convex, since H is convex. Hence we only have to show that 2·(H−1) ⊆

H−1 andH−1 = −(H−1). Let ε ∈ H−1, ε > 0. Then 0 < 2ε < (1+ε)2−1 ∈ H−1,
hence 2ε ∈ H − 1. Since 2 6∈ H we have ε2

1−ε < ε, thus 1 < 1
1−ε = 1 + ε + ε2

1−ε <

1 + 2ε ∈ H. We get 1
1−ε ∈ H, therefore −ε ∈ H − 1.

If ε > 0 with −ε ∈ H − 1, then 1 < 1 + ε < 1
1−ε ∈ H, that is ε ∈ H − 1.

Claim 2. H − 1 = {a ∈ K | |a|·ξ < ξ̂} = {a ∈ K | |a|·ξ ≤ ξ̂}.



DEDEKIND CUTS OF ORDERED ABELIAN GROUPS AND FIELDS 9

The second equality holds since ξ > ξ̂. To see the first equality we may assume
that a > 0. If a·ξ < ξ̂, then easily (1+a)·ξ = ξ. Conversely take h ∈ H and assume
(h− 1)·ξ > ξ̂.

First suppose h > 1. Then there is some 0 < h1 < ξ with (h − 1)h1 6∈ G(ξ),
hence there is some h2 ∈ K, 0 < h1 ≤ h2 < ξ with h2 + (h − 1)h1 > ξ. It follows
ξ = hξ > hh2 = h2 + (h− 1)h2 ≥ h2 + (h− 1)h1 > ξ, a contradiction.

This argument shows that h > 1 and h·ξ = ξ imply (h − 1)·ξ ≤ ξ̂, thus (h −
1)·ξ < ξ̂. On the other hand, if 0 < h < 1 and h·ξ = ξ then by claim 1 we have
1− h = −(h− 1) ∈ H − 1, whence (2− h)·ξ = ξ and 2− h > 1. By what we have
just proved it follows (1− h)·ξ < ξ̂.

Now we prove the proposition. Let q := H+ − 1. By claim 1 it is enough to
find some c ∈ K with q = c·ξ̂. By elementary real algebra, there is an ordered field
L containing K and realizations α, γ of ξ̂ and ξ respectively. By claim 2 we know
that β := α

γ realizes q. Let G′ be the convex hull of G(ξ) in K(α, γ) and let α′

be a realization of G′+ from an ordered field extension of L. Note that α′ ≤ α.
Certainly α′

β is a realization of 1
β ·G

′+, hence of U+, where U := K ∩ 1
β ·G

′. Since U
is a convex subgroup of (K,+,≤) and ξ > ξ̂, the element γ = α

β is not a realization
of U+, hence α′

β ≤ a ≤
α
β for some a ∈ K. As α and α′ realize ξ̂ it follows that a·β

realizes ξ̂. Since β realizes q this means q = 1
a ·ξ̂. �

2.7. Definition. Let K be an ordered field and let G be a convex subgroup of
(K,+,≤). The invariance ring of G is defined as

V (G) := {a ∈ K | a·G ⊆ G}.
If ξ is a cut of K, then the invariance ring of ξ is defined as the invariance ring of
G(ξ):

V (ξ) = V (G(ξ)).

We also write Vξ for V (ξ).
If K ⊆ L is an extension of ordered fields and α ∈ L \K, then we write V (α/K)

for the invariance ring of the cut of K that is realized by α.

2.8. Remark. Let G be a convex subgroup of (K,+,≤). Obviously V (G) is a convex
subring of K and the set of units of V (G) is

V (G)× = {a ∈ K | a·G = G}.
It follows that the set of positive units of V (G) is the multiplicative invariance
group of the upper edge G+ of G:

V (G)×>0 = G∗(G+).

We write m(G) and m(ξ) for the maximal ideal of V (G), V (ξ), respectively.

2.9. Proposition. Let K ⊆ L be ordered fields and let ξ be a cut of K. Let η be
the least or the last extension of ξ on L. Then η̂ is the least or the largest extension
of ξ̂ on L and V +

η is the least or the largest extension of V +
ξ on L. In particular

(K, ξL, G(ξ), Vξ) ⊆ (L, ηL, G(η), Vη).

