
ADVANCED CLASS: INTRODUCTION TO NIP

MARCUS TRESSL

Abstract. We give a self contained introduction to theories and formulas
with the independence property and prove a theorem of Shelah (following
Pillay) on externally definable sets in theories with the NIP.
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1. Definitions and examples

Let T be an L -theory and let ϕ(x̄, ȳ) be an L -formula. We say that ϕ has the
independence property w.r.t. x̄,ȳ if in some model M of T there are

b̄S ∈M x̄ and āi ∈M ȳ (i ∈ ω, S ⊆ ω)

such that
M |= ϕ(b̄S , āi) ⇐⇒ i ∈ S.

Whenever the partitioning of the variables is clear we shall simply say ϕ has the
independence property. If ϕ does not have the independence property then we say
ϕ has the NIP. A theory has NIP if all formulas have NIP. Observe that in this
case, also all formulas with parameters in a model of T have NIP (if ϕ(x̄, ȳ, c̄)) has
IP, then ϕ(x̄, ȳ, z̄)) has IP w.r.t. x̄ and (ȳ, z̄)).

By compactness, ϕ has the independence property if for every finite set F there
are a model M of T and

b̄S ∈M x̄ and āi ∈M ȳ (i ∈ F, S ⊆ F )
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such that
M |= ϕ(b̄S , āi) ⇐⇒ i ∈ S.

Syntactically, this means that T is consistent with the sentence

∃x̄S(S ⊆ F ) ∃ȳi(i ∈ F )
[ ∧
i∈S⊆F

ϕ(x̄S , ȳi) ∧
∧

S⊆F,i∈F\S

¬ϕ(x̄S , ȳi)
]

IfM is a model of T and ϕ(x̄, ȳ) is a formula with parameters inM , then we say
ϕ has the independence property, if ϕ has the independence property with respect
to Th(M,M). This is the case if and only if for every k ∈ N there is a sequence
ā1, ..., āk ∈Mn such that for every subset S ⊆ {1, ..., k} the formula∧

i∈S
ϕ(x̄, āi) ∧

∧
i∈{1,...,k}\S

¬ϕ(x, āi)

is satisfiable im M .

Again by compactness, if ϕ(x̄, ȳ) has the independence property, then for every
set I there is a model M of T and

āi ∈M ȳ, b̄S ∈M x̄ (i ∈ I, S ⊆ I)

such that
M |= ϕ(b̄S , āi) ⇐⇒ i ∈ S.

1.1. Proposition. If ϕ has the independence property w.r.t. x̄, ȳ then ϕ also has
the independence property w.r.t. ȳ, x̄.

Proof. Pick k ∈ N. We apply the independence property of ϕ w.r.t. x̄, ȳ to the
finite set 2k of subsets of {1, ..., k}: For each T ∈ 2k and each S ⊆ 2k there are
āT ∈M ȳ and b̄S ∈M x̄ such that

M |=
∧

T∈S⊆2k

ϕ(b̄S , āT ) ∧
∧

T∈2k\S

¬ϕ(b̄S , āT ).

For each i ∈ k let S(i) = {Z ⊆ {1, ..., k} | i ∈ Z} ⊆ 2k and take c̄i = b̄S(i). Then

M |=
∧

T∈S(i), i∈{1,...,k}

ϕ(b̄S(i), āT ) ∧
∧

T∈2k\S(i), i∈{1,...,k}

¬ϕ(b̄S(i), āT ),

since this formula is a subformula of the one above. Since T ∈ S(i) means i ∈ T ,
this shows that ϕ also has the independence property w.r.t. ȳ,x̄. �

1.2. Example. The binary relation “y divides x” on N has the independence prop-
erty. To see this take k ∈ N, let a1, ..., ak be an enumeration of the first k prime num-
bers and let bS =

∏
i∈S ai for each S ⊆ {1, ..., k}. Then i ∈ S ⇐⇒ ai divides bS .

1.3. Example. In every infinite boolean algebra A, the relation x ≥ y has the
independence property. To see this take k ∈ N and let a1, ..., ak ∈ A be different
from ⊥ with ai ∧ aj =⊥ (i 6= j). Then with bS =

∨
i∈S ai, S ⊆ {1, ..., k} we have

i ∈ S ⇐⇒ bS ≥ ai. Note that the first order theory of a fixed boolean algebra A
is well behaved (e.g. saying that A has no atoms gives a complete ℵ0-categorical
theory which is decidable).
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1.4. Example. Stable theories have NIP. This is clear depending how one defines
“stable”. For example the definition “T stable ⇐⇒ no formula has the order
property w.r.t T ” immediately implies that stable theories have the NIP. Recall
that a formula ϕ(x̄, ȳ) has the order property if there are x̄-tuples b̄i, ȳ-tuples āj
from some model of T with M |= ϕ(b̄i, āj) ⇐⇒ i ≤ j (i, j ∈ ω). Notice that i ≤ j
is equivalent to i ∈ {j′ | j′ ≤ j}, hence a formula with the independence property
also has the order property.

1.5. Example. More examples of theories with the NIP: p-adically closed fields, alg.
closed valued fields, more generally c-minimal theories have NIP. Simple theories
which have the NIP are stable (Reference missing); e.g. pseudo finite fields do have
the independence property (see also [Dur])

1.6. Example. O-minimal structures have NIP. This will be proved in 7.2 as an
easy consequence of 7.1 below.
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2. Ramsey’s theorem

2.1. Notation. Let X be a set and let n ∈ N = {1, 2, 3, ...}. We write

[X]n = {S ⊆ X | |S| = n}.

2.2. Theorem. If X is infinite and [X]n = A0∪A1, then there is an infinite subset
Y of X with [Y ]n ⊆ A0 or [Y ]n ⊆ A1

Proof. By induction on n, where n = 1 is trivial. Assume we know the assertion
for n− 1. Given an infinite subset Z of X, some element z ∈ Z and δ ∈ {0, 1} we
define

Bδ(Z, z) := {S ⊆ Z \ {z} | |S| = n− 1 and S ∪ {z} ∈ Aδ}.
As [X]n = A0 ∪A1, we have

[Z \ {z}]n−1 = B0(Z, z) ∪B1(Z, z)

and the induction hypothesis gives an infinite subset YZ,z of Z \ {z} and some
δZ,z ∈ {0, 1} with

[YZ,z]
n−1 ⊆ BδZ,z (Z, z).

We now iterate: Define a sequence (Zk, zk, δk)k∈N, as follows: Choose Z1 := X and
z1 ∈ Z1 arbitrarily. If (Zk, zk) is already defined, then define

Zk+1 = YZk,zk , δk = δZk,zk and take zk+1 ∈ Zk+1 arbitrarily.

