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Literature related to this course:
(1) The main reference for Differential Algebra is [Kolchi1973], but we only need

a small fragment of this book in a special case.
(2) More suitable references for our course are [Kaplan1957], [Ritt1950],

[MaMePi1996, Chapter II] and [Poizat2000, Sections 6.2].
(3) For (linear) differential Galois Theory, principal resources are [vdPSin2003],

[CreHaj2011] and [Magid1994].
Other resources are [Poizat1983], [Pillay1998], [Pillay2004], [Pillay2009],
[Kolchi1953], [Kolchi1985] [Cassid1972], and [Pommar1983].

(4) A principal resource for differential algebraic geometry is [Buium1994].
(5) For applications of derivations in classical algebraic geometry, see [Kunz1986].
(6) Background on derivations of non-commutative rings may be found in

[Bourba1989, Chapter 1]

1. Differential Algebra

By a ring in this chapter we mean a unital, associative and commutative ring.
Furthermore, ringhomomorphism are unital.

1.1. Commutative Differential Rings.

1.1.1. Definition. Let A be a ring. A map d : A −→ A is called a derivation if
it satisfies

d(a+ b) = d(a) + d(b) (Additivity), and
d(a·b) = d(a)·b+ a·d(b) (Leibniz rule),

for all a, b ∈ A. The pair (A, d) is then called a differential ring. We will also
write a′ instead of d(a) and call it the derivative of a (for d). If n ∈ N0 =
{0, 1, 2, 3, . . .} we write dn(a) = a(n) for the nth derivative of a, hence d0(a) = a
and dn+1(a) = d(dn(a)). A differential field is a differential ring (A, d) where A is
a field. Similarly differential domains, differential valuation rings etc. are defined.

1.1.2. Definition. Let (A, d) and (B, ∂) be differential rings. A differential
homomorphism (A, d) −→ (B, ∂) is a ring homomorphism h : A −→ B (in
particular h(1) = 1) that preserves the derivations; hence h(d(a)) = ∂(h(a)) for all
a ∈ A. If A ⊆ B and h is the inclusion map A ↪→ B, then h is differential, just if d
is the restriction of ∂ to A and in this case (A, d) is called a differential subring
of (B, ∂).

Clearly, for a differential homomorphism h : (A, d) −→ (B, ∂), the image h(A)
is closed under ∂ and so h(A) is (or ’carries’) a differential subring of (B, ∂).

1.1.3. Arbitrary intersections of differential subrings of a differential ring (A, d)
are again differential and therefore every subset S of A is contained in a smallest
differential subring. This ring is called the differential subring generated by S
(in A) and we see from the Leibniz rule that it is equal to the subring of A generated
by S ∪ d(S) ∪ d2(S) ∪ . . . .

1.1.4. Definition. Let A = (A, d) be a differential ring. An element c ∈ A with
d(c) = 0 is called a constant. Clearly the set C of all constants is a differential
subring of A and d : A −→ A is a C-module homomorphism.



INTRODUCTION TO THE MODEL THEORY OF DIFFERENTIAL FIELDS 3

1.1.5. Examples.

(i) For any ring A, the map A −→ A that is constantly zero obviously is a
derivation, called the trivial derivation of A.

(ii) If U ⊆ R is open then the ring C∞(U) of all infinitely many times differentiable
functions U −→ R is a differential ring with respect to the standard derivation.
Notice that C∞(U) is not a domain, e.g. the function f : R −→ R defined by
f(t) = e−

1
t for t > 0 and f(t) = 0 for t ≤ 0 is in C∞(R) with f(t)·f(−t) = 0

and f(t), f(−t) 6= 0.
Similarly, if U ⊆ C is open then the ring Cω(U) of all holomorphic (i.e.,

complex differentiable) functions U −→ C becomes a differential ring with
respect to the standard derivation. If U is connected, then Cω(U) is a domain
by the identity theorem of complex analysis.

In both examples, the constants of the differential ring are the constant
functions.

(iii) Let R be a ring. For a power series f = r0 + r1t+ r2t
2 + r3t

3 + . . . ∈ R[[t]] in
one variable over R we define

d

dt
f = r1 + 2r2t+ 3r3t

2 + . . . .

Straightforward checking shows that d(f) := d
dtf defines a derivation of R[[t]]

- sometimes referred to as the standard derivation - and we obtain a dif-
ferential ring (R[[t]], d

dt ).
[1]

(iv) Let R = (R,′ ) be a differential ring. For a power series f = r0 + r1t+ r2t
2 +

r3t
3 + . . . ∈ R[[t]] in one variable over R we define

∂(f) = r′0 + r′1t+ r′2t
2 + r′3t

3 + . . .

Straightforward checking shows that ∂ defines a derivation of R[[t]] and we
obtain a differential ring (R[[t]], ∂).

A situation where this derivation occurs “naturally" is when R =
(R[[x]], d

dx ), so R[[t]] = R[[x, t]] and ∂ is defined by taking partial derivatives
of powerseries f(x, t) with respect to x.

(v) Restricting the derivations in (iii) and (iv) to polynomials, defines the differ-
ential subrings rings (R[t], d

dt ) and (R[t], ∂).
Hence the passage from (R, d) to (R[t], ∂) introduces a new constant t. A

natural example of such differential ring is given by partial derivatives similar
to the example in (iv). Another example is given by R = (Q[x], d

dx ), where
the role of t is taken by a transcendental number, say e: Here (R[t], ∂) is
isomorphic to (Q[x, e], d

dx ) and e is a new constant.

(vi) Another source of derivations comes from Lie-Algebra and in fact we will see
in 3.1.7 that every (non-trivial) derivation d : A −→ A is of the following form:
There is a (necessarily non-commutative) ring Λ containing A as a subring,
and some λ ∈ Λ such that for all a ∈ A we have d(a) = λ·a− a·λ.

[1]Recall that
∑
n rnt

n·
∑
n snt

n =
∑
n(

∑
k≤n rksn−k)tn.
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1.1.6. Structure of derivations Let A be a ring.
(i) If d, δ are derivations of A, then so are d + δ and a·d for any a ∈ A: Hence

with these operations, the set of all derivations of A is an A-module.
(ii) Another important operation supported by derivations is the Lie bracket: If

d, δ are derivations of A, then the Lie bracket [d, δ]= d ◦ δ − δ ◦ d is again a
derivation of A.

Proof. (i) Additivity is clear in both cases; for the Leibniz rule we verify (d +
δ)(x·y) = d(x)·y + x·d(y) + δ(x)·y + x·δ(y) = (d + δ)(x)·y + x·(d + δ)(y), and
(a·d)(x·y) = a·d(x)·y + a·x·d(y) = a·d(x)·y + x·a·d(y) = (a·d)(x)·y + x·(a·d)(y)
(using commutativity of A).
(ii) Clearly d ◦ δ − δ ◦ d is additive. Take x, y ∈ A. Then

(d ◦ δ − δ ◦ d)(xy) = d(δ(x)y + xδ(y))− δ(d(x)y + xd(y))

= d(δ(x))y + δ(x)d(y) + d(x)δ(y) + xdδ(y)

− δ(d(x))y − d(x)δ(y)− δ(x)d(y)− xδ(d(y))

= d(δ(x))y + xdδ(y)− δ(d(x))y − xδ(d(y))

= (d ◦ δ − δ ◦ d)(x)y + x(d ◦ δ − δ ◦ d)(y).

�

1.1.7. Proposition. Let (R, d0) be a differential ring. If T is a set of indeter-
minates over R and ft ∈ R[T ] for each t ∈ T , then there is a unique derivation
d : R[T ] −→ R[T ] that extends d0 and that satisfies d(t) = ft for all t ∈ T . Explic-
itly, for g ∈ R[T ] we have

d(g) = g∗ +
∑
t∈T

ft·
∂g

∂t
,

where g∗ is the polynomial obtained from g by replacing its coefficients with their
derivatives for d0. (Note that the formula really is the Leibniz rule with the standard
chain rule where we think of the t ∈ T as functions, e.g. d(r·t21·t32) = d0(r)t21t

3
2 +

r2t1d(t1)t32 + 3rt21t
2
2·d(t2).)

Remark: If R is a field, the proposition can be significantly strengthened, see
2.1.6.

Proof. Uniqueness is clear, since R[T ] is generated as a ring by R∪T . For existence,
let d

dt : R[T ] −→ R[T ] be the derivation from 1.1.5(v) for the coefficient ring
R[T \ {t}].[2] By 1.1.6, for any finite set F ⊆ T , the map dF =

∑
t∈F ft·

d
dt is again

a derivation of R[T ] and we define

d̃(g) = dF (g)

for any finite F ⊆ T with g ∈ R[F ]. This is well defined because for all finite
E ⊆ F ⊆ T with g ∈ R[E] we have dE(g) = dF (g). For additivity and the
Leibniz rule of d, take g, h ∈ R[T ] and let F ⊆ T be finite with g, h ∈ R[F ].
Then additivity and the Leibniz rule for dF show that d̃(f + g) = d̃(f) + d̃(g) and
d̃(fg) = d̃(f)g + fd̃(g).

Hence d̃ is a derivation of R[T ] that is trivial on R and satisfies d̃(t) = ft. Finally,
the map ∂ that sends g to g∗ is also a derivation of R[T ] by iteration of the case of

[2]Normally one would write ∂
∂t

instead of d
dt

and we will also do so in the future.
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one transcendental element, see 1.1.5(v), or just by straightforward checking. Now
d = ∂ + d̃ has the required properties. �

To name a natural example of 1.1.7: Let R = C equipped with the trivial derivation.
Let d be the derivation of R[t1, t2] that is trivial on R with d(t1) = 1 and d(t2) = t2.
Then (R[t1, t2], d) is isomorphic to (C[x, ex], d

dx ).

1.1.8. Definition. Let A = (A, d) be a differential ring. A subsets I of A is called
a differential ideal if I is an ideal of A (in particular 0 ∈ A) with d(I) ⊆ I.
Clearly every subset Z of A is contained in a smallest differential ideal of A. We
write [Z] for this ideal and see from the Leibniz rule that it the ideal generated in
A by Z∪d(Z)∪d2(Z)∪ . . .. If I is a differential ideal and a prime ideal, or a radical
ideal of A, then I is called a differential prime ideal, or a radical differential
ideal.

1.1.9. Observation. Let A = (A, d) be a differential ring.
(i) If I is a differential ideal of A, then there is a unique derivation δ : A/I −→

A/I making the diagram

A A

A/I A/I

d

δ

commutative. Uniqueness is clear and as I is differential we may define δ by
δ(a+ I) = d(a) + I. Additivity and the Leibniz rule readily transfer from d to
δ.

(ii) It follows from (i) that the differential ideals of A are precisely the kernels of
differential homomorphisms A −→ B to differential rings.

(iii) Preimages of differential ideals under differential ringhomomorphisms are
again differential.

For example, in the differential ring A = (R[t], t· d
dt ), the ideal (t2) is differential

and the ring of dual numbers R[t]/(t2) is a differential ring satisfying (a+ bt)′ = b.

1.1.10. Localization Let A = (A, d) be a differential ring and let S ⊆ A be
multiplicatively closed with 1 ∈ S. Let S−1A be the localization of A at S and let
ιS : A −→ S−1A be the natural map sending a to ι(a) = a

1 .
[3]

Then there is a unique derivation δ : S−1A −→ S−1A making the diagram

A A

S−1A S−1A

d

ιS ιS

δ

commutative. Explicitly we have

δ(
a

s
) =

d(a)s− ad(s)

s2
.

[3]Recall from commutative algebra that S−1A is defined as A × S modulo the equivalence
relation (a, s) ∼ (b, t) ⇐⇒ ∃r ∈ S : r·(at − bs) = 0. Equivalence classes are denoted by a

s

and the ring operations are (well) defined by a
s

+ b
t

= at+bs
st

and a
s
· b
t

= ab
st
. Also recall that

ιS : A −→ S−1A is the unique homomorphism with the property that every homomorphism
h : A −→ B with h(S) ⊆ B× (the units of B) factors through ιS .
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Proof. We first show that δ is well defined. So assume r·(at− bs) = 0 with r, s, t ∈
S. Taking derivatives gives d(r)(at − bs) + r(d(a)t + ad(t) − d(b)s − bd(s)) =
0. Multiplication with r gives r2(d(a)t + ad(t) − d(b)s − bd(s)) = 0 and further
multiplication with s·t shows

0 = r2(sd(a)t2 + sad(t)t− d(b)s2t− bd(s)st)

= r2(sd(a)t2 − d(b)s2t) + r(ratsd(t)− rbsd(s)t)

= r2(sd(a)t2 − d(b)s2t) + r(rbs2d(t)− rad(s)t2), since rat = rbs

= r2

(
t2(d(a)s− ad(s))− s2(d(b)t− bd(t))

)
.