Moreover, if η1, η2 are the least and the largest extension of ξ on L and Vη1 = Vη2
(for example if L/K is algebraic), then either η̂1 = η̂2 or there is some a ∈ L with
η̂1 = a/η̂2.
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Proof. Everything except the additions follows from 1.8(ii). So let Vη1 = Vη2 . This
means that the invariance groups of η̂1 and η̂2 w.r.t. (K>0, ·) are the same. By
1.8(v),(vi), the multiplicative signature of ξ̂ is either 0 or ∞ and the proposition
follows from 1.8 (iv),(vii) applied to ξ̂ and (K>0, ·, <). �

2.10. Lemma. Let K be an ordered field and let G be a convex subgroup of (K,+,≤
). The following are equivalent.
(i) sign∗G+ = −1 or sign∗G+ =∞
(ii) There is some a ∈ K such that G = a·m(ξ).

Proof. The cut m(G)+ is the lower edge of the multiplicative invariance group
V (G)×>0 of G+. Hence if G = a·m(ξ), then sign∗G+ = −1 or sign∗G+ = ∞.
Conversely, sign∗G+ = −1 and sign∗G+ =∞ imply that G+ = a·G∗(ξ)− for some
a > 0. �

2.11. Definition. Let K be an ordered field with real closure R and let ξ be a cut
of K. We define the degree of ξ to be the infimum of all d ∈ N such that ξ is
realized by some α ∈ R, with [K(α) : K] = d. If ξ is not realized in R, we define
the degree of ξ to be ∞. We write deg ξ ∈ N ∪ {∞} for the degree of ξ.

A realization α of ξ in some ordered field extension L of K is called ξ-generic
if [K(α) : K] = deg ξ.

An element α of some ordered field extension L of K is called K-generic, or
generic over K, if α ∈ K or if α is ξ-generic for the cut ξ of K realized by α.

2.12. Example. Here is an example of an irreducible polynomial f(T ) over an or-
dered field K with two roots from the real closure, realizing the same cut over K.
Let K = k(X) where k is an arbitrary ordered field and X > k. Let ξ be the cut
of K realized by

√
X. Then both

√
X + 4

√
X and

√
X − 4

√
X realize ξ. Moreover

both elements are roots of the minimal polynomial f of
√
X + 4

√
X over k(X). We

compute f : We have

p(T ) := (T − (
√
X +

4
√
X))(T − (

√
X − 4

√
X)) = (T −

√
X)2 −

√
X

On the other hand

q(T ) := (T − (−
√
X + i

4
√
X))(T − (−

√
X − i 4

√
X)) = (T +

√
X)2 +

√
X

Then

p(T )·q(T ) = (T 2 +X − (2T
√
X +

√
X))(T 2 +X + (2T

√
X +

√
X)) =

= (T 2 +X)2 − (2T
√
X +

√
X)2 = (T 2 +X)2 −X(2T + 1)2 =

= T 4 + 2T 2X +X2 − 4XT 2 − 4XT −X =

= T 4 − 2XT 2 − 4XT +X2 −X
It is clear that no proper polynomial factor of f has coefficients in K = k(X), so
f(T ) = p(T )q(T ) = T 4−2XT 2−4XT +X2−X is irreducible over K and vanishes
in the realizations

√
X + 4

√
X and

√
X − 4

√
X of ξ.

Observe that deg ξ ≥ 2 for all cuts ξ of ordered fields.

2.13. Lemma. Let K ⊆ L be ordered fields and let ξ be a cut of K. Let α, β ∈ L
be realizations of ξ and let f(T ), g(T ) ∈ K[T ] be polynomials with f(T )/g(T ) 6∈ K.
If deg f(T ),deg g(T ) < deg ξ then the cut determined by f(α)/g(α) over K is equal
to the cut determined by f(β)/g(β) over K.