Hence
zk+1 ∈ Zk+1 ⊆ Zk \ {zk} and [Zk+1]n−1 ⊆ Bδk(Zk, zk).

By symmetry, we may assume that there are infinitely many k ∈ N with δk = 0.
Then Y = {zk | δk = 0} satisfies [Y ]n ⊆ A0: First notice that zi 6= zj for i 6= j,
since zk+1 ∈ Zk+1 ⊆ Zk \ {zk} for all k. In particular Y is infinite.
Now take S ∈ [Y ]n and let k1 < . . . < kn ∈ N with S = {zk1 , . . . , zkn}. Then

{zk2 , ..., zkn} ⊆ Zk2 ∪ . . . ∪ Zkn ⊆ Zk1+1, hence

{zk2 , ..., zkn} ∈ [Zk1+1]n−1 ⊆ Bδk1 (Zk1 , zk1) = B0(Zk1 , zk1).

But this means S = {zk1} ∪ {zk2 , ..., zkn} ∈ A0.

Second proof. We show that for every map f : [X]n −→ {1, . . . , k} there is an
infinite subset Y ⊆ X such that f is constant on [Y ]n.

By induction on n, where n = 1 is clear.
n → n + 1. Pick x∗ ∈ X. We have a map g∗ : [X \ {x∗}]n −→ {1, . . . , k},
g(S) = f(S ∪ {x∗}) and by induction there is an infinite set X∗ ⊆ X such that g is
constant on [X∗]n; hence there is some d ∈ {1, . . . , k} such that for all S ∈ [X∗]n

we have f(S ∪ {x∗}) = d.
We define X0 = X∗, x0 = x∗ and by induction x∗i+1 ∈ X∗i (arbitrarily) and

Xi+1 = (Xi)
∗ (where we use the function f |[Xi]n+1). By construction, for each

i ∈ N there is some di ∈ {1, . . . , k} such that fi(S ∪ {xi}) = di for all S ∈ [Xi]
n,

Now take some d ∈ {1, . . . , k} such that I = {i ∈ N | di = d} is infinite. Then
the set Y = {xi | i ∈ I} has the required property.

�

We don’t need, but state the Erdös-Rado Theorem:



NIP 5

2.3. Theorem. (cf. [Hodges1993], section 11.1)
Let λ be an infinite cardinal and let k ∈ N. Let ik−1(λ) (pronounce“beth”) be the
(k − 1)-st iteration of the function κ 7→ 2κ starting with κ = λ.

If I is a set of size > ik−1(λ) and [I]k =⋃α<λAα, then there is a subset J of
I of size (at least) λ+ and some α < λ with [J ]k ⊆ Aα.

2.4. Remark. One might ask whether there is a general partition theorem similar
to 2.3 for infinite cardinals k. The answer is mainly negative. Here a striking
statement proved in [EHMR], Theorem 12.1:

For all ω ≤ κ ≤ λ there is a partition of [λ]κ into 2κ sets such that for every
J ⊆ λ of size κ, the set [J ]κ intersects each member of the partition.

3. Indiscernible sequences

3.1. Definition. Let (I,<) be a totally ordered set, n ∈ N and let (āi)i∈I ⊆Mn,
M an L -structure. Let Γ be a subset of Fml L (M). We say that (āi)i∈I is a
Γ-indiscernible sequence if for all i1 < ... < ik and all j1 < ... < jk from I we
have

M |= γ(āi1 , ..., āik) ⇐⇒ M |= γ(āj1 , ..., ājk) (γ(x̄1, ..., x̄k) ∈ Γ)

If Γ = Fml L (A) with A ⊆ M then we say “indiscernible sequence over A”. If
Γ = Fml L then we say “indiscernible sequence”.

We have the following corollary to Ramsey’s theorem 2.2:

3.2. Corollary. Given a finite subset Γ of Fml L (M), every infinite sequence
(āi)i∈I ⊆Mn contains a Γ-indiscernible subsequence.

Proof. As Γ is finite we may by induction assume that Γ is a singleton, say Γ =
{γ(x̄1, ..., x̄k)}. Let

A0 = {{i1, ..., ik} ∈ [I]k | i1 < ... < ik and M |= γ(āi1 , ..., āik)}

and
A1 = {{i1, ..., ik} ∈ [I]k | i1 < ... < ik and M |= ¬γ(āi1 , ..., āik)}.

Then [I]k = A0 ∪ A1 and by 2.2, there is some infinite J ⊆ I such that [J ]k ⊆ A0,
say. Clearly (āj)i∈J is Γ-indiscernible. �

3.3. Remark. One might wonder whether there is a cardinal λ such that every
sequence of length λ from some model of T contains an infinite indiscernible sub-
sequence. This is unlikely in general by 2.4 applied to κ = ω there. On the other
hand in [TenZie2012, top of page 116] (also see [TenZie2012, Lemma 7.2.12]) we
find

The existence of a Ramsey cardinal κ > supn<ω |Sn(A)| (see p. 210)
would directly imply that any sequence of order type κ contains a
countable indiscernible subsequence (in fact even an indiscernible
subsequence of size κ).

In general, a central tool to produce indiscernible sequences out of a given sequence
is explained next.
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3.4. Definition. Let s = (b̄i)i∈I be a sequence of n-tuples of some structure M
indexed by a chain I and let A ⊆ M . Then the Ehrenfeucht-Mostowski type
of s over A is defined as

EM(s/A) = {ϕ(x̄1, . . . , x̄k) ∈ Fml L (A) | k < ω,M |= ϕ(b̄i1 , . . . , b̄ik)

for all i1 < . . . < ik ∈ I},
where x̄1, x̄2, x̄3, . . . are distinct n-tuples of variables. If A = ∅ we just write EM(s).
Observe that every L (A)-formula ϕ(x̄) with M |= ϕ(āi/A) (i ∈ I) is in EM(s/A).

3.5. Ehrenfeucht-Mostowski Theorem Let s = (b̄i)i∈I be an infinite sequence
of n-tuples of some structure M indexed by a chain I and let A ⊆ M . Then for
every infinite chain J there is an A-indiscernible sequence t indexed by J in some
elementary extension of M with EM(s/A) ⊆ EM(t/A).

Proof. We may assume that A = ∅. Pick new n-tuples of constants c̄j for j ∈ J
and consider the following set of L (c̄j | j ∈ J)-sentences:

Φ = {ϕ(c̄j1 , . . . , c̄jk) | j1 < . . . < jk ∈ J and ϕ(x̄1, . . . , x̄k) ∈ EM(s)}
Ψ = {ψ(c̄j1 , . . . , c̄jk)↔ ψ(c̄n1

, . . . , c̄nk) | j1 < . . . < jk, n1 < . . . < nk ∈ J and
ϕ(x̄1, . . . , x̄k) ∈ Fml(L )}.