Consequently d(a)s−ad(s)
s2 = d(b)t−bd(t)

t2 and so δ is well-defined.
It is straightforward to check that δ is a derivation. Uniqueness follows from the

requirement δ( s1 ·
1
s ) = d(1)

1 = 0, which implies δ( 1
s ) = −d(s)

s2 . �

For example, if A = (A,′ ) is a differential domain, then there is a unique extension
d of ′ to a derivation of the fraction field of A. Prominent differential fields are:
K(t),K((t)) with derivations extending those from R[t], R[[t]] in examples 1.1.5,
as well as the differential field M (U) of meromorphic functions U −→ C for some
open connected set U ⊆ C.

1.1.11. Derivations on Laurent series Let R = (R, d0) be a differential ring and
let R((t)) be the Laurent series ring over R, which may be defined as the local-
ization R[[t]]t of R[[t]] at t, or directly as the ring of all Laurent series

∑
n≥k rnt

n,
k ∈ Z, an ∈ R with the natural addition and multiplication. So we consider R[[t]]
as a subring of R((t)). Let R[t, t−1] := R[t]t be the subring of R((t)) of Laurent
polynomials.

(i) By 1.1.10, the derivations ∂ and d
dt of R[[t]] from 1.1.5(iii),(iv) extend uniquely

to derivations of R((t)) such that the natural map R[[t]] −→ R((t)) are differ-
ential. We write ∂, d

dt again for this derivation of R((t)) and obviously

∂(
∑
n≥k

rnt
n) =

∑
n≥k

d0(rn)tn,

d

dt
(
∑
n≥k

rnt
n) =

∑
n≥k

nrnt
n−1.[4]

(ii) By 1.1.6, for each f ∈ R((t)) the map d := ∂ + f · d
dt is a derivation of R((t))

extending d0 with the property d(t) = f .
(iii) If f ∈ R[t, t−1], then there is a unique derivation δ of R[t, t−1] extending d0

with the property δ(t) = f . Uniqueness is clear and for existence we may take
δ to be the restriction of ∂ + f · d

dt to R[t, t−1].

Warning: The standard derivation d = d
dt of R[[t]] is not the unique derivation of

R[[t]] satisfying d(t) = 1 and d(r) = 0 for all r ∈ R.
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We conclude this section by recording

1.1.12. Higher Leibniz rule. If A = (A, d) is a differential ring, then for all
a1, . . . , an ∈ A and every ν ∈ N0 we have

dν(a1· . . . ·an) =
∑

k1+...+kn=ν

ν!

k1!· . . . ·kn!
dk1(a1)· . . . ·dkn(an).[5]

When n = 2 the formula reads as

dν(ab) =
∑
k≤ν

ν!

k!(ν − k)!
dk(a)dν−k(b).

Proof. This is straightforward by induction on ν. �

[5]Notice that this formula is also correct when the characteristic of the ring is 6= 0. The
coefficients in the formula are integers, or merely the value of that integer after application of the
natural map Z −→ A.
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1.2. Principal differential ideals in differential polynomial rings.

1.2.1. Definition of the differential polynomial ring. Let A = (A,′ ) be a
differential ring and let T be a nonempty set. We define the differential polyno-
mial ring over A in the differential variables T , denoted by A{T}, as follows. For
each t ∈ T , choose a countable family {t(i) | i ∈ N0} of indeterminates over A with
t(0) = t, such that the family (t(i) | t ∈ T, i ≥ 0) is algebraically independent over
A. Then as a ring, A{T} is A[t(i) | t ∈ T, i ∈ N0]. By 1.1.7 there is a unique deriva-
tion d on A{T} that extends the given derivation on A satisfying d(t(i)) = t(i+ 1)
for all i ≥ 0 and every t ∈ T . Hence A{T} = A[t, d(t), d2(t), . . . | t ∈ T ]. Then
(A{T}, d) is the differential polynomial ring over A in the differential variables from
T . If T is finite, T = {t1, . . . , tn} we just write A{t1, . . . , tn}.
1.2.2. Explicit computation of derivatives in A{T}. In the situation of 1.2.1,
if P ∈ A{T}, then

d(P ) = P ∗ +
∑

i≥0,t∈T

di+1(t)· ∂

∂t(i)
P,

where P ∗ is the polynomial obtained from P by taking derivatives of coefficients.
Notice that the sum is finite, because only finitely many of the t(i) occur in P . If
T = {t} is a singleton, then

d(P ) = P ∗ +
∑
i≥0

di+1(t)· ∂

∂t(i)
P.

1.2.3. Proposition. If B is another differential ring and ϕ : A −→ B is a dif-
ferential ring homomorphism, then for every choice of bt ∈ B (t ∈ T ) there is a
unique differential homomorphism A{T} −→ B extending ϕ and mapping t to bt
for all t ∈ T .

Hence A{T} indeed is the free differential ring over A in the set T , as instigated
by the term “differential polynomial ring".

If T = {t1, . . . , tn} and P ∈ A{t1, . . . , tn} we write P (b1, . . . , bn) instead of ψ(P ).

Proof. Uniqueness is clear. For existence let ψ : A{T} −→ B be the ring homo-
morphism extending ϕ satisfying ψ(dn(t)) = b

(n)
t for t ∈ T , n ≥ 0. It suffices to

show that ψ is differential. Using 1.2.2, this says that for P ∈ A{T}, the derivative
of ψ(P ) in B is

ψ(d(P )) = ψ(P ∗) +
∑

i≥0,t∈T

b
(i+1)
t ·ψ(

∂

∂t(i)
P ).

This follows easily from the additivity and the higher Leibniz rule 1.1.12 for the
derivation of B. �

We will now have a closer look at the structure of differential polynomials in one
differential variable x. We will just write P ′ for the derivative of P ∈ A{x}.

1.2.4. Definition. Let A be a differential ring and let P ∈ A{x} \ A. Then there
is a smallest n ∈ N0 with P ∈ A[x, x′, . . . , x(n)], which is called the order of P and
we write ord(P ) = n. The degree deg(P ) of P is the degree of P when viewed
as a polynomial in x(n). The separant of P is defined as the derivative of P with
respect to the variable x(n):

S(P ) =
∂

∂x(n)
P.
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The leader of P is the coefficient of P at (x(n))deg(P ), when P is considered as a
polynomial in x(n). We write L(P ) for the leader of P and notice that ord(L(P )) <
ord(P ). If a ∈ A \ {0} then we define ord(a) = −1,deg(a) = 0 and S(a) = 0.
Further we set ord(0) =∞,deg(0) = −∞ and S(0) = 1.

1.2.5. Higher derivatives of polynomials. Let P ∈ A{x} \ A and let n =
ord(P ). Using 1.2.2 we see that for each k ≥ 1, there is a unique polynomial
Pk ∈ A{x} with

P (k) = S(P )x(n+k) + Pk and ord(Pk) < n+ k.

We see that ord(P (k)) = ord(P )+k, deg(P (k)) = 1 and S(P (k)) = L(P (k)) = S(P ).

1.2.6. Construction of the weakly reduced remainder. Let A be a differential
ring and let P ∈ A{x}. Given F ∈ A{x} we now construct a polynomial Q ∈ A{x}
such that

S(P )m·F ≡ Qmod [P ] and ord(Q) ≤ ord(P )

for some m ≥ 0. This polynomial is called the weakly reduced remainder of F
for P .

If P ∈ A, then we take Q = P and m = 1. Hence we may assume that P ∈
A{x} \A and n = ord(P ) ≥ 0. If F = 0 or ord(F ) ≤ n then we take Q = F . Hence
we may assume that ord(F ) = n + k > n. Then F =

∑m
i=0 Fi·(x(n+k))i for some

m ≥ 1 and some polynomials Fi ∈ A[x, x′, . . . , x(n+k−1)]. By 1.2.5, S(P )·x(n+k) ≡
−Pk mod [P ] and ord(Pk) < n+ k. Then

S(P )m·F =

m∑
i=0

Fi·S(P )m−i·(S(P )x(n+k))i and with

F̃ =

m∑
i=0

Fi·S(P )m−i·(−Pk)i

We see that S(P )m·F ≡ F̃ mod [P ] and ord(F̃ ) < n + k. We now may iterate the
construction of F̃ from F until the result Q has order ≤ n.

1.2.7. Definition. Let A be a differential ring and let P ∈ A{x}. We define

I(P ) = {F ∈ A{x} | S(P )m·F ∈ [P ] for some m ∈ N}.

It is easy to check that I(P ) is a differential ideal containing P . A different way of
looking at I(P ) is the following: Let A{x}S(P ) be the localization of A{x} at the
element S(P ) [6] and let ι : A{x} −→ A{x}S(P ) be the associated natural map.
Then the ideal [P ]A{x}S(P ) generated by ι([P ]) in A{x}S(P ) is differential (because
ι([P ]) is closed under the derivation) and

I(P ) = ι−1([P ]A{x}S(P )).

The weakly reduced remainder is an instrument to solve the membership problem
for I(P ): It reduces membership F ∈ I(P ) to membership Q ∈ [P ] for polynomials
Q of order ≤ ord(P ). The latter problem is dealt with next:

[6]hence in the terminology of 1.1.10, A{x}S(P ) is S−1A{x} for S = {1, S(P ), S(P )2, . . .}.
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1.2.8. Proposition. Let A be a differential ring and let P ∈ A{x} \ A, thus
n = ord(P ) ≥ 0. Then

I(P ) ∩A[x, . . . , x(n)] = {Q ∈ A[x, . . . , x(n)] | S(P )r·Q ∈ (P ) for some r ∈ N}.

Proof. The inclusion ⊇ is clear. For the other inclusion it suffices to show by
induction on k ≥ 0 the following:

If m ∈ N, Q ∈ I(P ) with ord(Q) ≤ n and H0, . . . ,Hk ∈ A{x} with

S(P )m·Q = H0·P + . . .+Hk·P (k),

then there are r ≥ 0 and some H ∈ A[x, . . . , x(n)] with S(P )r·Q = H·P .
If k = 0, then as S(P ), Q, P ∈ A[x, . . . , x(n)], we may replace the variables
x(n+1), x(n+2), . . . in S(P )m·Q = H0·P by 0 and take H = H(x, . . . , x(n), 0, 0, . . .).
k − 1→ k. We have P (k) = S(P )·x(n+k) + Pk and ord(Pk) < n+ k. Thus

(∗) S(P )m·Q = H0·P + . . .+Hk−1·P (k−1) +Hk·(S(P )·x(n+k) + Pk)

and by replacing the variables x(n+k+1), x(n+k+2), . . . by 0 we may assume that
Hi ∈ A[x, . . . , x(n+k)]. Let B := A[x, . . . , x(n+k−1)] and notice that P, S(P ), Q ∈ B.
Let ε : B[x(n+k)] −→ BS(P ) be the B-algebra homomorphism sending x(n+k) to
− Pk
S(P ) . Applying ε to equation (∗) gives

(†) S(P )m·Q
1

= ε(H0)·P
1

+ . . .+ ε(Hk−1)·P
(k−1)

1

in the localization BS(P ). Choose H̃0, . . . , H̃k−1 ∈ B and some d ∈ N with ε(Hi) =
H̃i

S(P )d
for i ∈ {0, . . . , k − 1}. Back in B, equation (†) says that for some l ∈ N we

have
S(P )l·S(P )m+d·Q = S(P )lH̃0·P + . . .+ S(P )lH̃k−1·P (k−1).

But now we may apply induction and get the assertion. �

1.2.9. Remark. If A is a differential domain and P ∈ A{x} \ A with S(P ) 6= 0,
then P does not divide S(P ), because the degree of S(P ) with respect to xord(P )

is strictly less than the degree of P .

1.2.10. Corollary. If A is a differential domain and P ∈ A{x}\A is prime[7] with
S(P ) 6= 0, then
(i) I(P ) is a prime ideal of A{x}, and
(ii) I(P ) ∩A[x, . . . , x(n)] = P ·A[x, . . . , x(n)], where n = ord(P ).