DEDEKIND CUTS OF ORDERED ABELIAN GROUPS AND FIELDS 11

Proof. Observe that the statement makes sense, since f(α)/g(α), f(β)/g(β) 6∈ K
by the degree assumption and f(T )/g(T ) 6∈ K. Clearly we may assume that L is
real closed. Suppose there is some a ∈ K with f(α)/g(α) < a < f(β)/g(β). Since
deg g < deg ξ, g does not have zeroes in the closed interval determined by α and β
in L. By the mean value property for real closed fields, there is some γ ∈ L between
α and β with f(γ)/g(γ) = a. Hence γ is a zero of h(T ) := a·g(T ) − f(T ) and γ
realizes ξ. Since deg h < deg ξ this is not possible. �

2.14. Definition. Let K be an ordered field and let ξ be a cut of K. Let h(T ) ∈
K(T ) \K, such that there are f(T ), g(T ) ∈ K[T ] with deg f(T ),deg g(T ) < deg ξ

and h(T ) = f(T )
g(T ) . We define the cut h(ξ) of K to be the cut determined by

f(α)/g(α), where α is a realization of ξ in some ordered field extension L ⊇ K, By
2.13, this makes sense.

2.15. Definition. Let K be an ordered field with real closure R and let ξ be a cut
of K. Let s : R −→ R be semi-algebraic. We say that s is strictly increasing
in ξ if for all realizations α < β from any ordered field extension L of R we have
s(α) < s(β).

We say that s is strictly decreasing in ξ if for all realizations α < β from any
ordered field extension L of R we have s(α) > s(β).

We say that s is strictly monotonic in ξ if s is strictly decreasing or strictly
increasing in ξ.

We say that s is constant in ξ if s is constant on all realizations of ξ in any
ordered field extension L of R.

We say that s is defined at ξ, if for all realizations α, β of ξ from some real
closed field, s(α) and s(β) induce the same cut of K. In this case we may define
s(ξ) to be this cut.

Note that if ξ is omitted in R, then s is constant or strictly monotonic in ξ.
Note also that a polynomial with coefficients in K is in general neither constant
nor strictly monotonic nor defined in a given cut of K.

2.16.Definition. LetK be an ordered field with real closure R. A map s : R −→ R
is called piecewise K-rational if there is a decomposition of R = I1 ·∪... ·∪Ik into
intervals with endpoints in K ∪{±∞} such that for each j there is some Q ∈ K(T )
without poles on Ij such that s|Ij = Q|Ij . In particular s(K) ⊆ K.

2.17. Lemma. Let K be an ordered field with real closure R and let ξ be a cut of
K. Let s : R −→ R be piecewise K-rational.

(i) If ξ is principal then ξ is omitted in R and either s(η) ∈ K or s(η) � K is a
principal cut of K, where η is the unique extension of ξ on R.

(ii) If ξ is a non principal cut of (K,+) and s is strictly monotonic in ξ, then there
are a piecewise K-rational, strictly monotonic homeomorphism t : R −→ R
and elements a < ξ < b in K such that s|[a,b] = t|[a,b] is a K-rational map on
[a, b] (so equal to some Q ∈ K(T ) on [a, b]).

If in addition, s is defined in ξ, then

s(ξ) =

{
s(ξL ∩ [a,+∞))+ = s(ξR ∩ (−∞, b])− if s is increasing in [a, b],

s(ξR ∩ (−∞, b])+ = s(ξL ∩ [a,+∞))− if s is decreasing in [a, b].
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Proof. (i). We may assume that ξ > K. Clearly ξ is omitted in K. Let a :=
limt→+∞ s(t) ∈ R∪{+∞}. If a = +∞, then s(η) = +∞ and we are done. If a ∈ R
then, as s is piecewise K-rational, a ∈ K and s(η) = a+ or s(η) = a−. In any case,
(i) holds.

(ii). We assume that s is strictly increasing in ξ. As s is piecewise K-rational,
there are a < ξ < b and some Q(T ) ∈ K[T ] such that s|(a,b) = Q|(a,b). Let p be a
cut of R, lying over ξ. As s is strictly increasing in ξ we must have Q′ > 0 ∈ p (here
we consider p as a 1-type over R, observe that p is not realized, hence Q′ = 0 6∈ p).
In particular, if p1, p2 are the least and the largest extension of ξ on R, we have
Q′ > 0 ∈ p1, p2. Since ξ is not principal, we can shrink the interval (a, b) such that
Q′ > 0 on (a, a1)∪ (b1, b) for some a1, b1 ∈ R with p1 < a1, b1 < p2. But then, since
s is strictly increasing in ξ, Q must be strictly increasing in (a, b) ⊆ R. Now a map
t as claimed can easily be patched together.

Finally assume that s is also defined at ξ. The only thing we need to show is
that there are no elements c ∈ K between s(ξL∩ [a,+∞)) and s(ξR∩ (−∞, b]). Say
s is increasing in ξ and suppose

s(ξL ∩ [a,+∞)) ≤ c ≤ s(ξR ∩ (−∞, b]).