By compactness it suffices to show that Φ∪Ψ is finitely satisfiable inM . Let Φ0 ⊆ Φ,
Ψ0 ⊆ Ψ be finite sets and choose Γ ⊆ Fml(L ) finite such that each sentence in
Ψ0 is of the form ψ(c̄j1 , . . . , c̄jk)↔ ψ(c̄n1

, . . . , c̄nk) for some ψ(x̄1, . . . , x̄k) ∈ Γ and
some constants c̄ji , c̄ni . By 3.2 there is a subsequence of s0 that is Γ0-indiscernible.
Since EM(s) ⊆ EM(s0) it is now clear that a long enough initial subsequence of s0

realizes Φ0 ∪Ψ0. �

3.6. Definition. Let s := (āi)i∈λ ⊆ Mn, where λ is an ordinal and let ϕ(x̄, ȳ) be
an L -formula. We say that s is split by ϕ(x̄, ȳ) if in some elementary extension
N of M there is some b̄ ∈ N x̄ such that

{i ∈ I | |= ϕ(b̄, āi)} and {i ∈ I | |= ¬ϕ(b̄, āi)} are cofinal in I

If s is split by some L -formula, then we say that s is splittable.

3.7. Remark. s := (āi)i∈λ ⊆Mn is unsplittable, then
~tp(s/M) := {ψ(x̄, b̄) | ψ(x̄, ȳ) ∈ Fml L , b̄ ∈M ȳ and M |= ψ(āi, b̄) for i→∞}

is a complete n-type of M , called the average type of s.
Hence s is unsplittable if and only if s converges in Sn(N) for every N �M .

3.8. Proposition. The following are equivalent for every formula ϕ(x̄, ȳ).
(i) ϕ(x̄, ȳ) has the independence property
(ii) For every cardinal λ, there is an indiscernible sequence (āi)i∈λ of some model

of T which is split by ϕ.
(iii) There is an indiscernible sequence (āi)i∈ω of some model of T which is split

by ϕ.
(iv) For every k ∈ N there is a k-indiscernible sequence (āi)i∈ω of some model of

T which is split by ϕ. Here,“k-indiscernible” means that for all i1 < ... < ik
and all j1 < ... < jk from I we have

M |= γ(āi1 , ..., āik) ⇐⇒ M |= γ(āj1 , ..., ājk) (γ(x̄1, ..., x̄k) ∈ Γ).

Hence we do not demand that
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M |= γ(āi1 , ..., āil) ⇐⇒ M |= γ(āj1 , ..., ājl) (γ(x̄1, ..., x̄l) ∈ Γ).

when l > k.

Proof. (i)⇒(ii). By compactness it is enough to show that for every finite subset Γ
of Fml L , there are a model M , some Γ-indiscernible sequence ā1 < ā2 < ... ∈Mn

and some b̄ ∈M x̄ such that

M |= ϕ(b̄, ā2i) ∧ ¬ϕ(b̄, ā2i+1) (i < ω). (∗)
Since ϕ(x̄, ȳ) has the independence property, there are ā0, ā1, ... and b̄S (S ⊆ ω)
from some model such that

M |= ϕ(b̄S , āi) ⇐⇒ i ∈ S. (†)
By 3.2 there is an infinite Γ-indiscernible subsequence (āj)j∈J of (āi)i∈ω (hence
J ⊆ ω). By replacing ω with J , property (†) remains true. Hence we may assume
that (āi)i∈ω itself is Γ-indiscernible. It remains to find b̄ ∈ M x̄ satisfying (∗). We
pick S = {2i | i ∈ ω} and b̄ = b̄S . Then (∗) is an instance of (†).

(ii)⇒(iii) and (iii)⇒(iv) are weakenings.

(iv)⇒(i). By compactness it is enough to find for every k ∈ N, n-tuples ā1, ..., āk
in some model of T such that for every subset S ⊆ {1, ..., k} the formula∧

i∈S
ϕ(x̄, āi) ∧

∧
i∈{1,...,k}\S

¬ϕ(x̄, āi)

is satisfiable im M .
Fix k ∈ N and take a k-indiscernible sequence (āi)i∈ω of some model M of T

which is split by ϕ. By switching to a subsequence we may assume that for some
b̄ ∈M x̄ we have

M |= ϕ(b̄, ā2i) ∧ ¬ϕ(b̄, ā2i+1) (i < ω). (∗)
We show that for every subset S ⊆ {1, ..., k} the formula∧

i∈S
ϕ(x̄, āi) ∧

∧
i∈{1,...,k}\S

¬ϕ(x̄, āi)

is satisfiable im M . In other words, (ā1, ..., āk) realizes

ψ(ȳ1, ..., ȳk) := ∃x̄
[∧
i∈S

ϕ(x̄, ȳi) ∧
∧

i∈{1,...,k}\S

¬ϕ(x̄, ȳi)
]
.

By (∗), the tuple b̄ satisfies∧
i∈S

ϕ(x̄, ā2i) ∧
∧

i∈{1,...,k}\S

¬ϕ(x̄, ā2i+1).

Hence with ji =

{
2i if i ∈ S
2i+ 1 if i 6∈ S

we have a sequence j1 < ... < jk such that

(āj1 , ..., ājk) realizes ψ(ȳ1, ..., ȳk). Since (āi)i∈ω is k-indiscernible, also (ā1, ..., āk)
realizes ψ(ȳ1, ..., ȳk), as desired. �

The interest in condition (iv) of 3.8 lies in the Erdös-Rado Theorem 2.3, which
can be used to show that there is a cardinal λ so that every sequence of length λ
has an infinite k-indiscernible subsequence (the proof is very similar to the proof of
3.2). We do not use this later on.
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3.9. Theorem. If T has the independence property, then there is a formula ϕ(x, ȳ)
(where x is a single variable), which has the independence property.

Proof. (cf. [Kud]).
We start with a formula ϕ(x̄, ȳ), which has the independence property. By

3.8(i)⇒(ii) applied to λ = (card L )+ there is an indiscernible sequence (āi)i∈λ of
some model M of T which is split by ϕ. By switching to a subsequence we may
assume that there is some b̄ ∈M x̄ with

M |= ϕ(b̄, ā2i) ∧ ¬ϕ(b̄, ā2i+1). (∗)
for all i < λ. Recall that 2i is the ordinal α + 2n where i = α + n, α is a limit
ordinal and n < ω. Let (λj)j<λ be the strictly increasing enumeration of the limit
ordinals in λ. We write x̄ = (ū, v) and b̄ = (c̄, d). Suppose ϕ(ū, v, ȳ) does not have
the independence property with respect to ū and (v, ȳ).