Proof. (ii) follows from 1.2.8 using 1.2.9.
(i). Take F1, F2 ∈ A{x} with F1·F2 ∈ I(P ). Let Qi be the weakly reduced remain-
der of Fi for P , hence S(P )m·Fi ≡ Qi mod [P ] for some m ≥ 0 and ord(Qi) ≤ n.
Then S(P )2m·F1·F2 ≡ Q1·Q2 mod [P ] and from F1·F2 ∈ I(P ), [P ] ⊆ I(P ) we get
Q1·Q2 ∈ I(P ). However, ord(Q1·Q2) ≤ ord(P ) and so by 1.2.8 we see that P
divides S(P )r·Q1·Q2 for some r ≥ 0. Since P is prime and P does not divide S(P )
(cf. 1.2.9), we may assume that P |Q1. But then S(P )m·F1 ≡ Q1 mod [P ] shows
F1 ∈ I(P ) as required. �

[7]Recall that an element r of a ring is prime if it satisfies r|st⇒ r|s or r|t.
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1.2.11. Construction of the reduced remainder. Let A be a differential
domain and let P ∈ A{x}. Given F ∈ A{x} we now construct a polynomial
G ∈ A{x} such that

L(P )k·S(P )m·F ≡ Gmod [P ] for some k,m ≥ 0 and

G = 0, or, ord(G) < ord(P ), or, ord(G) = ord(P ) and deg(G) < deg(P ).

This polynomial is called the reduced remainder of F for P .

Let Q be the weakly reduced remainder of F for P . If Q = 0 or ord(Q) < ord(P ),
then we may take G = Q. Hence was may assume that ord(Q) = ord(P ). Let K
be the fraction field of A[x, x′, . . . , x(n−1)]. We now apply division with remainder
over domains and get some minimal k ∈ N0 and H,R ∈ K[x(n)] with Q = H·P+R,
deg(R) < deg(P ) and L(P )k·H,L(P )k·R ∈ A[x, x′, . . . , x(n−1)]. We see that the
choice G = L(P )k·R satisfies the requirements.

1.2.12. Theorem. Let A be a differential Q-algebra and a unique factorization
domain. Then the differential prime ideals of A{x} that intersect A in {0} are
exactly the ideals I(P ), where P = 0 or P ∈ A{x} \A is irreducible.

Proof. If P = 0, then I(P ) = (0) is prime, because A is a domain. If P ∈ A{x}\A is
irreducible, then it is prime, because A{x} is a again a unique factorization domain
(by the Lemma of Gauß). Since Q ⊆ A we have S(P ) 6= 0. Hence by 1.2.10, I(P )
is a differential prime ideal.

Conversely, let p ⊆ A{x} be prime with p ∩ A = (0) and p 6= (0). We choose a
polynomial P ∈ p as follows:
(a) Let n = min{ord(Q) | Q ∈ p \ {0}}. Since p ∩A = (0) we know that n ∈ N0.
(b) Let d = min{deg(Q) | Q ∈ p \ {0}, ord(Q) = n} ∈ N.
(c) Take P0 ∈ p \ {0} with ord(P0) = n and deg(P0) = d. Using that A{x} is

a unique factorization domain and p is a prime ideal, there is an irreducible
factor P of P0 with P ∈ p. Obviously ord(P ) = n and deg(P ) = d again.

It remains to show that p = I(P ).
⊇. If Q ∈ I(P ) then S(P )m·Q ∈ [P ] ⊆ p for some m and by choice of P we have

S(P ) /∈ p (using S(P ) 6= 0).
⊆. Let F ∈ p and let G be the reduced remainder of F for P . Then

L(P )k·S(P )m·F ≡ Gmod [P ] for some k,m and so G ∈ p. Now G =
0, or, ord(G) < ord(P ), or, ord(G) = ord(P ) and deg(G) < deg(P ). Since
p ∩ A = (0), the choice of P entails G = 0. Hence L(P )k·F ∈ I(P ). But P is
irreducible, so we know already that I(P ) is prime. Since ord(L(P )) < ord(P ),
1.2.10 implies L(P ) /∈ I(P ), thus F ∈ I(P ). �

1.2.13. Remark.
(i) When P is not prime, the ideal I(P ) can differ dramatically from the ideal [P ].

For example I(x′2) = A{x} for any differential ring A, because S(x′2) = 2x′.
(ii) When F is a field of characteristic p > 0, then in general there are differential

prime ideals of F{x} that are not of the form I(P ) for any P . For example
if F is such that the polynomial Q := xp

k − a ∈ F [x] is irreducible. We
equip F with the trivial derivation. Then p = Q·F{x} is a differential prime
ideal of F{x}, but one checks easily that it cannot be of the form I(P ) for
any P ∈ F{x}. Notice: If we choose P for p as in the proof of 1.2.12, then
P = a·Q for some a ∈ F \ {0} and so S(P ) = 0.
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1.3. The Taylor morphism.

1.3.1. Definition. Let B be a ring and let A = (A, d) be a differential ring
containing Q as a subring. Let σ : A −→ B be a ring homomorphism and let
a ∈ A. We define

Tσ(a) :=
∑
ν≥0

σ(dνa)

ν!
tν ∈ B[[t]].

Hence we obtain a map Tσ: A −→ B[[t]], which is called the Taylor morphism of
σ. If we need to specify the derivation d of A we also write Td,σ.

1.3.2. Proposition. In the situation of 1.3.1, Tσ is a differential ringhomomor-
phism (A, d) −→ (B[[t]], d

dt ), where
d
dt is the standard derivativation of B[[t]] as in

1.1.5(iii).

� Observe that the diagram

B[[t]]

A B

Tσ

σ

does in general not commute. For example, when B = A and σ = idA. Then the
diagram commutes if and only if d is the trivial derivation.
The case when σ is the identity function idA : A −→ A also shows that every dif-
ferential Q-algebra is a differential subring of a power series ring with the standard
derivation: TidA : (A, d) −→ (A[[t]], d

dt ) is an embedding of differential rings (it is
injective: consider the first coefficient of TidA(a)).

Proof. Since σ and d are additive, it is clear that Tσ is additive. Furthermore, the
definition of Tσ immediately implies that Tσ(d(a)) = d

dtTσ(a). It remains to show
that Tσ(a·b) = Tσ(a)·Tσ(b): The coefficient of Tσ(a)·Tσ(b) at tν is∑

k≤ν

σ(dk(a))

k!
·σ(dν−k(b))

(ν − k)!
.

The coefficient of Tσ(a·b) at tν is

σ(dν(a·b))
ν!

=
σ(
∑
k≤ν

ν!
k!(ν−k)!d

k(a)dν−k(b))

ν!
,

see 1.1.12. We see that these coefficients are equal, showing Tσ(a·b) = Tσ(a)·Tσ(b).
�

For f ∈ A, one should think of σ : A −→ B as valuation at some abstract “point"
σ(f) and then Tσ(f) is the Taylor expansion of f at that point. For example, in
the case of C∞-functions U −→ R, if p ∈ U and σ : C∞(U) −→ R is the evaluation
map σ(f) = f(p) at p, then Tσ : C∞(U) −→ R[[t]] and Tσ(f) indeed is the Taylor
expansion of f about p; hence

f(p+ t) = Tσ(f)(t)

for small t, provided f is analytic (or a polynomial).
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1.3.3. Notation. (Keigher) Let A = (A, d) be a differential ring and let I be an ideal
of A. From the higher Leibniz rule 1.1.12 we see that

I# := {a ∈ A | dn(a) ∈ I for all n ≥ 0}.
is the largest differential ideal of A contained in I.

1.3.4. Proposition. Let A be a differential Q-algebra and let I be an ideal of A.
(i) I# = ker(Tπ), where π : A� A/I is the natural map onto the residue ring.

(ii) If I is radical [8], then I# is radical.

(iii) If I is a prime ideal, then I# is a prime ideal.

(iv) If I is a differential ideal, then
(a) Every prime ideal of A that is minimal with the property that it contains

I, is differential.
(b)
√
I = ⋂{p | p ⊆ A differential prime ideal with I ⊆ p}.[9] This means

the abstract Nullstellensatz of Krull holds for differential ideals.
(c)
√
I is again a differential ideal. It follows that for any S ⊆ A, the smallest

differentially radical ideal d
√
S containing S is

√
[S], where [S] denotes

the differential ideal generated by S.

(v) If S ⊆ A is multiplicatively closed and I is maximal among differential ideals
with the property that I ∩ S = ∅, then I is prime.

(vi) If S, T ⊆ A, then d
√
S· d
√
T ⊆ d

√
S·T .

Proof. (i) is immediate from the definition of Tπ.
(ii). The ideal I is radical if and only if the ring A/I is reduced[10]. But in that
case also A/I [[t]] is reduced (look at powers of the leading coefficient) and so by
(i) we see that I# = ker(Tπ) is radical.
(iii). The ideal I is prime if and only if the ring A/I is a domain. But in that case
also A/I [[t]] is a domain (look at products of leading coefficients) and so by (i) we
see that I# = ker(Tπ) is radical.
(iv) is a formal consequence of (iii):
(a). Let p be a prime ideal of A that is minimal with the property that it contains
I. By (iii), p# is again prime. But p# contains I because I ⊆ p and d(I) ⊆ I. By
minimality of p we see that p# = p as required.
(b) follows from (a) together with the classical abstract Nullstellensatz of Krull.
Finally (c) is direct from (b).
(v). By Zorn’s lemma there is an ideal J of A containing I with J ∩S = ∅ such that
J is maximal with this property. By classical commutative algebra, J is a prime
ideal of A. By (iii), also J# is prime. Since I is differential we get I ⊆ J#. By
maximality of I we see that I = J# is prime.
(vi). By (iv) it suffices to show that every differential prime ideal p containing S·T
contains S or T . However, if s ∈ S \ p, then s·T ⊆ p implies T ⊆ p. �

[8]meaning that an ∈ I implies a ∈ I
[9]Recall that

√
I = {a ∈ A | an ∈ I for some n ∈ N} is the smallest radical ideal containing

I.
[10]Meaning that xn = 0⇒ x = 0. This property of a ring is sometimes called semiprime
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It should be noticed that when the characteristic of the ring A is not 0, then
in general there are differential ideals I of A such that

√
I is not differential. For

example the ideal (tp) is a differential ideal in (Z/pZ [t], d
dt ), but if p is prime then√

(tp) = (t) is not differential.
Now in the proof of 1.3.4, we have shown (iii) and then proceeded by proving

implications (iii)⇒(iv)(a)⇒(iv)(b)⇒(iv)(c). Since (iv)(c) fails in general, all the
other properties in this chain of implications also fail. Similarly (v) fails in general.
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1.4. The basis theorem of Ritt and Raudenbush.

1.4.1. Example. If K is a differential field then in general not every differential
ideal of K{x} is finitely generated as a differential ideal. An example is

[x2, x′2, (x(2))2, (x(3))2, . . .],

see [MaMePi1996, p. 43]

1.4.2. Lemma. Let A be a differential ring and a Q-algebra. Let I ⊆ A{x} be a
radical differential ideal with I 6= J , where J is the differential radical of I ∩ A in
A{x}. Choose P ∈ I \ J as follows:
(a) Let n = min{ord(Q) | Q ∈ I \ J}. Since I 6= J we know that n ∈ N0.
(b) Let d = min{deg(Q) | Q ∈ I \ J, ord(Q) = n} ∈ N.
(c) Take P ∈ I \ J with ord(P ) = n and deg(P ) = d. Write

P = L(P )·(x(n))d + P0,

where ord(P0) ≤ n and degx(n)(P0) < d.
Then
(i) L(P )·S(P ) /∈ I.
(ii) If I contains a prime ideal of A[11], then L(P )·S(P )·I ⊆ d

√
J, P .

Proof. We have

S(P ) =
∂

∂x(n)
P = d·L(P )·(x(n))d−1 +

∂

∂x(n)
P0, and so

L(P )·S(P ) = d·L(P )2·(x(n))d−1 + L(P )· ∂

∂x(n)
P0.

Claim. L(P )2 /∈ I
Proof. Otherwise L(P ) ∈ I as I is radical. By choice of P and ord(L(P )) < n we
get L(P ) ∈ J . Further, L(P ) ∈ I implies P0 ∈ I and again by choice of P we get
P0 ∈ J . But then P ∈ J , a contradiction to the choice of P . �

If d = 1, then
P = L(P )·x(n) + P0,

where ord(P0) < n; but then S(P ) = L(P ) and hence L(P )·S(P ) /∈ I by the claim.
Hence we may assume d > 1. Since ord(L(P )) < n we see that

ord(L(P )· ∂
∂x(n)P0) ≤ n and if ord(P0) = n, then degx(n)(L(P )· ∂

∂x(n)P0) ≤
degx(n)( ∂

∂x(n)P0) < degx(n)(P0) ≤ d− 1.
Since L(P )2 6= 0 by the claim, and d > 1 we see that ord(L(P )·S(P )) = n and

deg(L(P )·S(P )) < d.
By choice of P we get L(P )·S(P ) /∈ I, or, L(P )·S(P ) ∈ J . Assume that

L(P )·S(P ) ∈ J . Since J is closed under ∂
∂x(n) we get

J 3 ∂d−1

(∂x(n))d−1
(L(P )·S(P )) = d!·L(P )2.