Since ξ is non-principal and s is strictly increasing in [a, b] we have

s(ξL ∩ [a,+∞)) < c < s(ξR ∩ (−∞, b]).

Take realizations α and β of the cuts c−, c+ from some real closed field S. Since
s is strictly increasing and continuous in [a, b]S , there are α0, β0 ∈ [a, b]S with
s(α0) = α, s(β0) = β, ξL ∩ [a,+∞) < α0 and β0 < ξR ∩ (−∞, b]. But then α0, β0
realize ξ, whereas s(α0) < c < s(β0), i.e. s is not defined at ξ. �

2.18. Definition. A cut ξ of an ordered abelian group is called dense if ξ is not
principal and G(ξ) = {0}.

2.19. Corollary. Let K be an ordered field with real closure R, let ξ be a cut of
K omitted in R and let η be the unique extension of ξ on R. Let s : R −→ R be
piecewise K-rational and nonconstant in ξ. Then s(η) is the unique extension of
s(η) � K and
(i) ξ is principal if and only if s(η) � K is principal.
(ii) ξ is dense if and only if s(η) � K is dense.

Proof. All statements hold true by 2.17(i), if ξ is principal. So we assume that ξ is
not principal. As ξ is omitted in R, s is strictly monotonic and defined in ξ. Say s
is strictly increasing in ξ. By 2.17(ii) we may assume that s is a strictly increasing
homeomorphism R −→ R. Then s(η) = (s(ηL), s(ηR)) and s(η) � K = s(ξL)+ =
s(ξR)−. Consequently s(η) is the unique extension of s(η) � K and (i) holds.

Now we prove (ii). From the o-minimal case we know that η is dense is and only
if s(η) is dense. But ξ is dense if and only if η is dense (by (i) and since η̂ lies over
ξ̂). As s(η) � K is omitted in R it follows that s(η) � K is dense if and only if s(η)
is dense. Altogether we get (ii). �

2.20. Theorem. Let K ⊆ L be ordered fields and let ξ be a cut of K. Then
(i) If f, g ∈ K[T ] with 1 ≤ deg f + deg g ≤ deg ξ and g has no zero in ξ, then

f/g is strictly monotonic on the realizations of ξ in L. In particular there is
at most one zero of f realizing ξ.
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(ii) If f ∈ K[T ], 1 ≤ deg f < deg ξ and L is real closed, then f maps the realiza-
tions of ξ in L onto the realizations of f(ξ) in L.

(iii) Let α, β ∈ L, α 6= β be algebraic with minimal polynomial µα, µβ respectively.
If α, β are ξ-generic, then either µα and µβ are strictly increasing on the
realizations of ξ in L or µα and µβ are strictly decreasing on the realizations
of ξ in L. Moreover µα and µβ are coprime.

Proof. (i). As 0 ≤ deg(gf ′ − g′f) < deg ξ, (f/g)′ does not have zeroes in the
realizations of ξ in the real closure of L. Hence (i) follows.

(ii). We assume that L is the real closure of K first. If ξ is omitted in L then (ii)
holds by 2.19. So we may assume that ξ is realized in L, hence ξ is not principal.
By 2.13, f maps the realizations of ξ in L into the realizations of f(ξ) in L. By
(i), f is strictly monotonic in ξ. Hence by 2.17, there are a < ξ < b in K and a
piecewise K-rational, strictly monotonic homeomorphism t : R −→ R such that
f |[a,b] = t|[a,b]. Thus every realization of f(ξ) is the image of a realization of ξ in
L.

Now let L be an arbitrary real closed field extending K and let R be the real
closure of K in L. Let η1, η2 be the least and the largest extension of ξ on R. Let
η′1, η

′
2 be the least and the largest extension of ξ on L. By what we have shown,

f(η1) and f(η2) are the least and the largest extension of f(ξ) on R - possible in
the reverse order. Since f is strictly monotonic in ξ we get that f(η′1) and f(η′2)
are the least and the largest extension of f(ξ) on L - possible in the reverse order.
This proves (ii).