Fix j < λ. Since (∗) holds for all indices i ∈ λ between λj and λj+1,
and ϕ(ū, v, ȳ) does not have the independence property, 3.8(iii)⇒(i) says that
the sequence (d, āi)λj≤i≤λj+1 is not indiscernible. This means that for some L -
formula γj(v, ȳ1, ..., ȳlj ) there are indices λj ≤ ij(1) < ... < ij(lj) ≤ λj+1 and
λj ≤ kj(1) < ... < kj(lj) ≤ λj+1 such that

|= γj(d, āij(1), ..., āij(lj)) ∧ ¬γj(d, ākj(1), ..., ākj(lj)). (+)

Since there are only card(L )-many formulas, there must be infinitely many j such
that γj (and lj) is independent of j. We may assume that this happens for all j < ω.
We write γ(v, ȳ1, ..., ȳl) instead of γj(v, ȳ1, ..., ȳlj ) and claim that γ(v, ȳ1, ..., ȳl) has
the independence property with respect to v and (v, ȳ1, ..., ȳl):

To see this, we use 3.8(iii)⇒(i). Define

c̄2j = (āi2j(1), ..., āi2j(l)) and c̄2j+1 = (āk2j+1(1), ..., āk2j+1(l)) (j < ω).

Since (āi)i∈λ is indiscernible it is clear that also (c̄j)j<ω is indiscernible and by (+),
γ(v, ȳ1, ..., ȳl) splits this sequence. �

4. Indiscernible sequences from coheirs

4.1. Definition. Let M ≺ N and let M ⊆ A ⊆ N . An n-type q ∈ Sn(A) of A is
called a coheir over M , if every ϕ(x̄) ∈ q is satisfiable in M . In this case we say
that q is a coheir of q �M .

Observe that every n-type q over A ⊇ M which is a coheir over M has an
extension r on any B ⊇ A, which is a coheir over M : Any r containing

q ∪ {¬ϕ(x̄) ∈ Fml Ln(B) | ϕ(x̄) is not satisfiable in M}
is such a coheir.

4.2. Lemma. Let M ≺ N , let q ∈ Sn(N) be a coheir over M and let I = (I,<) be
a totally ordered set. For i ∈ I let āi ∈ Nn be such that āi |= q � (M ∪{āj | j < i})
for all i ∈ I. Then s = (āi)i∈I is an indiscernible sequence over M .

Proof. Firstly, notice that our assumption implies

āk |= q � (M ∪ {āj | j < i}) for all i ≤ k ∈ I. (∗)
Let i1 < ... < ik and j1 < ... < jk be finite sequences from I. We have to show

that
tp(āi1 , ..., āik/M) = tp(āj1 , ..., ājk/M). (+)
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Claim. (+) holds true if i1 = j1, ..., ik−1 = jk−1.
The claim holds true, since by (∗),

tp(āik/Māi1 , ..., āik−1
) = tp(ājk/Māj1 , ..., ājk−1

),

which gives (+) in the case i1 = j1, ..., ik−1 = jk−1.

In order to show (+) we do an induction on k, where the case k = 1 holds true
by (∗). Assume we know (+) for k − 1. We may first apply the claim and enlarge
ik, jk such that ik = jk. We write i := ik = jk Suppose (+) fails. Then there is
some γ(x̄1, ..., x̄k) ∈ Fml L (M) such that

N |= γ(āi1 , ..., āik−1
, āi) ∧ ¬γ(āj1 , ..., ājk−1

, āi).

Since i > i1, ..., ik−1, j1, ..., jk−1 we get

γ(āi1 , ..., āik−1
, x̄k) ∧ ¬γ(āj1 , ..., ājk−1

, x̄k) ∈ tp(āi/M ∪ {āj | j < i}).
By definition, q extends tp(āi/M ∪ {āj | j < i}). Since q is a coheir over M , there
is some m̄ ⊆M with

N |= γ(āi1 , ..., āik−1
, m̄) ∧ ¬γ(āj1 , ..., ājk−1

, m̄).

Consequently tp(āi1 , ..., āik−1
/M) 6= tp(āj1 , ..., ājk−1

/M), which contradicts (+)
in the case k − 1. �

Here is an example how 4.2 can be used:

4.3. Proposition. [Poizat2000, Lemma 12.36] Let ϕ(x̄, ȳ) be an L -formula, n =
|x̄| = |ȳ|, and suppose there is a sequence (āi)i<ω in Mn such that

i < j ⇐⇒ ϕ(āi, āj) for all i, j ∈ ω with i 6= j.

Then in some elementary extension N of M there is an indiscernible sequence
(b̄i)i<ω over M such that

i > j ⇐⇒ ϕ(b̄i, b̄j) for all i, j ∈ ω with i 6= j.

Proof. Let N be an |M |+-saturated elementary extension of M . Consider the map
ι : ω −→ Nn, ι(i) = āi. This induces a map of Boolean algebras

Ln(N) ↪→ P(Nn)
T 7→ι−1(T )−−−−−−−−→→ P(ω),

which induces a continuous function f : β(N) −→ Sn(N). Let U ∈ β(N) be a
non-principal ultrafilter of ω and let q = f(U ). Hence

(†) q = {ψ(x̄, b̄) ∈ Ln(N) | {k ∈ ω | |= ψ(āk, b̄)} ∈ U }.
Obviously q is a coheir over M . Since N is |M |+-saturated there are b̄k ∈ Nn such
that p = q|M = tp(b̄0/M) and b̄k+1 |= q|Mb̄0...b̄k for all k < ω. By 4.2, (b̄k) is an
indiscernible sequence over M .

Claim 1. If k < l, then |= ¬ϕ(b̄k, b̄l).
Proof. Otherwise ϕ(b̄k, x̄) ∈ tp(b̄l/Mb̄k) ⊆ q and so by (†) there is j < ω with
|= ϕ(b̄k, āj). But then ϕ(x̄, āj) ∈ tp(b̄k/M) ⊆ q and as U is not principal, (†)
implies that |= ϕ(āi, āj) for infinitely many i. This contradicts our assumption
that |= ϕ(āi, āj) is equivalent to i < j for i 6= j. �

Claim 2. If k > l, then |= ϕ(b̄k, b̄l).
Proof. Otherwise ¬ϕ(x̄, b̄l) ∈ tp(b̄k/Mb̄l) ⊆ q and so by (†) there is i < ω with
|= ¬ϕ(āi, b̄l). But then ¬ϕ(āi, x̄) ∈ tp(b̄l/M) ⊆ q and as U is not principal, (†)
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implies that |= ¬ϕ(āi, āj) for infinitely many j. This contradicts our assumption
that |= ¬ϕ(āi, āj) is equivalent to i > j for i 6= j. �
Hence by the claims, the proposition is established. �

5. Shelah’s trace theorem

We work with models of the L -theory T and we may assume that T is complete
with quantifier elimination. An externally definable subset of Mk (or a trace
set) is a set of the form Y ∩Mk, where Y is a subset of Nk for some N �M such
that Y is definable in N with parameters from N .