But this contradicts the claim. Hence L(P )·S(P ) /∈ I showing (i).
(ii). Now assume that there is a prime ideal p of A with p ⊆ I. By 1.3.4(iii) we know
that p# ⊆ p is again prime, hence we may assume that p is a differential prime ideal.
Let π : A{x} � (A/p){x} be the differential homomorphism extending A � A/p

[11]For example if A is a domain, or if I ∩A itself is prime
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and sending x to x. Notice that π commutes with ∂
∂x(k) for all k ≥ 0, and ker(π) ⊆ J

(using p ⊆ I ∩A). Since L(P ) /∈ I by (i) we know that π(L(P )) 6= 0, which implies
π(L(P )) = L(π(P )), ord(π(P )) = n, deg(π(P )) = d and π(S(P )) = S(π(P )).

Now take F ∈ I and let H ∈ A/p{x} be the reduced remainder of π(F ) for
π(P ). (Since A/p is a domain, 1.2.11 is applicable.) Hence H = 0, or ord(H) < n,
or ord(H) = n and deg(H) < d. Take a preimage G ∈ A{x} of H under π with
G = 0, or ord(G) < n, or ord(G) = n and deg(G) < d. Then for some k,m ≥ 0 we
see that

L(P )k·S(P )m·F ≡ Gmod [P ] + ker(π).

Since P and ker(π) are in I we get G ∈ I. However, by the choice of P this is only
possible if G ∈ J . It follows that (L(P )·S(P )·F )α ∈ d

√
ker(π), P ⊆ d

√
J, P for some

α ≥ 0 and so L(P )·S(P )·F ∈ d
√
J, P . �

1.4.3. Ritt-Raudenbush Let A be a differential Q-algebra such that every dif-
ferentially radical ideal is finitely generated as such.[12] Then also A{x} has this
property.

Proof. Otherwise, use Zorn and take a maximal differentially radical ideal I that
is not of the form d

√
E for any finite E ⊆ A{x}. Then I is prime: If a, b /∈ I,

then by maximality of I we easily find a finite set E ⊆ I with d
√
I, a = d

√
E, a and

d
√
I, b = d

√
E, b. Since I is differentially radical we get I ⊆ d

√
I·I ⊆ d

√
d
√
E, a· d

√
E, b ⊆

d
√
E, ab using 1.3.4(vi). But then ab /∈ I, otherwise d

√
E, ab ⊆ I and so I = d

√
E, ab

in contradiction to the choice of I.
Let J be the differential radical ideal of A{x} generated by I∩A. By assumption

on A there is a finite subset E0 ⊆ I ∩A such that J = d
√
E0 (in A{x}). From J ⊆ I

we know that I ∩A = J ∩A. Take P ∈ I \J as in 1.4.2. Hence, as I ∩A is prime we
know that L(P )·S(P ) /∈ I and L(P )·S(P )·I ⊆ d

√
J, P . By maximality of I, there is

a finite set E ⊆ I such that d
√
I, L(P )·S(P ) = d

√
E,L(P )·S(P ). Now

I ⊆ d
√
I·I ⊆ d

√
I· d
√
I, L(P )·S(P )

=
d

√
I· d
√
E,L(P )·S(P ) by choice of E,

⊆ d
√
I·(E,L(P )·S(P )) by 1.3.4(vi)

⊆ d
√
I·E, I·L(P )·S(P ) ⊆ d

√
E, I·L(P )·S(P )

⊆ d
√
E, J, P

⊆ I.

Hence I = d
√
E, J, P = d

√
E,E0, P is the differential radical of a finite set. This

contradicts the choice of I. �

[12]Equivalently: There is no infinite chain of strictly increasing differentially radical ideals
I1 ( I2 ( I3 ( . . ..
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2. Differentially closed fields

We will now restrict ourselves to rings and fields containing Q.

2.1. Quantifier elimination.

2.1.1. Definition. (Leonore Blum)
A differentially closed field (of characteristic 0, in one derivation) is a differential
field M such that for all P,Q ∈ M{x} \ {0} with ord(Q) < ord(P ) there is some
a ∈M with P (a) = 0 & Q(a) 6= 0.

Observe that every DCF is algebraically closed (set Q = 1)

2.1.2. Definition. Let Lri = {+,−, ·, 0, 1} be the language of rings and let Lri(d)
be the language obtained from Lri by adding a unary function symbol. Obviously,
the class of differential fields of characteristic 0 is first order axiomatisable in Lri(d)
and we denote its theory by DF. Furthermore, the class of differentially closed field
is axiomatisable and we denote its theory by DCF.

2.1.3. Theorem. The theory DCF is the modelcompletion of the theory DF. Fur-
thermore, DCF has quantifier elimination and DCF is complete.

Proof. Obviously, the ring Z with the trivial derivation is a common substructure
of all differential fields. Hence completeness of DCF follows from quantifier elimi-
nation. Since DCF is an extension of DF we only need to show two things:
(a) Every differential field can be embedded into a differentially closed field, and
(b) DCF has quantifier elimination.

Proof of (a). Since DF is ∀∃-axiomatised, every differential field is contained in an
existentially closed differential field M . We show that M is a DCF:

Take P,Q ∈M{x}\{0} with ord(Q) < ord(P ) and let P1 be an irreducible factor
of P of order ord(P ). By 1.2.12, I(P1) is a differential prime ideal of M{x} and by
1.2.10, I(P1) contains no polynomial of order < ord(P ) and so Q /∈ I(P1). It follows
that the residue class of the variable x in M{x}/I(P1) is a differential solution of
P = 0 & Q 6= 0. Since M{x}/I(P1) is a differential domain it is contained in a
differential field. Hence the system P = 0 & Q 6= 0 has a differential solution in a
differential field containing M . Since M is an existentially closed DF, there must
also be such a solution in M . This shows that M is a DCF. �
Proof of (b). We use the Shoenfield-Blum test, by which it suffices to solve the
following embedding problem: Let M,N |= DCF and suppose N is ℵ1-saturated.
Let A be a common differentially finitely generated subring of M , N . If α ∈ M ,
then there is a differential embedding A{α} −→ N over A, where A{α} is the
differential subring of M generated by A ∪ {α}. Firstly, the field generated by A
in M and in N are isomorphic by a unique isomorphism and this isomorphism is
differential. Hence we may replace A by its fraction field F and work over F . Let
p = {Q ∈ F{x} | Q(α) = 0} be the differential ideal of vanishing of α. Clearly
p is a differential prime ideal of F{x}. By 1.2.12, either p = (0), or there is an
irreducible polynomial P (x) ∈ F{x} with p = I(P ).
Let Γ be the following set of Lri(d)-formulas with parameters in F :

Γ = {P (x) = 0} ∪ {Q(x) 6= 0 | ord(Q) < ord(P )},



18 MARCUS TRESSL

where we set ord(P ) =∞ if P = 0. Since N is a DCF, Γ is finitely realizable in N .
Since F is countable and N is ℵ1-saturated, there is a common realization β of all
formulas in Γ. Let q = {Q ∈ F{x} | Q(β) = 0}. If p = (0), then also q = (0). If
P 6= 0, then take Q ∈ F{x} irreducible with q = I(Q). By definition of Γ we know
that ord(Q) = ord(P ). Since P ∈ q = I(Q) we know from 1.2.10 that Q divides P .
Since P is irreducible this implies P |Q. As F{x} is factorial, this is only possible
if P = a·Q for some unit a ∈ F . Then S(Q) = a·S(P ) as well and so I(P ) = I(Q),
i.e. p = q.

So we know p = q in either case. But then F{α} ∼=F F{x}/p = F{x}/q ∼=F

F{β}, solving our embedding problem. �
This establishes the theorem. �

2.1.4. Towards the construction of “concrete" DCFs No very concrete DCF
is known. However it is known that there are DCFs in the ring of germs of meromor-
phic functions over the complex numbers at 0 by applying Seidenberg’s embedding
theorem, cf. [Seiden1958a, Seiden1958b]; however this is an existence theorem only.
Algebraically it is possible to construct a model of DCF, using a countable iteration
of power series fields together with a twisted version of the Taylor morphism, cf.
[LeSTre2020b, Examples 5.2].
Before exploiting 2.1.3 in the next sections we use it for a general extension property
of derivations of fields, see 2.1.6 and 2.1.7.

2.1.5. Observation. Let L = (L, δ) be a differential field and let K ⊆ L be a (not
necessarily differential) subfield of L. If β ∈ L is algebraic over K with minimal
polynomial f(x) = xk + ak−1x

k−1 + . . . + a0 ∈ K[x], k ≥ 1, then by applying δ to
f(β) = 0 we see that

(∗) δ(β) = −δ(ak−1)βk−1 + . . .+ δ(a1)β + δ(a0)
df
dx (β)

.

(Notice that the denominator here is nonzero by choice of f .) Consequently, if K
denotes the algebraic closure of K in L, then:
(i) The restriction δ|K : K −→ L of δ is uniquely determined by its restriction

δ|K : K −→ L to K.
(ii) If K is a differential subfield of L, i.e. δ(K) ⊆ K, then

(a) K is a differential subfield of L.
(b) The constant field of K is the algebraic closure of the constant field of

K in L. This can be read off (∗) as follows: If all ai are constants, then
by (∗), also β is a constant; conversely, if δ(β) = 0, then by choice of f ,
using δ(K) ⊆ K, we must have δ(ai) = 0 for all i and so β is algebraic
over the field of constants of K (with minimal polynomial f).

2.1.6. Proposition. Let K ⊆ L be fields and let d : K −→ K be a derivation. Let
T ⊆ L be a transcendence basis of L over K and for t ∈ T let bt ∈ L. Then there
is a unique derivation δ of L extending d such that δ(t) = bt for all t ∈ T .

In particular, if L is algebraic over K, then there is a unique derivation of L
extending d.

Proof. For uniqueness note first that δ is obviously uniquely determined on K(T )
by the requirements δ|K = d and δ(t) = bt, t ∈ T . Since L is algebraic over K(T )
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we may apply 2.1.5(i), which implies that there can then only be one derivation on
L satisfying these requirements.

For existence we first do the case when T = ∅:
Claim. If L/K is algebraic, then d has a unique extension to a derivation on L.
Proof. Uniqueness follows from 2.1.5(i). For existence we apply 2.1.3 to find some
DCF M extending K. Then M is algebraically closed and as L/K is algebraic we
may assume that L ⊆M as a field. By 2.1.5(i)(a), the derivation of M restricts to
a derivation of L. �

Now we show the proposition. Let ∂ be the unique derivation of K(T ) extending
d which satisfies ∂(t) = 0 for all t ∈ T . By the claim, ∂ can be extended to
a derivation of L, which we denote by ∂ again. Similarly, for each t ∈ T , the
derivation d

dt of K(T ) has an extension dt to L. We will now proceed as in the
proof of 1.1.7. For g ∈ L we define

δ(g) = ∂(g) +
∑
t∈T

bt·dt(g).

We need to check that the sum is finite: Let E ⊆ T be finite such that g is algebraic
over K(E). If t ∈ T \ E, then dt(g) = 0, because dt vanishes on K(E) and so also
vanishes on g by the claim. Hence δ(g) is well defined. It follows easily from 1.1.6
that δ is a derivation on L. Clearly δ extends d and satisfies δ(t) = bt for all
t ∈ T . �

2.1.7. Corollary. Let L be a field and let A be a subring of L. Let d : A −→ L be
a derivation (i.e. d(a+ b) = d(a) + d(b) and d(ab) = ad(b) + d(a)b for all a, b ∈ A).
Then there is a derivation δ of L extending d.

Proof. Let K ⊆ L be the fraction field of A. It is straightforward to check that
d extends to a derivation K −→ L by defining d(ab ) = d(a)b−ad(b)

b2 (just follow the
proof of 1.1.10 verbatim). We may thus assume that A = K is a field.