(iii). Suppose α < β and suppose µ′α(α) > 0 > µ′β(β). By (i), µα is strictly
increasing in ξ and µβ is strictly decreasing in ξ. Since µα(α) = µβ(β) = 0 there
must be some γ in the real closure of L with α < γ < β such that µα(γ) = µβ(γ).
But then [K(γ) : K] ≤ deg(µα − µβ) < degµα = degµβ = deg ξ, a contradiction.

The same argument gives a contradiction if µ′α(α) < 0 < µ′β(β). By (i) it follows
that µα and µβ are strictly increasing on the realizations of ξ in L or µα and µβ
are strictly decreasing on the realizations of ξ in L.

By (i), µα and µβ are coprime. �

2.21. Corollary. Let K be an ordered field with real closure R and let ξ be a cut of
K. Let α ∈ R be a ξ-generic realization of ξ. Then for every polynomial g ∈ K[T ]
of degree < deg ξ the least and the largest extension of ξ on R is mapped via g onto
the least and largest extension (possibly in reverse order) of the cut induced by g(α)
on K.

Proof. By 2.19 and 2.20(ii). �

2.21 says: ξ can be moved to all cuts of K, realized in some K(α), α ξ-generic,
in such a way that the movement is perfectly witnessed in R. By 2.9, we can then
use the theory of cuts of real closed fields. Here an example

2.22. Definition. If K ⊆ L is an extension of ordered fields, then we write

VL/K = ⋂
α∈L\K

V (α/K).

2.23. Proposition. Let K ⊆ L be ordered fields and let ξ be a cut of K. Let α ∈ L
be a ξ-generic realization of ξ. If L = K(α), then

VL/K = V (ξ).
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Proof. First recall from [8, Thm. 5.1], that this is true if K is real closed (and
actually not difficult to prove directly in that case).
Case 1. ξ is not realized in the real closure R of K

Let η be the unique extension of ξ on R and let β ∈ L \K. As α is transcendent
over K. Take a rational map f : K −→ K with β = f(α). By 2.19, fR(η)
is the unique extension of f(ξ) on R. From the real closed field case, we know
that V (fR(η)) = V (η). From 2.9 we know that V (fR(η)) lies over V (f(ξ)). Thus
V (β/K) = V (f(ξ)) = V (ξ).
Case 2. ξ is realized in the real closure R of K.

By assumption α ∈ R is a generic realization of ξ. Let β ∈ L \ K and take a
polynomial f(T ) ∈ K[T ] of degree < deg(ξ) such that β = f(α). By 2.21, the least
and the largest extension η1, η2 of ξ on R is mapped via f onto the least and largest
extension (possibly in reverse order) of the cut induced by f(α) = β on K. Again,
from the real closed case we know that V (fR(ηi)) = V (η1). Again 2.9 shows that
V (fR(ηi)) lies over V (f(ξ)). �

2.24. Example. Without the genericity, 2.23 fails: Let K be an ordered field. If ξ
and η are cuts of K realized in the real closure of K, then V (ξ) 6= V (η) in general.
To see an example let K0 be any ordered field and let x, y be from an ordered field
extension with K0 < x and K0(x) < y. Take K = K0(x, y), ξ the cut of K realized
by α :=

√
x and η the cut of K realized by β :=

√
y. Then ξ and η are upper edges

of distinct convex valuation rings of K.

2.25. Example. In general the ξ-generics are not convex: To see an example (also
cf. 2.24) let K0 be any ordered field and let x, y be from an ordered field extension
with K0 < x and K0(x) < y. Take K = K0(x, y) and let ξ be the cut of K realized
by α :=

√
x. Let β :=

√
y. Then α, α+ 1 and α+ 1/β are realizations of ξ. α, α+ 1

are ξ-generic, but α+ 1/β is not.

3. Dense cuts and the order completion.

3.1. Proposition. Let K be an ordered field and let ξ be a cut of K. Then the
following are equivalent.
(i) ξ is dense, i.e. ξ is not principal and G(ξ) = 0.
(ii) There is an ordered field extension of K such that ξ has a unique realization

in that field.
If this is the case, then ξ has at most one realization α in every ordered field
extension L of K which is archimedean over K and K is dense in K(α).