Fix a model M of T and let L ∗ be the language extending L which contains a
predicate for every externally definable subset of Mk for every k ∈ N.

Let M∗ be the natural expansion of M to an L ∗-structure.

5.1. Theorem. (Shelah)
If Th(M) has NIP, then the L ∗-theory Th(M∗) has quantifier elimination.

The proof below is due to A. Pillay (cf. [Pi]). A more geometric version of 5.1
says: the projection of an externally definable subset of Mn ×M to Mn is again
externally definable.

GivenM1 �M and ϕ(x̄) ∈ Fml L (M1), we write Rϕ(x̄) for the predicate naming
ϕ[M1] ∩M x̄.

Let M ≺ M1 such that all externally definable subsets of any Mn are traces
of M1-definable sets. Let M∗ be the natural expansion of M to an L ∗-structure,
namely

(Rϕ(x̄))
M∗ = ϕ[M1] ∩M x̄.

5.2. Observation. Every quantifier free M∗-definable subset of Mn is defined by
some Rϕ. In other words, every quantifier free L ∗-formula is modulo Th(M∗)
equivalent to some Rϕ.

Let (N1, N) be an elementary and (cardM)+-saturated elementary extension of
the pair (M1,M) of L -structures. LetN∗ be the extension ofN to an L ∗-structure
via

(Rϕ(x̄,c̄))
N∗

= ϕ[N1, c̄] ∩N x̄,

where ϕ(x̄, ȳ) ∈ Fml L and c̄ ∈ M ȳ
1 . Notice that this is well defined, since for

ψ(x̄, z̄) ∈ Fml L and d̄ ∈ M z̄
1 with Rϕ(x̄,c̄) = Rψ(x̄,d̄) we have ϕ[M1, c̄] ∩M x̄ =

ψ[M1, d̄] ∩M x̄ in other words

(M1,M) |= ∀x̄ x̄ ⊆M1 → (ϕ(x̄, c̄)↔ ψ(x̄, d̄)).

Since (N1, N) � (M1,M) we get (N1, N) |= ∀x̄ x̄ ⊆ N1 → (ϕ(x̄, c̄) ↔ ψ(x̄, d̄)),
which shows that ϕ[N1, c̄] ∩N x̄ = ψ[N1, d̄] ∩N x̄.

Here a diagram illustrating the involved structures:

N∗, N // N1

M∗, M //

OO

M1

OO
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Clearly N∗ is a (cardM)+-saturated elementary extension ofM∗: Note that the
structure M∗ is definable in the L -pair (M1,M) and N∗ is obtained from the pair
(N1, N) via the the same definition.

Proof of the trace theorem 5.1.

Suppose Th(M∗) does not have quantifier elimination. Then by the general
test for quantifier elimination, there is some p∗(x̄) ∈ Sqf

n (M∗) (the quantifier free
n-types of M∗, which are equal to the quantifier free n-types of Th(M∗)) and
some R(x̄, ȳ) ∈ L ∗ such that p∗(x̄) ∪ {∃ȳ R(x̄, ȳ)} and p∗(x̄) ∪ {¬∃ȳ R(x̄, ȳ)} are
consistent with Th(M∗,M∗).

We shall construct a type q(x̄, ȳ) of N such that
(a) q(x̄, ȳ) is a coheir over M
(b) Both q(x̄, ȳ)∪{R(x̄, ȳ)} and q(x̄, ȳ)∪{¬R(x̄, ȳ)} are finitely satisfiable in N∗.

With this type we can show that T does not have the NIP as follows: Choose

a realization (ā0, b̄0) ⊆ N∗ of (q �M) ∪ {R(x̄, ȳ)}
a realization (ā1, b̄1) ⊆ N∗ of (q �Mā0b̄0) ∪ {¬R(x̄, ȳ)}
a realization (ā2, b̄2) ⊆ N∗ of (q �Mā0b̄0ā1b̄1) ∪ {R(x̄, ȳ)}
a realization (ā3, b̄3) ⊆ N∗ of (q �Mā0b̄0ā1b̄1ā2b̄2) ∪ {¬R(x̄, ȳ)}

...

Then (āi, b̄i)i<ω ⊆ N∗ is a coheir sequence of q(x̄, ȳ) (by (a)), hence by 4.2,
(āi, b̄i)i<ω is indiscernible over M . By construction we have

N∗ |= R(āi, b̄i) ⇐⇒ i is even. (∗)
Choose an L -formula ϕ(x̄, ȳ, z̄) and some z̄-tuple c̄ from M1 such that R =
Rϕ(x̄,ȳ,c̄). Then by choice of N∗ we have

N∗ |= R(āi, b̄i) ⇐⇒ N1 |= ϕ(āi, b̄i, c̄).

Now (∗) shows that ϕ(x̄, ȳ, c̄) splits the indiscernible sequence (āi, b̄i)i<ω. Hence by
3.8, ϕ(x̄, ȳ, z̄) has the IP w.r.t. (x̄, ȳ) and z̄. So T does not have the NIP.

Construction of q(x̄, ȳ) and proof of (a) and (b)
Let p∗+(x̄, ȳ) be a complete type of M∗ containing p∗(x̄) ∪ {R(x̄, ȳ)} and let

p∗−(x̄, ȳ) be a complete type of M∗ containing p∗(x̄) ∪ {¬∃ȳ R(x̄, ȳ)}
Let q∗±(x̄, ȳ) be a coheir of p∗±(x̄, ȳ) on N∗.

We choose q(x̄, ȳ) as the (unique) type of N contained in q∗+(x̄, ȳ). Clearly q is a
coheir over M and q(x̄, ȳ) ∪ {R(x̄, ȳ)} ⊆ q∗+(x̄, ȳ) is finitely satisfiable in N∗. It
remains to show that q(x̄, ȳ) ∪ {¬R(x̄, ȳ)} is finitely satisfiable in N∗.

Claim. q∗+(x̄, ȳ) and q∗−(x̄, ȳ) induce the same L -type in the variables x̄ over N .