Let T be a transcendence basis of K (over Q). By 2.1.6 there is a derivation δ
of L with δ(t) = d(t) for all t ∈ T . Then K is algebraic over Q(T ) and one checks
easily that the formula (∗) in 2.1.5 for δ is also valid for d instead of δ. Since δ
extends d on Q(T ) we then see from that formula that δ also extends d. �
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2.2. Differential spectrum, Kolchin topology and differential Nullstellen-
satz.

2.2.1. The differential spectrum Let A be a differential ring.
(i) The differential spectrum of A is the topological space with base set

Sped(A) = {p ⊆ A | p differential prime ideal}
equipped with theKolchin topology, whose closed sets are the sets V δ(Z) =
{p ∈ Sped(A) | Z ⊆ p}, where Z ranges over subsets of A. The closed sets in
this topology are called Kolchin closed.

Notice that ⋂i∈I V
δ(Zi) = V δ(⋃i∈I Zi)) and V δ(Z1) ∪ V δ(Z2) =

V δ(Z1·Z2), hence the V δ(Z) indeed form the closed sets of a topology.
(ii) If S ⊆ Sped(A) we define Iδ(S) = ⋂p∈S p and call it the differential van-

ishing ideal of S.
(iii) If p, q ∈ Sped(A), then p ⊆ q if and only if q is in the closure of the set {p}

(which is equal of V δ(p)); we also say p specializes to q.
(iv) As in the classical case, the assignments Z 7→ V δ(Z), S 7→ Iδ(S) form a

Galois connection V δ : P(A) −→ P(Sped(A)), Iδ : P(Sped(A)) −→ P(A)
between the powerset of A and the powerset of Sped(A). This means that
both assignments are inclusion reversing and S ⊆ V δ(Iδ(S)), Z ⊆ Iδ(V δ(Z)).
It follows that V δ(Iδ(S)) is the Kolchin closure of S and Iδ(V δ(Z)) = d

√
Z is

the differentially radical ideal generated by Z. see 1.3.4(iv).
(v) The Galois connection restricts to an inclusion-reversing bijection between

Kolchin closed subsets and differentially radical ideals.
(vi) The Galois connection restricts to a inclusion reversing bijection between dif-

ferential prime ideals and nonempty, irreducible and closed subsets of Sped(A).
(vii) Since V δ(S) = Sped(A) ∩ V (S), the inclusion map Sped(A) ↪→ Spec(A) is a

homeomorphism onto its image.[13]

A first consequence of theorem 2.1.3 is:

2.2.2. Corollary. If M is a differentially closed field and K ⊆M is a differential
subfield, x = (x1, . . . , xn), then the map

π : Sn(M,K) −→ Sped(K{x})
p 7−→ {f ∈ K{x} | f(x) = 0 ∈ p}

is a bijection.[14] The map π is continuous, but is not a homeomorphism, because
Sn(M,K) is Hausdorff and Sped(K{x}) is not.[15]

Proof. The map is injective, because for p 6= q ∈ Sn(M,K) there is a quantifier
free formula with parameters in K distinguishing them (use quantifier elimination
in 2.1.3). Since all such formulas are Boolean combinations of formulas of the form

[13]For readers who know the terminology: Sped(A) is a spectral subspace of Spec(A), in
particular Sped(A) is itself a spectral space. See [DiScTr2019, Section 1.1]

[14]Here, Sn(M,K) is the set of all n-types of M over K, hence the Stone space of the Tarski-
Lindenbaum algebra of all formulas ϕ(x1, . . . , xn) in the language Lri(d)(K) of differential rings
with parameters from K, modulo the theory of (M,K).

[15]However, π is a homeomorphism if we equip Sped(K{x}) with the so-called constructible
topology (aka patch topology), having the sets V δ(f) ∩Dδ(g), f, g ∈ K{x} as a subbasis of open
sets; here Dδ(g) = Sped(K{x}) \ V δ(g). See [DiScTr2019, Section 1.3]
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f(x) = 0, f ∈ K{x}, there must be a formula of the form f(x) = 0 distinguishing
them.

For surjectivity of π, take p ∈ Sped(K{x}). Since every differential domain
embeds into a DCF by 2.1.3, there is a differentially closed field N extending the
differential domain K{x}/p. By quantifier elimination for DCF, M and N are
elementary over K, in particular Sn(M,K) = Sn(N,K). Let p be the type over K
that is realized by (x1 + p, . . . , xn + p) in Nn. One checks easily that p is mapped
to p by π. �

2.2.3. The Kolchin topology in the geometric context LetK be a differential
field, let n ∈ N and set x = (x1, . . . , xn). For a ∈ Kn, the kernel ι(a) of the
differential evaluation map eva : K{x} −→ K at a is a maximal ideal of K{x} and
a differential ideal. We obtain a map ι : Kn −→ Sped(K{x}), which is obviously
injective. If we identify Kn with the image of ι, the Kolchin topology restricts to a
topology on Kn which is called the Kolchin topology on Kn. The closed sets are
the common differential zero sets of sets of differential polynomials in n differential
variables (because V δ(Z) ∩Kn is the common zero set of all f ∈ Z).

A consequence of the Ritt-Raudenbush basis theorem 1.4.3 is

2.2.4. Corollary. For any differential field K the Kolchin topology of Sped(K{x}),
x = (x1, . . . , xn) is Noetherian, i.e., there is no infinite strictly ascending chain
of closed sets A1 ) A2 ) A3 ) . . ..

Since Kn is a subspace of Sped(K{x}), the Kolchin topology of Kn is Noetherian,
too.

Proof. Since there is no infinite strictly increasing chain of differentially radical
ideals inK{x1, . . . , xn} by Ritt-Raudenbush 1.4.3, the Galois connection in 2.2.1(vi)
shows that the Kolchin topology of Sped(K{x}) is Noetherian. �

2.2.5. Differential Nullstellensatz
Let M be a DCF and let I ⊆ M{x}, x = (x1, . . . , xn) be a differential ideal. Let
VM (I) = {a ∈ Mn | f(a) = 0 for all f ∈ I} (in the setup of 2.2.3, VM (I) =
V δ(I) ∩Mn). Then

√
I = {f ∈M{x} | f vanishes on VM (I)}.

Proof. Only the inclusion ⊇ needs a proof. Take f ∈ M{x} \
√
I. By 1.3.4(iv) we

know that there is a differential prime ideal p of M{x} containing I with f /∈ p.
By the Ritt-Raudenbush theorem 1.4.3 there is a finite set E ⊆ p such that p =
d
√
E. Now in the differential domain M{x}/p, the n-tuple (x1 + p, . . . , xn + p) is

a differential zero of all polynomials in p, which is not a zero of f . Since M is a
DCF, it is existentially closed in M{x}/p (use 2.1.3). Hence there is a differential
zero a ∈Mn of all polynomials in E, which is not a zero of f . As I ⊆ p = d

√
E, all

polynomials in I vanish at a, so a ∈ VM (I). As f(a) 6= 0 we get the assertion. �

As in the case of the classical Nullstellensatz, 2.2.5 implies that VM is a bijection
between the differentially radical ideals of M{x} and the Kolchin closed subsets of
Mn, or, in view of 2.2.1(vi), the closed subsets of Sped(M{x}).
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2.2.6. Proposition. (Quantifier free stability of differential fields)[16]

Let K ⊆ L be differential fields (of arbitrary characetristic!) and let X ⊆ Ln be a
Boolean combination of Kolchin closed subsets of Ln. Then
(i) X ∩Kn a Boolean combination of Kolchin closed subsets of Kn.
(ii) If X is a Kolchin closed subset of Ln, then X ∩Kn is a Kolchin closed subset

of Kn.
Notice that when K carries the trivial derivation, then the Kolchin topology of Kn

is the Zariski topology of Kn. Hence the proposition also implies its field version,
where “Kolchin” is replaced by “Zariski” everywhere.

Proof. Since Boolean operations commute with intersection with Kn it suffices to
show that for all P (x) ∈ L{x}, x = (x1, . . . , xn), the intersection of Kn with the
differential zero set of P in Ln is Kolchin closed inKn. TakeK-linearly independent
elements β1, . . . , βm ∈ L and P1, . . . , Pm ∈ K{x} with P = P1·β1 + . . . + Pm·βm
(notice that any K-vector space basis of L is also a basis of the free K{x}-module
L{x}). Then

{a ∈ Ln | P (a) = 0} = {a ∈ Ln | P1(a)·β1 + . . .+ Pm(a)·βm = 0}
and therefore

{a ∈ Kn | P (a) = 0} = {a ∈ Kn | P1(a) = . . . = Pm(a) = 0}
is Kolchin closed in Kn. �

Another consequence of theorem 2.1.3 then is:

2.2.7. Corollary. The constants of a differentially closed field are stably embed-
ded: Let M be a differentially closed field with constant field C. If D ⊆ Mn is
definable with parameters from M , then D ∩ Cn is definable in the field C.

Proof. By quantifier elimination for DCF the set D is a Boolean combination of
Kolchin closed subsets of Mn. Hence by 2.2.6, D ∩Cn is a Boolean combination of
Kolchin closed subsets of Cn (notice that C is a differential subfield of M). But C
carries the trivial derivation, hence Kolchin closed sets in Cn are Zariski closed. �

[16]A theory is stable if and only if for all models A ≺ B and every subset D ⊆ Bn that is
definable in B with parameters from B, the intersection D∩An is definable in A (with parameters
from A). The proposition, together with quantifier elimination for DCF implies stability of DCF,
hence the naming. In fact DCF has the stronger property of being ω-stable, see 2.5.2.
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2.3. DCF has elimination of imaginaries.

2.3.1. Definition. Let M be an L -structure with two definable constants. We
say thatM has elimination of imaginaries[17] if for every 0-definable equivalence
relation E ⊆Mn×Mn, there are some d ∈ N and a 0-definable function f : Mn −→
Md such that the equivalence classes of E are exactly the fibres of f ; in symbols:

{[ā]E | ā ∈Mn} = {f−1(c̄) | c̄ ∈ image of f}.
A complete theory has elimination of imaginaries if one (equivalently: all) of its
models have elimination of imaginaries.

We will now show that DCF has elimination of imaginaries. This will follow the
same route as the proof that ACF has elimination of imaginaries. We need three
preparations, one from model theory (2.3.3), one from topology (2.3.4) and one
from field theory (2.3.5).

2.3.2. Warning. Elimination of imaginaries looks like a weak form of definable
Skolem functions. However this is not the case. For example the field of p-adic
numbers has definable Skolem functions, but it does not have elimination of imag-
inaries (use the equivalence relation vp(a) = vp(b) on Qp).

2.3.3. Theorem. Let T be an L -theory (not necessarily complete) that defines at
least two constants. Then T has elimination of imaginaries if and only if for every
L -formula ε(x̄, ȳ) that defines an equivalence relation on n-tupels in all models of
T , the following condition holds.
(∗) For every model M of T and each ā ∈ Mn there is a set B ⊆ M (of some

size, not necessarily finite) such that for all automorphisms σ of M we have

σ(ε[M, ā]) = ε[M, ā] ⇐⇒ σ|B = idB .

If this is the case, then the set B above can also be chosen to be finite.

Proof. If we have a function f for ε as in 2.3.1 then we may take B as the finite
set of coordinates of f(ā) (notice that σ(ε[M, ā]) = ε[M,σā]). Hence the condition
is satisfied when T has elimination of imaginaries.

The converse essentially follows from standard definability tests in model theory,
like Svenonius’ theorem. For details see [Hodges1993, Section 4.4, Section 10.5 and
Corollary 10.5.5].
Remark: The assumption that T defines 2 constants is undesirable in some con-
texts, for example for modules or groups. In that case, condition (∗) characterizes
existence of functions as in 2.3.1, but only ’locally’. See [Hodges1993, Section
4.4] �

2.3.4. Lemma. Let X be any topological space and let C ⊆ X be a Boolean
combination of open sets. Then the frontier C \ C of C is not dense in C.