Proof. (ii)⇒(i) is easy.
Now suppose ξ is dense. Then ξ can be realized in an ordered extension field of

K, which is archimedean over K (if ξ is realized in the real closure R of K we can
take the real closure; if ξ is omitted in the real closure, then the unique extension
of ξ on R is again dense, hence K is archimedean in R < a realization of ξ >). If
L is any ordered field extension of K, archimedean over K and α < β are from K,
then there is some a ∈ K with 0 < a < β−α. As G(ξ) = 0, α and β cannot realize
ξ at the same time. This shows that (i) implies (ii) and it remains to show that K
is dense in K(α) if α |= ξ and K(α) is archimedean over K.
Case 1. ξ is omitted in the real closure R of K. As ξ is dense, the unique
extension of ξ on R is dense, too. In particular R is archimedean in R〈α〉. Then K
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is archimedean in R〈α〉. Take rational functions f, g ∈ K(T ) such that f(α) < g(α),
both not in K. Take some a ∈ K such that f(α) + a < g(α). By 2.19(ii), the cut
defined by f(α) over K is dense, too. Hence g(α) cannot define the same cut as
f(α) over K and there must be some a ∈ K with f(α) < a < g(α) as desired.

Case 2. ξ is realized in R, by r say. Then r is the unique realization of ξ in R
and α − r is infinitesimal over R. Let µ be the minimal polynomial of r over K.
If α 6= r, then µ(α) 6= 0 is infinitesimal over R, in contradiction to our assumption
that K is archimedean in K(α). Hence α = r ∈ R is the unique realization
of ξ on R. In particular [K(α) : K] = deg ξ. Take polynomials f, g ∈ K[T ],
deg f, deg g < [K(α) : K] such that f(α) < g(α), both not in K. By 2.20(ii) we
know that f(α) is the unique extension of the cut of f(α) over K. Hence there is
some a ∈ K with f(α) < a < g(α). �

Observe that K need not be archimedean in K(α) if α realizes a dense cut over
K. For example if ε is infinitesimal, K = Q and α =

√
2 + ε. Then α2 − 2 =

2
√

2ε+ ε2 ∈ K(α) is infinitesimal over K.

3.2. Corollary. Let K ⊆ L ⊆ M be ordered fields and let X ⊆ M . If K is dense
in K(x) for all x ∈ X and if K is archimedean in M then L is dense in L(X).

Proof. We work inside the real closure M̄ of M . We may assume that X is finite,
X = {x1, ..., xn} and we do an induction on the cardinality of X. First let X = {x},
x 6∈ L, let ξ be the cut of x over K and let η be the cut of x over L.

By assumption, K is archimedean in L(x). Hence by 3.1, x is the unique real-
ization of ξ in L(x). Thus x is the unique realization of η in L(x). Again by 3.1, L
is dense in L(x).

So we know the corollary in the case n = 1. Now suppose K is dense in K(x)
for every x ∈ X and K is dense in K(y). By induction L is dense in L(X), hence
K is archimedean in L(X). So from the case n = 1 we get that L(X) is dense in
L(X ∪ {y}), thus L is dense in L(X ∪ {y}). �

If K is an ordered subfield of an ordered field M and K is archimedean in M ,
then by 3.2, for all fields K ⊆ L1, L2 ⊆M with the property that K is dense in L1

and in L2, K is also dense in the compositum L1·L2 ⊆M . Applying Zorn’s lemma
therefore shows that there is a largest subfield L of M such that K is dense in L.

For an ordered field K we may now define the dense closure (also called the
continuous closure or the completion) of K as follows: Let K be the real
closure of K and let K̂ be the completion of K (see [7, section 3]). Notice that K
is archimedean in K̂. We define the dense closure K̂ of K as

K̂ = the largest subfield of K̂ that contains K as a dense subfield.

3.3. Proposition. If K ⊆ L are ordered fields and K is dense in L, then there is
a unique K-embedding of ordered fields L −→ K̂.

Proof. Uniqueness is clear. To see existence of such an embedding, let Ω be the
real closure of L. Then there is a K-embedding of K into Ω and we may assume
that K ⊆ Ω. Since K is archimedean in Ω we know from 3.2 that K is dense in
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K·L. It follows that K is dense in K·L (see the description of S in [7, Cor 3.2])).
By [7, Cor 3.3], there is an embedding

ϕ : K·L −→ K̂

over K. Hence the restriction of ϕ to L maps L onto a subfield of K̂ that contains
K as a dense subfield. By definition of K̂ we therefore have ϕ(L) ⊆ K̂. �

3.4. Corollary. [3]
If K ⊆ L are ordered fields and K is dense in L, then the real closure K of K is
dense in the real closure L of L.