Proof of the claim. Suppose not. Take an L -formula ψ(x̄, ū) and some ū-tuple b̄
from N with ψ(x̄, b̄) ∈ q∗+(x̄, ȳ) and ¬ψ(x̄, b̄) ∈ q∗−(x̄, ȳ).

Let S(x̄) be the predicate naming the set ψ[N, b̄] ∩M x̄.
If S(x̄) ∈ p∗(x̄), then as p∗(x̄) ⊆ q∗−(x̄, ȳ) and q∗−(x̄, ȳ) is a coheir over M∗, there

is some ā ⊆M with N∗ |= S(ā)∧¬ψ(ā, b̄), contradicting the choice of S. Similarly,
if ¬S(x̄) ∈ p∗(x̄), then as p∗(x̄) ⊆ q∗+(x̄, ȳ) and q∗+(x̄, ȳ) is a coheir over M∗, there
is some ā ⊆M with N∗ |= ¬S(ā) ∧ ψ(ā, b̄), contradicting the choice of S, too. �
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Let (ᾱ±, β̄±) be a realization of q∗±(x̄, ȳ) in some elementary extension of N∗.
By the claim, tp(ᾱ+/N) = tp(ᾱ−/N), hence there is an L -automorphism σ over
N with σ(ᾱ+) = ᾱ−. Since (ᾱ+, β̄+) |= q(x̄, ȳ) (⊆ q∗+(x̄, ȳ)), also

(ᾱ−, σβ̄+) = (σᾱ+, σβ̄+) |= q(x̄, ȳ)

As (ᾱ−, β̄−) |= q∗−(x̄, ȳ) 3 ¬∃ȳ R(x̄, ȳ) we have |= ¬∃ȳ R(ᾱi, ȳ). It follows that
|= ¬R(ᾱ−, σβ̄+), which identifies (ᾱ−, σβ̄+) as a realization of q(x̄, ȳ) ∪ {¬R(x̄, ȳ)}
in some elementary extension of N∗.

This finishes the proof of 5.1 �

6. Invariant extensions

6.1. Definition. Let M ≺ N and let q ∈ SI(N). q is called invariant over M ,
or special over M if for every ϕ(x̄, ȳ) ∈ Fml L and all c̄, d̄ ∈ N ȳ with tp(c̄/M) =
tp(d̄/M) we have

ϕ(x̄, c̄) ∈ q ⇐⇒ ϕ(x̄, d̄) ∈ q.
Warning: Poizat calls q special, only when q has an extension q′ on some N ′ � N
which realizes all n-types over M , such that q′ is special over M (in our sense).

Hence membership of ϕ(x̄, c̄) in q only depends on the type of c̄ over M . Note
that if ϕ(x̄, ȳ) ∈ Fml L (M) and c̄, d̄ ∈ N ȳ with tp(c̄/M) = tp(d̄/M) then we
certainly also have ϕ(x̄, c̄) ∈ q ⇐⇒ ϕ(x̄, d̄) ∈ q.

Also note that every q ∈ Sn(N), invariant over M is fixed under each M -auto-
morphism of N . If N is sufficiently saturated, this characterizes all types of N that
are invariant over M .

6.2. Example. Coheirs are invariant.

Proof. Let q ∈ Sn(N) and M ≺ N . Let ϕ(x̄, ȳ) ∈ Fml L and c̄, d̄ ∈ N ȳ with
tp(c̄/M) = tp(d̄/M) and suppose ϕ(x̄, c̄),¬ϕ(x̄, d̄) ∈ q.

As q is a coheir over M , there is some m̄ ∈ M x̄ with N |= ϕ(m̄, c̄) ∧ ¬ϕ(m̄, d̄),
in contradiction to tp(c̄/M) = tp(d̄/M). �

6.3. Lemma. Let M ≺ N ≺ N ′ and let q ∈ Sn(N) be invariant over M . If N
realizes every type from Sk(M) for every k ∈ N, then there is a unique extension
q′ of q on N ′ which is invariant over M .

Proof. We must define q′ as

{ϕ(x̄, c̄′) ∈ Fml Ln(N ′) | ϕ(x̄, c̄) ∈ q for some c̄ ∈ Nn with tp(c̄/M) = tp(c̄′/M)}.

Since N realizes every type from Sk(M) for every k ∈ N, q′ is a type of N ′. �

The following lemma produces indiscernible sequences from invariant extensions
as we have obtained indiscernible sequences from coheirs in 4.2. The proof is iden-
tical to the proof of 4.2, in fact 4.2 is a corollary of 6.4, since coheirs are invariant.
As this section was not a topic durng the lecture we repeat the proof.

6.4. Lemma. LetM ≺ N and let q ∈ Sn(N) be invariant overM and let I = (I,<)
be a totally ordered set. For i ∈ I let āi ∈ Nn such that āi |= q � (M ∪{āj | j < i})
for all i ∈ I. Then s = (āi)i∈I is an indiscernible sequence over M .
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Proof. Firstly, notice that our assumption implies

āk |= q � (M ∪ {āj | j < i}) for all i ≤ k <∈ I. (∗)

Let i1 < ... < ik and j1 < ... < jk be finite sequences from I. We have to show
that

tp(āi1 , ..., āik/M) = tp(āj1 , ..., ājk/M). (+)

Claim. (+) holds true if i1 = j1, ..., ik−1 = jk−1.
The claim holds true, since by (∗),

tp(āik/Māi1 , ..., āik−1
) = tp(ājk/Māj1 , ..., ājk−1

),

which gives (+) in the case i1 = j1, ..., ik−1 = jk−1.

In order to show (+) we do an induction on k, where the case k = 1 holds true
by (∗). Assume we know (+) for k − 1. We may first apply the claim and enlarge
ik, jk such that ik = jk. We write i := ik = jk Suppose (+) fails. Then there is
some γ(x̄1, ..., x̄k) ∈ Fml L (M) such that

N |= γ(āi1 , ..., āik−1
, āi) ∧ ¬γ(āj1 , ..., ājk−1

, āi).

Since i > i1, ..., ik−1, j1, ..., jk−1 we get that

γ(āi1 , ..., āik−1
, x̄k) ∧ ¬γ(āj1 , ..., ājk−1

, x̄k) ∈ tp(āi/M ∪ {āj | j < i}).