Proof. We may replace X by C and assume that C is dense in X. Write C =

⋃n

i=1Ai ∩ Oi with n ≥ 1, Oi ⊆ X open and nonempty and Ai ⊆ X closed. Let
O be minimal among nonempty intersections of the O1, . . . , On. Then for each
i ∈ {1, . . . , n} we have O ⊆ Oi or Oi ∩ O = ∅. Hence after a permutation of

[17]In [Hodges1993, Section 4.4] this property is called uniform elimination of imaginaries.
However in the presence of two definable constants this is equivalent to elimination of imaginaries
in the sense of [Hodges1993, Section 4.4].
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{1, . . . , n} we may assume that C ∩ O =⋃k

i=1Ai ∩ O for some k ∈ {1, . . . , n}. It
follows that C ∩ O is closed in O. On the other hand C is dense in X and O is
open in X, which implies that C ∩O is dense in O. Consequently C ∩O = O, i.e.
O ⊆ C. Since O 6= ∅, the set X \ C is not dense in X. �

2.3.5. Theorem. (André Weil)
Let K be a field and let a be an ideal of K[T ], where T is a (not necessarily finite)
set of indeterminates. Then there is a smallest subfield k ⊆ K such that a is defined
over k, i.e. (a∩ k[T ])·K = a. The field k is called the field of definition of a and
has the following property: If σ is an automorphism of K, then

σ(a) = a ⇐⇒ σ|k = idk .

Proof. Reference: [Lang1972, Chap. III, Section 2, Theorem 7, p.62]. Here is
how to find k: Let B be a set of monomials in the indeterminates T such that
b 6= b′mod a for all b 6= b′ ∈ B and such that {bmod a | b ∈ B} is a basis of the
K-vectorspace K[T ]/a. For each monomial m in the indeterminates T , let mb ∈ K
be the coefficient at bmod a, when mmod a is written as a K-linear combination in
that basis. Hence

m =
∑
b∈B

mb·b mod a.

The sum makes sense because mb = 0 for all but finitely many b ∈ B.
Let k be the field generated by all the mb, b ∈ B,m a monomial. Then one

shows that k has the required properties. �

2.3.6. Corollary. Let K be a differential field and let T be a set of differential in-
determinates. Let a be a differential ideal of K{T}. There is a smallest differential
subfield k ⊆ K such that a is generated as a differential ideal by a ∩ k{T}.

The field k is the differential field generated by the field of definition of the ideal
a and is called the differential field of definition of a. It has the following
property: If σ is a differential automorphism of K then

σ(a) = a ⇐⇒ σ|k = idk .

Proof. Straightforward checking using 2.3.5. �

2.3.7. Theorem. Differentially closed fields have elimination of imaginaries.

Proof. We verify condition (∗) of 2.3.3 for Lri(d)-formulas ε(x̄, ȳ), for which DCF
defines an equivalence relation on n-tuples (in models). Take a differentially closed
field M and some ā ∈ Mn. Let E ⊆ Mn ×Mn be the set defined by ε(x̄, ȳ) in M
and let [ā]E ⊆ Mn be the equivalence class of ā for E. Hence [ā]E is defined by
ε(x̄, ā) in M . Let V ⊆ Mn be the closure of [ā]E for the Kolchin topology and let
I ⊆M{x̄} be the vanishing ideal of V , thus

I = {P ∈M{x̄} | P |V ≡ 0}.
Obviously I is a differential ideal ofM{x̄}. Let k be the differential field of definition
of I as in 2.3.6. We claim that k has the required property (∗) of 2.3.3 for ā, hence
we claim for every differential automorphism σ of N that

(∗) σ(ε[M, ā]) = ε[M, ā] ⇐⇒ σ|k = idk .

By 2.3.6 we know that
σ(I) = I ⇐⇒ σ|k = idk,
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which easily implies

(†) σ(V ) = V ⇐⇒ σ|k = idk .

Since σ is a differential automorphism of M , its extension Mn −→Mn is a home-
omorphism for the Kolchin topology. Hence if σ(ε[M, ā]) = ε[M, ā], then also
σ(V ) = V (recall that V is the Kolchin closure of ε[M, ā]), hence by (†) we get
σ|k = idk.

Conversely assume σ|k = idk. By (†) we know σ(V ) = V and we need to show
σ(ε[M, ā]) = ε[M, ā]. By quantifier elimination of DCF we know that ε[M, ā] is
a Boolean combination of Kolchin closed sets. Hence by 2.3.4, V \ ε[M, ā] is not
Kolchin dense in V . On the other hand, as σ is a homeomorphism, σ(ε[M, ā])
again has Kolchin closure V . Consequently, σ(ε[M, ā]) cannot be in V \ ε[M, ā],
which means that ε[M, ā] ∩ σ(ε[M, ā]) 6= ∅. However, σ(ε[M, ā]) = ε[M,σ(ā)] is
also an equivalence class of E (using that E is 0-definable) and therefore ε[M, ā] =
σ(ε[M, ā]), as required. �

2.3.8. Examples. Let M be a DCF. We exhibit two natural 0-definable equivalence
relations. Let C be the constant field of M .
(i) The additive group M/C is coded by the derivation δ : M −→ M , i.e. the

diagram
M

M M/C

δ
f

where f(amodC) = a′ is commutative and f is a bijection. f is even a group
homomorphism. The compositional inverse of f maps b ∈ M to amodC,
where a is any anti-derivative of b. In a sense, f−1 is like integration of M .

(ii) The multiplicative group M×/C× is coded by the logarithmic derivation ` :

M× −→M, `(a) = a′

a , i.e. the diagram

M

M× M×/C×

`
g

where g(amodC×) = a′

a is commutative and g is a bijection. g is even a group
homomorphism. The compositional inverse of g maps b ∈ M to amodC×,
where a′

a = b.
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2.4. Cantor-Bendixson analysis of a topological space.

2.4.1.Definition. Let∞ be an element larger than every ordinal. For an arbitrary
topological spaceX [18] we write δX for the set of all non-isolated (i.e., accumulation)
points of X. The set δX is called the Cantor–Bendixson derivative of X. If
δX = X 6= ∅, then X is called perfect. For an ordinal α we define subsets δαX of
X by transfinite recursion on α:
• δ0X = X.
• δα+1X = δδαX.
• If α is a limit ordinal, then δαX =⋂β<α δ

βX.

Finally we define δ∞X =⋂α δ
αX. Clearly, (δαX)α is a descending chain of closed

subsets of X and δ∞X does not possess isolated points. For an element x ∈ X, the
Cantor–Bendixson rank of x, denoted CBX(x) or CB(x), is the largest ordinal
α, or ∞, with the property that x ∈ δαX. (By the definition of δαX this indeed
makes sense.)

The Cantor–Bendixson rank CB(X) of a nonempty space X is the supremum
of all α with δα(X) 6= ∅, or ∞ if this supremum does not exist. In other words

CB(X) = sup{CBX(x) | x ∈ X}.

We set CB(∅) = −1. If CB(X) = α <∞, then the Cantor-Bendixson degree is
defined as the cardinality of δα(X):

CD(X) = card(δα(X)), α = CB(X).

2.4.2. Examples.
(i) If X is ω + 1 with the interval topology (i.e., the one-point compactification

of the discrete set ω), then CBX(ω) = 1 and all points other than ω have
Cantor–Bendixson rank 0. If X is a densely totally ordered set equipped with
the interval topology, then no point of X is isolated, hence X is perfect and
so CBX(x) =∞ for all x ∈ X.

(ii) Let λ be an ordinal. We consider λ as a topological space having the down-
sets[19] as open sets. Obviously, the unique isolated point of a nonempty
subset Y is the minimum of Y . Consequently for any ordinal α ≤ λ, we have
δα(λ) = {β | α ≤ β < λ}. Consequently CB(λ) = λ, if λ is a limit ordinal
and CB(λ) = µ, if λ is the successor of µ. Furthermore CBλ(α) = α for all
α ∈ λ.

On the other hand, if we write λopp for λ with the topology that has the
up-sets[20] as open sets, then CB(λopp) = ∞, unless λ is finite. The reason
is that ω is a perfect subset.

2.4.3. Generalities on the Cantor-Bendixson rank Let X = (X, τ) be an
arbitrary topological space, X 6= ∅.
(i) Clearly δX = ∅ if and only if X is discrete.

[18]In particular X does not need to be Hausdorff
[19]A down-set of a partially ordered set (X,≤) is a subset Y ⊆ X with the property x ≤ y ∈

Y ⇒ x ∈ Y .
[20]An up-set of a partially ordered set (X,≤) is a subset Y ⊆ X with the property x ≥ y ∈

Y ⇒ x ∈ Y .
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(ii) If Y ⊆ X is a subspace, then δαY ⊆ δαX as follows from δY ⊆ δX by
straightforward transfinite induction on α. Consequently CBY (y) ≤ CBX(y)
for all y ∈ Y and

CB(Y ) = sup{CBY (y) | y ∈ Y } ≤ sup{CBX(y) | y ∈ Y } ≤ CB(X).

(iii) δ∞X is nonempty if and only if X has a perfect subspace. Then δ∞X is the
largest perfect subspace (by (ii)).

(iv) From (iii) we see that CB(X) <∞ if and only if X does not contain a perfect
subset, which means that X is scattered (i.e., every nonempty subset S
contains a point that is isolated in S).

(v) If Y ⊆ X is open, then a straightforward induction on α implies δα(Y ) =
δα(X) ∩ Y . Therefore CBY (y) = CBX(y) for all y ∈ Y and

CB(Y ) = sup{CBX(y) | y ∈ Y }.
(vi) For x ∈ X and any basis of neighborhoods N of x we have

CBX(x) = min{CB(Z) | x ∈ Z ∈ N }.

Proof. By (ii) we may assume that all sets in N are open.
≤. Let Z ∈ N . Since Z is open we know from (v) that CBX(x) = CBZ(x),

which is ≤ CB(Z).
≥: We may assume that α = CBX(x) <∞. Hence there is an open subset

O of X with O ∩ δαX = {x} and we may assume that O ∈ N .
By (ii) we see that CB(O) ≤ sup{CBX(y) | y ∈ O} = α. �

(vii) If τ ′ is another topology on X with τ ⊆ τ ′, then a trivial induction on α shows
that δα(X, τ ′) ⊆ δα(X, τ) and therefore CBτ ′(x) ≤ CBτ (x) for all x ∈ X.

(viii) If X is quasi-compact[21] then

CB(X) = max{CBX(x) | x ∈ X},

because all sets δαX are closed. If α = CB(X) <∞, the set δαX is finite and
so CD(X) ∈ N.

(ix) If Y ⊆ X is open and quasi-compact, then by using (v) and (viii) we have

CB(Y ) = max{CBX(y) | y ∈ Y }.
(x) If CB(X) 6=∞ then card(CB(X)) ≤ card(X).

(xi) If X is a T0-space then X \ δX is contained in the set of minimal points (for
specialization). The inclusion may be proper, for an example see 2.4.2(i).

(xii) Every indiscrete space with at least two points has Cantor–Bendixson rank
∞. If X is not a T0-space then X has a perfect subspace, hence CB(X) =∞.

2.4.4. Lemma. Let X be a compact Hausdorff space and let α be an ordinal. The
following are equivalent.
(i) CB(X) ≥ α+ 1
(ii) δα(X) is infinite.
(iii) There are infinitely many open and pairwise disjoint subsets of X with Cantor-

Bendixson rank ≥ α.

[21]A space is quasi-compact if every open cover has a finite subcover.
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Proof. (i)⇒(iii). (here we only need the Hausdorff property, not compactness) By
assumption there is some p ∈ δαX that is not isolated in δαX. Choose y1 ∈
δαX, y1 6= p and disjoint open neighborhoods V1 of p and U1 of y1 (using the
Hausdorff property). Then V1 ∩ δαX contains a point y2 6= p. Choose disjoint
open neighborhoods V2 of p and U2 of y2, contained in V1. Now repeat this process
with V2 and iterate. We obtain open neighborhoods V1 ⊇ V2 ⊇ . . . of p, points
y1, y2, . . . ∈ δαX and open neighborhoods Ui of yi with Vi ∩ Ui = ∅, Ui+1 ⊆ Vi. It
follows that U1, U2, . . . are infinitely many open and pairwise disjoint subsets of X
with Cantor-Bendixson rank ≥ α.
(iii)⇒(ii) is obvious.
(ii)⇒(i). Since δαX is a closed subset of the compact space X, it is itself compact.
But δαX is infinite and so it cannot be discrete. Consequently δδαX 6= ∅. �

2.4.5. Cantor-Bendixson analysis in a Boolean space Recall that a space X
is Boolean if it is compact Hausdorff such that the set Clop(X) of clopen (=closed
and at the same time open) subsets of X are a basis. The set Clop(X) is a Boolean
algebra of subsets of X. By 2.4.3(vi) we know that the Cantor-Bendixson rank of
points of a Boolean space may be computed from the Cantor-Bendixson ranks of
clopen sets containing x:

(∗) CBX(x) = min{CB(Z) | x ∈ Z ∈ Clop(X)}.
Furthermore we may define CB(Z), Z ∈ Clop(X) in combinatorial terms within
the Boolean algebra Clop(X). This goes as follows: If Z ⊆ X is clopen then Z has
the following properties:
(a) CB(Z) ≥ −1
(b) For every ordinal α, CB(Z) ≥ α + 1 if and only if there are infinitely many

nonempty clopen subsets Z1, Z2, . . . ⊆ Z with Zi ∩ Zj = ∅ for all i 6= j such
that CB(Zi) ≥ α for all i.