Proof. By 3.3 we may assume that L ⊆ K̂. Now we have

K ⊆ L ⊆ K̂ ⊆ K̂

and K̂ is real closed. Consequently

K ⊆ L ⊆ K̂,
i.e. K is dense in L. �
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4. Convex valuations on realizations of cuts

4.1. Proposition. If V is a convex valuation ring of an ordered field K, then the
convex hull W of V in the real closure R of K is the unique convex valuation ring
of R with W ∩K = V .

Observe that this does not mean that V + is omitted in R.

Proof. For a more general reference see [1] (it says that on an algebraic extension
of fields there cannot be a proper inclusions between valuations extending the same
valuation of the base field).

Take α ∈ R with α > V . It suffices to show that for some d ∈ N and some a ∈ K
we have

V < a < αd.

Let w be the valuation belonging to the convex hull W of V in the real closure R.
Since α is algebraic overK, there are i > j and ci, cj ∈ K× with w(ciα

i) = w(cjα
j),

hence

(∗) w(αi−j) = w(
cj
ci

).

We take d = i− j + 1 and a = | cjci |. As α > V we have w(α) < 0 and by
(∗) also w(a) = w(

cj
ci

) < 0. Since a > 0, this means V < a. On the other hand
w(αd) = w(α·αi−j) = w(α)+w(a) < w(a), which implies a < αd as w is compatible
with the order. �

Recall from 4.1 that every convex valuation ring V of an ordered field K has a
unique extension to a convex valuation ring of the real closure R of K, namely the
convex hull of V in R.

Throughout this section we fix
• ordered fields K ⊆ L
• a convex valuation ring W of L which is the convex hull of V := W ∩K. The

maximal ideal of W is denoted by m and the residue map W −→ W/m is
denoted by λ.

• A cut ξ of K and a realization α ∈ L of K.

4.2. Lemma. If a, b ∈ K and w(aα− b) 6∈ w(K), then sign(ξ) 6= 0.

Proof. Clearly a 6= 0. Since sign ξ is invariant under the map ax + b, we may
assume that α > 0 and w(α) 6∈ w(K). Then for all c ∈ K with 0 ≤ c < α we have
w(α) > w(c) = w(2c) and therefore 2c < α. Thus α realizes the upper edge of a
convex subgroup of (K,+,≤). �

4.3. Lemma. If G is a convex subgroup of (K,+,≤), ξ = G+ and V ⊆ V (ξ), then
w(α) 6∈ w(K).

Proof. Suppose a ∈ K, a > 0 with w(α) = w(a). Then w(αa ) = 0 and so α
a and

a
α are in the convex hull of V . By assumption, αa and a

α are in the convex hull of
V (ξ). Take b ∈ V (ξ) with

α

a
,
a

α
< b.

Since a
α < b we have

a =
a

α
·α < b·α |= G+,
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because b ∈ V (ξ) (and b ≥ 1). Hence a ∈ G. But this contradicts

α = a·α
a
< a·b

b∈V (ξ)
∈ G < α.

�

4.4. Corollary. If sign(ξ) 6= 0 and V ⊆ V (ξ), then there is some a ∈ K with
w(α− a) 6∈ w(K).

4.5. Lemma. If α ∈W is a realization of ξ and 1 ∈ G(ξ), then λ(α) 6∈ λ(V ).

Proof. Otherwise there is some a ∈ V with α − a ∈ m, hence α = a + µ for some
µ ∈ m. Since 1 ∈ G(ξ), α and α+ 2 realize the same cut of K, which contradicts

α = a+ µ < a+ 1 < a+ µ+ 2 = α+ 2.

�

4.6. Corollary. If V (ξ) ( V , then there are a, b ∈ K such that aα + b ∈ W and
λ(aα+ b) 6∈ λ(V ).

Proof. Since V (ξ) ( V , there is some a ∈ K with V (ξ)+ ≤ a·ξ̂ < V +. Since
âξ = aξ̂, there is some b ∈ K with

(∗) V (ξ)+ ≤ a·ξ̂ ≤ aξ + b < V +.