By definition, q extends tp(āi/Mā0, ..., āi−1). Since q is invariant over M it follows
tp(āi1 , ..., āik−1

/M) 6= tp(āj1 , ..., ājk−1
/M), which contradicts (+) in the case k −

1. �

6.5. Lemma. Let I = (I,<) be a totally ordered set and let (āi)i∈I , (āi)i∈I be
sequence of n-tuples from M |= T with tp((āi)i∈I) = tp((b̄i)i∈I). Suppose (āi)i∈I
is indiscernible. Then
(i) (b̄i)i∈I is indiscernible.
(ii) If ϕ(x̄, ȳ) ∈ Fml L and if there is no c̄ in any elementary extension of M

such that ϕ(x̄, c̄) splits (āi)i∈I , then there is no c̄ in any elementary extension
of M such that ϕ(x̄, c̄) splits (b̄i)i∈I .

Proof. (i) is obvious and (ii) follows with compactness: there is some N ∈ N such
that for all i ≥ N , either for all c̄, ϕ(āi, c̄) is true or for all c̄, ¬ϕ(āi, c̄) is true. Note
that we use the indiscernability of the sequence here. �

6.6. Lemma. Let M ≺ N such that N realizes every type from Sk(M) for every
k ∈ N. Let q, r ∈ Sn(N) be invariant over M . Let āi, b̄i ∈ Nn such that āk |= q �
(M ∪ {ā0, ..., āk−1}) and b̄k |= r � (M ∪ {b̄0, ..., b̄k−1}) for all k < ω.

If (āi)i∈ω is unsplittable and tp(ā0, ā1, .../M) = tp(b̄0, b̄1, .../M), then q = r.

Proof. (cf. [Poi], 12.26).
We construct a sequence c̄0, c̄1, ... by induction as follows: If i is odd, then we

take c̄i+1 to be a realization of the unique (by 6.3) extension of q on N ∪{c̄0, ..., c̄i}
which is invariant over M . If i is even, then we take c̄i+1 to be a realization of the
unique extension of r on N ∪ {c̄0, ..., c̄i} which is invariant over M .
Claim. tp(ā0, ā1, .../M) = tp(c̄0, c̄1, .../M) = tp(b̄0, b̄1, .../M).

We prove by induction on i that

tp(ā0, ..., āi/M) = tp(c̄0, ..., c̄i/M) = tp(b̄0, ..., b̄i/M). (+)
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If i = 0 this holds true, since q and r extend tp(ā0/M) = tp(b̄0/M). Suppose we
know (+) already for i. By symmetry we may assume that i is odd. Since c̄i+1 is
a realization of an extension of q, c̄i+1 also realizes q � (M ∪ {ā0, ..., āi}). Hence by
choice of āi+1 we have

tp(c̄i+1/M ∪ {ā0, ..., āi}) = tp(āi+1/M ∪ {ā0, ..., āi}).
Pick ψ(x̄0, ..., x̄i, x̄i+1) ∈ Fml L (M) with N |= ψ(ā0, ..., āi, āi+1). Then

ψ(ā0, ..., āi, x̄i+1) ∈ tp(āi+1/M ∪ {ā0, ..., āi}),
thus

ψ(ā0, ..., āi, x̄i+1) ∈ tp(c̄i+1/M ∪ {ā0, ..., āi}) ⊆ tp(c̄i+1/N ∪ {c̄0, ..., c̄i}).
Since the latter type is invariant over M by choice of c̄i+1 and by the induction
hypothesis we have tp(ā0, ..., āi/M) = tp(c̄0, ..., c̄i/M), we get ψ(c̄0, ..., c̄i, x̄i+1) ∈
tp(c̄i+1/N ∪ {c̄0, ..., c̄i}). This shows |= ψ(c̄0, ..., c̄i, c̄i+1) and finishes the proof of
tp(ā0, ..., āi+1/M) = tp(c̄0, ..., c̄i+1/M).

By assumption, we have tp(ā0, ..., āi+1/M) = tp(b̄0, ..., b̄i+1/M), hence we get
the claim.

By 6.4, (āi)i∈ω is indiscernible. Hence by 6.5, (c̄i)i∈ω is unsplittable. Since the
c̄i are alternating between realizations of q and r, this is only possible if q = r. �

6.7. Corollary. Let M ≺ N be models of T such that N realizes every type from
Sk(M) for every k ∈ N. If T has NIP, then the number of n-types of N which are
invariant over M is bounded by cardSω(M).

Proof. By 3.8, every indiscernible sequence is unsplittable. Hence the corollary
follows from 6.6 and 6.4. �

7. NIP via counting coheirs

7.1. Theorem. T has the independence property if and only if there is a 1-type p
over some model M of T with cardM ≥ card L and some N �M such that p has
22cardM

coheirs on N .

Proof. First suppose T has the independence property. By 3.9 (and 1.1) there is a
formula ϕ(x̄, y) which has the independence property. Take λ > card L , a model
N of T and

ai ∈ N, b̄S ∈ N x̄ (i ∈ λ, S ⊆ λ)

such that
N |= ϕ(b̄S , ai) ⇐⇒ i ∈ S.

Since λ ≥ card L , there is an elementary substructure M ≺ N of size λ containing
each ai.

Let u be an ultrafilter of subsets of λ and define pu ∈ S1(N) via

pu = {ψ(y, c̄) ∈ Fml L1(N) | {i ∈ λ | N |= ψ(ai, c̄)} ∈ u}.
Straightforward checking shows that pu is indeed a 1-type of N .

pu is a coheir over M , since every formula of pu by definition is satisfiable in M .
Since N |= ϕ(b̄S , ai) ⇐⇒ i ∈ S for all i ∈ S ⊆ λ we have pu 6= pv whenever v 6= u
are ultrafilters of subsets of λ.

This shows that there are at least as many coheirs of 1-types ofM on N as there
are ultrafilters of subsets of λ. On the other hand, there are at most 2λ 1-types of
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M and there are 22λ ultrafilters of subsets of λ (cf. A.5 in the appendix below).
Since 2λ is strictly less than the cofinality of 22λ (cf. A.4 in the appendix below)
there must be some p ∈ S1(M) which has at least 22λ coheirs on N .

Conversely suppose T has the NIP. By 6.7, the number of invariant extensions
of a given type p ∈ Sn(M) on some N � M is bounded by cardSω(M). Since
cardSω(M) ≤ 2cardM and every coheir is invariant (cf. 6.2), this gives the assertion.

�

As an application:

7.2. Corollary. If T is a weakly o-minimal theory, then T has the NIP. In partic-
ular every o-minimal structure has NIP (recall that for every o-minimal structure,
the theory of this structure is o-minimal).

Proof. Recall that T is a theory in a language containing < and weak o-minimality
says that every parametrically definable subset of each T -model M is a finite union
of convex sets. It is an exercise to show directly from this condition that

(a) every Dedekind cut ξ of a model M of T is induced by at most two 1-types p
of M , i.e. there are at most two 1-types p with the property a < ξ ⇐⇒ a <
x ∈ p (a ∈M).