(c) If λ is a limit ordinal, then CB(Z) ≥ λ if and only if CB(Z) ≥ α for all α < λ.
Item (a) is clear, (b) holds by 2.4.4 using the assumption that Clop(X) is a basis,
and (c) follows from 2.4.3(ix) using that Z is open and compact.

Hence in a Boolean space one may define Cantor-Bendixson rank by first using
(a),(b) and (c) to define the expression CB(Z) ≥ α for Z ∈ Clop(X) by induction,
and then to define CB(Z) = max{α | CB(Z) ≥ α}. Equation (∗) above extends
the definition to points in x.

Remark. It is not difficult to show that a Boolean space X is scattered if and only
if the Boolean algebra Clop(X) is super atomic (i.e., every homomorphic image
has an atom); see Handbook of Boolean Algebras, Vol. I, Chapter 17, p. 271f.

The rank of a poset

2.4.6. Proposition and Definition. Let X = (X,≤) be a poset. We equip X
with the topology τU that has the up-sets as open sets and define the rank of x ∈ X
as

rk(x) = rk(X,≤)(x) := CB(X,τU )(x).

Hence rk(x) is an ordinal or ∞, which can be described directly in terms of the
poset X as follows.
• rk(x) ≥ 0 for all x.
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• If α is an ordinal, then rk(x) ≥ α+ 1 if and only if there is some y ∈ X with
x < y and rk(y) ≥ α.

• If α is a limit ordinal, then rk(x) ≥ α if and only if rk(x) ≥ β for all β < α.
We define Rk(X), the rank of the poset, to be the Cantor–Bendixson rank of
(X, τU ). The rank of a space (X, τ) is the rank of the poset (X,  τ ) and is also
denoted by Rk(X).

In particular, for any ordinal α the set Rkα(X) = {x ∈ X | rk(x) ≥ α} is a
down-set.

Proof. By definition of the Cantor–Bendixson rank it suffices to show that for every
ordinal α we have CB(X,τU )(x) ≥ α + 1 if and only if there is some y ∈ X with
x < y and CB(X,τU )(y) ≥ α (i.e., y ∈ δαX). Note that CB(X,τU )(x) ≥ α+ 1 means
that x ∈ δαX and x is not isolated in δαX for τU . Since x↑ is the smallest open
subset containing x, this is equivalent to saying that

x↑ ∩ δαX ) {x}.
But this condition says precisely that x is a non-maximal point of δαX (i.e., there
is some y ∈ δαX with x < y). �

2.4.7. Remarks and Examples Let (X,≤) be a poset.
(i) Let Y ⊆ X be a subset. Then rkY (y) ≤ rkX(y) for each y ∈ Y .
(ii) An element x ∈ X is maximal if and only if rk(x) = 0. Thus, (X, τU ) is

perfect if and only if (X,≤) does not have any maximal elements.
(iii) If X has a bottom element then rk(⊥) = Rk(X).
(iv) If x ∈ X then rk(x) = Rk(x↑), where x↑ = {y ∈ X | x ≤ y}.
(v) If x < y then rk(y) < rk(x) or rk(y) = rk(x) =∞.
(vi) rk(x) = ∞ if and only if there is an infinite chain x = x1 < x2 < x3 < · · · .

(Use (v) for the implication ⇐.)
(vii) If rk(x) = α 6=∞ and β < α, then there is some xβ ∈ x↑ with rk(xβ) = β; in

particular, card(α) ≤ card(x↑).
Proof. Assume the claim is false. The description of the rank in 2.4.6 shows,
together with (v), that there is some x1 ∈ x↑ \ {x} with α > rk(x1) > β. We
repeat the construction with x1 in place of x and obtain some x2 ∈ x↑1 with
α > rk(x1) > rk(x2) > β. Iteration yields a properly decreasing sequence
rk(x1) > rk(x2) > rk(x3) > · · · of ordinals, a contradiction. �

(viii) Suppose X 6= ∅ is anti-well-ordered of order type λopp for an ordinal λ. Then
a simple (transfinite) induction on α ∈ X shows that rk(α) = α. Hence
Rk(X) = λ if λ is a limit ordinal and Rk(X) = β if λ = β + 1. This should
also be compared with 2.4.2(ii).

2.4.8. Lemma. For a poset X the following conditions are equivalent:
(i) Rk(X) <∞.
(ii) X has the ACC (i.e., every nonempty chain has a maximum).

Proof. (i)⇒(ii) Assume there is a chain in X without maximum. Then the chain
contains a strictly increasing sequence x1 < x2 < x3 < · · · . It follows from 2.4.7(vi)
that rk(x1) =∞, which implies Rk(X) =∞ (by 2.4.3(ii) and 2.4.7(iv)).
(ii)⇒(i) Suppose rk(x) = ∞ for some x ∈ X. Pick any ordinal α with card(α) >
card(X). There is some x1 ∈ x↑ \ {x} with rk(x1) ≥ α, 2.4.6. Now 2.4.3(x)
implies rk(x1) =∞ (since card(rk(x1)) = card(Rk(x↑1)) > card(x↑1)). Iterating this
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procedure we obtain a strictly increasing sequence x < x1 < x2 < · · · , which is a
chain without maximum. �

2.4.9. Proposition. [22] Let K be a differential subfield of a differentially closed
field and let p ∈ Sn(M,K). Let p ∈ Sped(K{x}), x = (x1, . . . , xn) be the prime
ideal corresponding to p in the bijection π of 2.2.2. Then the Cantor-Bendixson
rank of p in Sn(M,K) is less or equal to the rank of p in Sped(K{x}).

Proof. The rank of π(p) is the Cantor-Bendixson rank in Sped(K{x}) for the topol-
ogy that has the up-sets of Sped(K{x}) (i.e. sets G satisfying q ⊇ p ∈ G⇒ q ∈ G)
as open sets. Since π is a bijection, the rank of π(p) is the Cantor-Bendixson rank of
p for the topology {π−1(G) | G up-set of Sped(K{x})} of Sn(M,K). By 2.4.3(vii)
it is therefore enough to show that for each up-set G of Sped(K{x}), the set π−1(G)
is open in Sn(M,K) for the type space topology. So assume π(p) ∈ G. By Ritt-
Raudenbush, 1.4.3, there is a finite subset E ⊆ π(p) with π(p) = d

√
E. Then the

set 〈E = 0〉 ⊆ Sn(M,K) is an open neighborhood of p, contained in π−1(G): If
q ∈ 〈E = 0〉, then π(p) = d

√
E ⊆ π(q). As G is an up-set we get q ∈ π−1(G). �

2.4.10. Remark. The inequality in 2.4.9 is strict in general. We will see an exam-
ple later. In the context of algebraically closed fields (of any characteristic), the
inequality in 2.4.9 is indeed an equality, see [DiScTr2019, Theorem 12.4.12]. Hence
in this context, the Krull-dimension of K[x1, . . . , xn] can be explained entirely with
the type space topology.

2.4.11. Theorem. If M is a DCF and A ⊆ M is infinite, then Sn(M,A) is
scattered and of size card(A).

Proof. We may assume that A is a differential field. By Ritt-Raudenbush, 1.4.3,
differential prime ideals have the ACC. By 2.4.8, the rank of SpedK{x1, . . . , xn}
is an ordinal. Hence by 2.4.9, the Cantor-Bendixson rank of Sn(M,A) is an or-
dinal as well and so this space is scattered. By 2.2.2, the size of Sn(M,A) is
card(Sped(A{x1, . . . , xn})). Since all differential prime ideals are finitely gener-
ated as differentially radical ideals we know that card(Sped(A{x1, . . . , xn})) is
card(A). �

Remark: There is a conceptually different proof of 2.4.11 that does not involve
Ritt-Raudenbush, see 2.5.8.

[22]see [DiScTr2019, Theorem 8.1.25] for further topological explanations.
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2.5. Excursion: ω-stable theories.

2.5.1. Definition. Let L be any language and let κ be a cardinal. An L -theory
T without finite models is called κ-stable if for all models M and any set A ⊆M
of size κ we have card(S1(M,A)) = κ. T is called stable if T is stable for some
cardinal κ ≥ card(L ). The theory T is called totally transcendental theory if
for all A ⊆M |= T and each n ∈ N the type space Sn(M,A) is scattered.

2.5.2. By 2.4.11 we know that DCF is ω-stable, totally transcendental and κ-stable
for all infinite cardinals. One can prove 2.4.11 also without using Ritt-Raudenbush
and this is interesting for general model theory. We give the arguments here, but
only need a small fragment of them for DCF.

2.5.3. Theorem. T is ω-stable ⇒ T is totally transcendental ⇒ T is κ-stable for
all κ ≥ card(L ).

Hence, if L is countable, then all three conditions are equivalent.

Proof. The first implication is done in 2.5.7 below, the second is done in 2.5.4. �

2.5.4. Lemma. Let X be a scattered space and let B be a subbasis. Then card(X) ≤
card(B).

Proof. Let x ∈ X and α = rk(x). Then x is isolated in δα(X), hence there is some
Ux ∈ B with Ux ∩ δα(X) = {x} and it suffices to show that the map x 7→ Ux is
injective. So let y ∈ X with y 6= x and w.l.o.g. assume rk(y) ≥ α. Then y ∈ δα(X)
and so y /∈ Ux. Therefore Ux 6= Uy. �

2.5.5. Lemma. Let B be a basis of a compact Hausdorff space X and suppose X
is not scattered. Then there are Uσ ∈ B, σ ∈ 2<ω (=⋃n<ω 2n) with the following
properties.

(a) Uσ 6= ∅.
(b) If τ extends σ, then Uτ ⊆ Uσ.
(c) If σ, τ ∈ 2n with σ 6= τ , then Uσ ∩ Uτ = ∅.

Proof. Since X is not scattered, there is a non-empty subset S ⊆ X such that S
has no isolated points (in S). We choose U∅ ∈ B arbitrarily with U∅ ∩ S 6= ∅ and
construct the Uσ with properties (b),(c) by induction on the length of σ, with the
additional property that Uσ ∩ S 6= ∅. Suppose we have already defined Uσ for all
σ ∈ 2n, n ≥ 0 and fix σ ∈ 2n. By induction we know Uσ ∩ S 6= ∅. As Uσ is open,
the set Uσ∩S has at least two different points x, y. In the compact Hausdorff space
X, there are open neighborhoods Uσ,0 of x and Uσ,1 of y with disjoint closures.
Since B is a basis of X we may shrink these sets if necessary and assume that
Uσ,0, Uσ,1 ∈ B as well as Uσ,0, Uσ,1 ⊆ Uσ. By running through all σ ∈ 2n, this gives
a definition of Uτ for all τ ∈ 2n+1: Define Uτ = Uτ |n,τ(n).

By construction, the Uσ satisfy (b) and (c) (as well as Uσ ∩ S 6= ∅). �

2.5.6. Proposition. Let f : X −→ Y be a continuous map between topological
spaces.

(i) If Y and all fibers of f are scattered, then also X is scattered.
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(ii) If f is a surjective and proper map[23], then for all α we have δα(Y ) ⊆
f(δα(X)). Consequently, X is scattered if and only if Y and all fibres of
f are scattered.

Proof. (i). We claim that every nonempty subset S of X possesses a point that is
isolated in S. Since Y is scattered, there is some y ∈ f(S) and an open subset U of
Y with U ∩f(S) = {y}. Since f−1(y) is scattered, there is some x ∈ S∩f−1(y) and
an open subset O of X with O ∩ S ∩ f−1(y) = {x}. Then O ∩ f−1(U) ∩ S = {x},
as required.
(ii). Claim. δ(Y ) ⊆ f(δ(X)).
Proof of the claim. Take y ∈ Y \f(δ(X)). Then no x in the fiber of y is in δ(X) and
so x is isolated. Consequently f−1(y) is open. Since f is closed, also f(X \ f−1(y))
is closed. But f is surjective and so f(X \ f−1(y)) is Y \ {y}. Hence y is isolated,
i.e. y /∈ δ(Y ). �
Now we do an induction by α, where α = 0 holds by surjectivity of f . For the
induction step we assume that δα(Y ) ⊆ f(δα(X)). Then

δα+1(Y ) = δ(δα(Y )) ⊆ δ(f(δα(X)))

⊆ f(δ(δα(X))), by the claim applied to the map
f |δα(X) : δα(X) −→ f(δα(X)),

which is closed and surjective as well,

= f(δα+1(X)).