Then aα + b ∈ W and 1 ∈ V (ξ) ⊆ aG(ξ) = G(aξ) = G(aξ + b). Hence 4.5
applies. �

4.7. Lemma. If α ∈ W , sign(ξ) = 0, G(ξ) = m(ξ) and V (ξ) ⊆ V , then λ(α) 6∈
λ(V ).

Proof. Say α > 0. Assume there is some a ∈ K with α − a ∈ m. We may assume
that a = 0, otherwise we continue to work with ξ − a and α − a. Thus we may
assume that α ∈ m. Since sign(ξ) = 0, α does not realize (m∩K)+. As α ∈ m this
means 0 < ξ < (m ∩K)+. But this contradicts G(ξ) = m(ξ) ⊇ m ∩K. �

4.8. Corollary. If sign(ξ) = 0, sign∗(ξ̂) ∈ {−1,∞} and V (ξ) ⊆ V , then there are
a, b ∈ K such that aα+ b ∈W and λ(aα+ b) 6∈ λ(V ).

Proof. This is true if V (ξ) ( V by 4.6. So assume V (ξ) = V . As sign∗(ξ̂) ∈
{−1,∞}, there is some a ∈ K with a·G(ξ) = m(ξ) (see 2.10). As a·G(ξ) = G(a·ξ)
we have sign(aξ) = 0 and m(aξ) = m ∩K. Consequently there is some b ∈ K with
0 < aξ + b < 1, in particular aα+ b ∈W . Now 4.7 applies to aξ + b. �

4.9. Lemma. If α ∈ W with λ(α) 6∈ λ(V ) then V (ξ) ⊆ V and if V (ξ) = V , then
G(ξ) = m ∩K and the cut of λ(V ) realized by λ(α) has invariance group {0}.

Proof. We use 1.14. Let η be the cut of λ(V ) determined by λ(α). Let λ0 be
the restriction of λ to V . By 1.14(ii) applied to V ⊆ W and m we have G(ξ) =
λ−10 (G(η)), which contains m ∩K = λ−10 (0).
If G(ξ) = m ∩K, then V (ξ) = V and G(η) = {0}.

Otherwise, G(η) = λ(G(ξ)) 6= {0} and so V (η) 6= λ(V ). Take a ∈ V with
λ(a) > V (η) and b ∈ V , b > 0 with λ(b) ∈ G(η) and λ(a)λ(b) > G(η). Then
b ∈ λ−10 (G(η)) = G(ξ) and a·b > λ−10 (G(η)) = G(ξ). Hence a 6∈ V (ξ). As a ∈ V
this shows V (ξ) ( V . �
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4.10. Conclusion The fact that aα+ b does not have a new value and aα+ b does
not have a new residue w.r.t. K and W , for all a, b ∈ K, is determined by sign ξ,
sign∗ ξ̂ and the position of V w.r.t. V (ξ). In fact we have the following table:

Let K ⊆ L be ordered fields, let ξ be a cut of K realized by α and suppose
L = K(α). Let V be a convex valuation ring of K and let W be the convex hull of
V in L.

V ( V (ξ) V = V (ξ) V (ξ) ( V
ξ principal ΓV 6= ΓW ΓV 6= ΓW not possible

ξ dense, L/K archimedean immediate κV 6= κW not possible
sign ξ 6= 0 ΓV 6= ΓW ΓV 6= ΓW κV 6= κW

sign ξ = 0, sign∗ ξ̂ ∈ {−1,∞} linear immediate κV 6= κW κV 6= κW
sign ξ = 0, sign∗ ξ̂ ∈ {0, 1} linear immediate linear immediate κV 6= κW

Here, "linear immediate" stands for the property
For all a, b ∈ K, w(aα+b) ∈ ΓV and, if aα+b ∈W , then λ(aα+b) ∈
κV "

Proof. The first two rows are clear and the last column follows from 4.6. Using 4.4,
also the third column follows.

So we are left with the following sub-table:
V ( V (ξ) V = V (ξ)

sign ξ = 0, sign∗ ξ̂ ∈ {−1,∞} linear immediate κV 6= κW
sign ξ = 0, sign∗ ξ̂ ∈ {0, 1} linear immediate linear immediate

If sign ξ = 0, sign∗ ξ̂ ∈ {−1,∞} and V (ξ) = V , then κW 6= κV by 4.8.

The three remaining cases are linear immediate by 4.2 and 4.9.
�
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