(b) Every 1-type p of a model of M has at most two coheirs q on any N � M ,
namely the cut determined by q on N has to be the least or the largest
extension of the cut determined by p on M .

Hence by 7.1, T has NIP. �

8. Vapnik-Chervonenkis dimension

8.1. Definition. Let X be a set and let S be a collection of subsets of X. We say
that S shatters a subset B ⊆ X if every subset of B is of the form B ∩S for some
S ∈ S.

If there is some d ∈ N such that S does not shatter any subset of size d of X,
then the smallest such d is called the VC-dimension, or VC-index, of S. ‘VC’
stands for Vapnik-Chervonenkis. In this case S is called a VC-class.

If there is no such d, then VC(S) :=∞.

Let S be a collection of subsets of a set X. For B ⊆ X, let B∩S = {B∩S | S ∈ S}.
For n ∈ N let

fS(n) = max{|B ∩ S| | B ⊆ X and |B| = n}.

Thus fS(n) = 2n if and only if S shatters a set of size n. Surprisingly, fS(n) is
polynomially bounded for large n, if S has finite VC-dimension:

8.2. Theorem. Suppose S does not shatter any subset of X of size d. Then for
all n ≥ d, fS(n) is at most the number of subsets of an n-element set of size < d,
given by

pd(n) =
∑
i<d

(
n

i

)
.

Observe that pd(n) is a polynomial of degree d− 1.
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Proof. First note (by counting subsets of size < d of an n-element set) that pd(n) =
pd−1(n− 1) + pd(n− 1).

We proceed by induction on n. If n = d then fS(n) < 2n = pn(n) − 1. Now
let n > d and let B ⊆ X be of size n. We must show that |B ∩ S| ≤ pd(n) and of
course we may replace S by B ∩ S. Fix x ∈ B and define
S0 = {S ∈ S | x 6∈ S and S ∪ {x} ∈ S}
S1 = {S ∈ S | x ∈ S or S ∪ {x} 6∈ S}

Since S does not shatter any subset of X of size d, S0 does not shatter any subset
of X \ {x} of size d− 1.

Hence the induction hypothesis says |(B \ {x}) ∩ S0| ≤ pd−1(n − 1). As x 6∈ S
for any S ∈ S0, (B \ {x}) ∩ S0 = S0 and |S0| ≤ pd−1(n− 1).

On the other hand |S1| ≤ |(B \ {x}) ∩ S1| since the map S1 −→ (B \ {x}) ∩ S1

which removes x is injective (by definition of S1 and since all S ∈ S1 are assumed
to be a subset of B).

By the induction hypothesis we have |S1| ≤ pd(n− 1). Thus |S| = |S0|+ |S1| ≤
pd−1(n− 1) + pd(n− 1) = pd(n). �

8.3. Corollary. If M is a structure that has NIP and S ⊆Mn ×Mk is definable,
then there is some d ∈ N such that for all sufficiently large n ∈ N and every subset
X ⊆Mk of size n, there are at most nd sets of the form X ∩ Sa where a varies in
Mn.

Proof. Since M has NIP, the collection {Sa | a ∈ Mn} has finite VC-dimension d.
Now apply 8.2 and notice that pd(n) is a polynomial of degree d− 1. �
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Appendix A. Theorems of Hausdorff and König

A.1. Theorem. (Theorem of König)
Let I be an index set and for each i ∈ I let Ai, Bi be sets with cardAi < cardBi.
Then

card
∑
i

Ai < card
∏
i

Bi.

Proof. We may assume that the Ai are disjoint. Let s :⋃Ai −→
∏
iBi be a map.

We construct an element not in the image of s: For i ∈ I let πi :
∏
iBi −→ Bi be

the projection. By assumption πi(s(Ai)) 6= Bi for each i. Pick bi ∈ Bi \ πi(s(Ai)).
We claim that (bi)i is not in the image of s. Otherwise there is some k ∈ I and some
a ∈ Ak with s(a) = (bi)i. But then bk = πk(s(a)) ∈ πk(s(Ak)) in contradiction to
the choice of bk. �

A.2. Corollary. For every infinite cardinal κ we have κ < κcfκ.

Proof. For i < cfκ let λi < κ such that κ = supi λi. Then κ ≤
∑
i λi <

∏
i κ = κcfκ

by A.1. �

A.3. Corollary. For all cardinals κ, λ with κ ≥ 2 and λ ≥ ω we have cf(κλ) > λ.

Proof. Otherwise (κλ)cf(κλ) ≤ (κλ)λ = κλ·λ = κλ in contradiction to A.2. �

A.4. Example. For every infinite cardinal κ we have cf(2κ) > κ.

A.5. Theorem. (Theorem of Hausdorff)
If κ is an infinite cardinal, then there are 22κ ultrafilters of subsets of κ.

Proof. It is enough to construct an independent subset {Si | i < 2κ} of subsets of κ,
i.e for all distinct i1, ..., in < 2κ and all ε1, ..., εn ∈ {0, 1} we have Sε1i1 ∩ ...∩S

εn
in
6= ∅,

where S0 = S and S1 = κ \ S; then for every subset T of 2κ the set {Si | i ∈
T} ∪ {κ \ Si | i ∈ 2κ \ T} is a basis of a proper filter of subsets of κ and different
T ’s can not be contained in the same ultrafilter.

Now the construction:
Let F be the set of all finite sequences (F, F1, ..., Fn), where F ⊆ κ is finite and

F1, ..., Fn ⊆ F . Then cardF = κ. We define a subset {S′ | S ⊆ 2κ} of subsets of
F as follows: Pick S ⊆ 2κ and define

S′ = {(F, F1, ..., Fn) ∈ F | S ∩ F ∈ {F1, ..., Fn}}.

Now take distinct S1, ..., Sn ⊆ κ and ε1, ..., εn ∈ {0, 1}. Take F ⊆ κ finite
such that the map {S1, ..., Sn} −→ P(F ), S 7→ F ∩ S is injective. Let i1 <
... < ik be an enumeration of those indices i ∈ {1, ..., n} with εi = 0 and let
F1 = F ∩ Si1 , ..., Fk = F ∩ Sik . Then for each i ∈ {i1, ..., ik}, S′i contains the point
(F, F1, ..., Fk). Whereas, if i ∈ {1, ..., n} \ {i1, ..., ik} then Si ∩ F is not among the
F1, ..., Fk, so (F, F1, ..., Fk) ∈ F \ S′i.

This shows that {S′ | S ⊆ 2κ} i an independent set of subsets of F . Observe
that S1 6= S2 implies S′1 6= S′2. As cardF = κ, this finishes the proof. �
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