If α is a limit ordinal or α =∞, then

δα(Y ) = ⋂
β<α

δβ(Y ) ⊆ ⋂
β<α

f(δβ(X)), by induction,

= {y ∈ Y | f−1(y) ∩ δβ(X) 6= ∅ for all β < α}
= {y ∈ Y | f−1(y) ∩ δα(X) 6= ∅}, since f−1(y) is quasi-compact
= f(δα(X)).

�

2.5.7. Proposition. LetM be an ℵ1-saturated L -structure such that for all count-
able A ⊆M the set S1(M,A) is countable. Then for all N �M , every B ⊆ N and
each n ∈ N the space Sn(N,B) is scattered and of size at most card(L (B)).

Proof. By saturation ofM we know that for all countable subsets A of any elemen-
tary extensions of N , the set S1(N,A) is countable as well.

Claim. For any N �M and each set B ⊆ N , the space S1(N,B) is scattered.
Proof. Suppose otherwise. By 2.5.5 applied to the basis B = {〈ϕ(x)〉 | ϕ ∈
Fml(L1(B))}[24] of S1(N,B), there are ϕσ ∈ Fml(L1(B)), where σ ∈ 2<ω such
that conditions (a),(b) and (c) of 2.5.5 hold. Let A ⊆ N be countable such
that ϕσ ∈ Fml(L1(A)) for all σ ∈ 2<ω. Then for every γ : ω −→ {0, 1} the
set Φγ = {ϕγ|n | n ∈ N} is finitely realizable in N (by (a) and (b)) and con-
sequently there is some pγ ∈ S1(N,B) containing Φγ . However, by (c), for
γ1 6= γ2 : ω −→ {0, 1}, the sets Φγ1 and Φγ2 are inconsistent, which implies

[23]A continuous map is called proper if it is closed and all fibres are quasi-compact; for example
continuous maps between compact Hausdorff spaces are proper.

[24]We write 〈ϕ(x)〉 for the set of types containing ϕ(x).
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pγ1 6= pγ2 . Since there are uncountably many maps ω −→ {0, 1} we see that
S1(N,A) is uncountable, which contradicts the assumption. �

Hence we know the proposition for n = 1. Suppose we know the proposition for n.
We show that Sn+1(N,B) is scattered by using 2.5.6(i) applied to the continuous
map ρ : Sn+1(N,B) −→ Sn(N,B), ρ(p) = p ∩ Fml(Ln(B)). Since Sn(N,B) is
scattered by induction, we only need to show that each fibre ρ−1(p) with p ∈
Sn(N,B), is scattered. Let ᾱ be a realization of p in N ′ � N . Then the map

S1(N ′, B ∪ {α1, . . . , αn}) −→ Sn+1(N ′, B) = Sn+1(N,B)

(induced by the map Fml(Ln+1(B)) −→ Fml(L1(B ∪ {α1, . . . , αn})) sending
ψ(x, y1, . . . , yn) to ψ(x, α1, . . . , αn)) is readily seen to be a homeomorphism onto
ρ−1(p). By induction we see that all fibres of ρ are scattered. Hence by 2.5.6(i),
Sn+1(N,B) is scattered as well.

Finally we see that Sn(N,B) has size at most card(L (B)) by 2.5.4. �

2.5.8. Alternative proof of 2.4.11:
By 2.5.7 it suffices to show that for each countable differential field K, the set
S1(M,K) is countable, where M ⊇ K is a DCF. By 2.2.2 it suffices to show that
Sped(K{x}) is countable, where x is a single variable. But this is implied by 1.2.12,
by which we only need to count irreducible polynomials of K{x}. Notice that this
argument does not require Ritt-Raudenbush.
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2.6. Rank functions and stability.

2.6.1. Isolated types If M is an L -structure, then the isolated types in Sn(M)
are precisely the types that are realised in M . If M is a DCF, then under the
bijection π : Sn(M) −→ Sped(M{x}), x = (x1, . . . , xn), from 2.2.2, the isolated
types correspond to those ideals that are maximal among proper differential ideals
(and all these are maximal ideals of the ring M{x}).[25]
Proof. If p ∈ Sn(M) is isolated by 〈ϕ〉, then p is realised by a realization a ∈ Mn

of ϕ. Hence π(p) contains xi−ai for all i ∈ {1, . . . , n} and therefore it is the kernel
of the (differential) evaluation map M{x} −→M at a.

Conversely, if m is maximal among differential (and proper) ideals ofM{x}, then
also d

√
m =

√
m is a proper differential ideal and so m is differentially radical. By the

differential Nullstellensatz 2.2.5 there is a point a ∈ VM (p). Then m is contained
in the kernel of the evaluation map M{x} −→ M at a (which is even a maximal
ideal of M{x}) and by maximality of m we see that m is that kernel. Hence m is
the differential prime ideal corresponding to the isolated type tp(a/M). �

In the context of algebraically closed fields, the same correspondence holds true
using the classical Nullstellensatz. In this context, the situation indeed extends to
all fields, i.e., if K is a field andM is an ACF containing K, then the isolated types
in Sn(M,K) are in bijection with the maximal ideals of Spec(K[x]). This is due to
Zariski’s version of the Nullstellensatz, see for example [DiScTr2019, Cor. 12.3.7].

In the differential context the correspondence does not descend to differential
fields: Using Ritt-Raudenbush, 1.4.3, it is still true that every ideal m that is
maximal among proper differential ideals of K{x} comes from an isolated type, a
formula isolating that type is

∧∧
P∈E P (x) = 0 for any finite E ⊆ m with m = d

√
E.

However, not for every isolated type p ∈ S1(M,K) is the prime ideal π(p) maximal
among proper differential ideals. An example is given in 2.6.4 below. This is a first
indication that the Cantor-Bendixson rank does not properly describe the geometric
situation and we will have to tweak it to obtain the Morley rank. In 2.6.4 we will
see further evidence.

2.6.2. Definition. Let K be a differential field. If p ∈ S1(K), then by 1.2.12
and 2.2.2 we know that there is an irreducible polynomial P ∈ K{x} such that
I(P ) = {Q ∈ K{x} | Q = 0 ∈ p}. Each such polynomial is called a (differential)
minimal polynomial of p and of the prime ideal p = I(P ). It follows from
1.2.10(ii) that P is uniquely determined by this requirement, up to a non-zero
scalar. We define the dimension rank of p and of p to be the order of P :

RD(p) = RD(p) = ord(P ).

(If P = 0 then I(p) = I((0)) = ord(P ) =∞.)

2.6.3. Lemma. We have RD(p) = inf{ord(P ) | P ∈ K{x}, P (x) = 0 ∈ p} ∈
N0 ∪ {∞} and RD(p) = tr.degK Quot(K{x}/p).

Proof. This is clear if P = 0. So assume ord(P ) = n ∈ N0. Obviously n =
tr.degK Quot(K{x}/p) ∈ N0. We write a = x + p ∈ K{x}/p. Since P (a) = 0

[25]Notice that not every maximal ideal of M{x} occurs here, e.g. take a maximal ideal
containing {x, x′ − 1}. In this context it is worth mentioning that ideals of a differential ring
that are maximal among proper differential ideals, are in general not maximal among all proper
ideals. For example in the differential ring (Q[t], d

dt
), the only differential ideal is (0), because

every nonzero polynomial has a higher derivation in Q \ {0}.
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it is clear that a(n) is algebraic over K(a, a′, . . . , a(n−1)). Since P is the minimal
polynomial of p, the elements a, a′, . . . , a(n−1) are algebraically independent. Using
the formula P (k) = S(P )·x(n+k) +Pk, k > 0 from 1.2.5 and S(P )(a) 6= 0 we see that
a(n) and all its derivatives are in K(a, a′, . . . , a(n)). This shows that Quot(K{x}/p
has transcenedence degree n over K. �

2.6.4. Example. Let K be a differential field whose derivation is trivial.
(i) If p ∈ S1(K) with RD(p) = 1 and x′ 6= 0 is in p, then p is isolated in S1(K).

In particular CB(p) < RD(p).
The type p has Cantor-Bendixson rank 0 in S1(K), yet p is not an alge-

braic type.[26] Notice that in the case of pure fields, isolation is equivalent
to algebraicity.

(ii) The formula x′ = x ∧ x 6= 0 isolates a type p ∈ S1(K) with RD(p) = 1 and
the corresponding differential prime ideal I(x′ − x) = [x′ − x] is not maximal
among differential ideals of K{x}.

Proof. (i) Let P be a minimal polynomial of p. Since RD(p) = 1, there are F (x) ∈
K{x}, F 6= 0 and h(x) ∈ K[x] with P = F ·x′ + h. From x′ = 0 /∈ p we get that
h 6= 0. We claim that p is isolated by 〈P (x) = 0 ∧ h(x) 6= 0〉: To see this let q be a
1-type over K containing P (x) = 0 and assume q 6= p. Using 1.2.10(ii) we see that
the minimal polynomial of q cannot have order 1 and so RD(q) = 0. This implies
that any realization a of q from some DCF containing K is algebraic over K. Since
the derivation of K is trivial we get a′ = 0 (see 2.1.6) But then P (a) = 0 implies
h(a) = 0. Hence q is not contained in 〈P (x) = 0 ∧ h(x) 6= 0〉 and so p is indeed
isolated by this set.
(ii). By (i) applied to F = 1 and h = −x we see that p is isolated by x′ = x 6= 0.
Obviously [x′ − x] is properly contained in the differential ideal [x] of K{x}. �

[26]A type p ∈ Sn(K) is called algebraic if it has only finitely many realizations in any DCF
containing K.
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We now fix a complete theory T in an arbitrary language L . We will start
writing Sn(A) for the type space Sn(M,A), where A ⊆ M |= T . Notice: If A
is a substructure of M and T has quantifier elimination, then Sn(M,A) does not
depend onM . In general one should keep in mind that A is taken from some model
(which will be made explicit if this is important.)

2.6.5. Definition. Fix n ∈ N. An n-rank is a map R defined on
⋃A⊆M |=T Sn(M,A) with values in ordinals or ∞ satisfying the following prop-
erties.
R1. If A ⊆ B ⊆ M |= T and q ∈ Sn(M,B), then R(q) ≤ R(q|A) (where q|A =

q ∩ Fml(Ln(A))).

R2. If A ⊆ B ⊆M |= T and p ∈ Sn(M,A), then there is some extension q of p on
B (i.e. q ∈ Sn(M,B) and q|A = p) with R(q) = R(p).

R3. If f : M −→ N |= T is an isomorphism and p ∈ Sn(M,M), then R(f(p)) =
R(p).

R4. If p ∈ Sn(M,A) with R(p) < ∞, then there is a cardinal κ such that for all
N �M , p has at most κ many extensions q on Sn(N,N) of rank R(p).

A rank for T is a map defined on ⋃n∈N,A⊆M |=T Sn(M,A) with values in ordinals
or ∞ such that for each n, the restriction of R to n-types is an n-rank.

An rank R is called continuous if for every set A, each n ∈ N and all α the set
Rαn(A) = {p ∈ Sn(A) | R(p) ≥ α} is a closed subset of Sn(A). The rank R is called
Cantorian if for all α, the Cantor-Bendixson derivative δ(Rα(A)) is contained in
Rα+1(A) (this condition obviously implies that R is continuous).

2.6.6. Remark. Ranks are useful to understand forking in superstable (and totally
transcendental) theories. We comment on this now but omit proofs as this is not
needed later on.
(i) There is a smallest rank called the U -rank, or Lascar rank. U is defined as

follows. By induction on α we define for types p ∈ Sn(A) a property U(p) ≥ α
by
(a) U(p) ≥ 0
(b) U(p) ≥ α + 1 ⇐⇒ for all cardinals κ there is some B ⊇ A and at least

κ many extensions q of p on B with U(q) ≥ α.
(c) If α limit ordinal, then U(p) ≥ α ⇐⇒ U(p) ≥ β for all β < α.
Finally define U(p) = max{α | U(p) ≥ α}, which is an ordinal or ∞.

(ii) If the U -rank has ordinal values (i.e. U(p) <∞ for all types over all models),
then T is called superstable (and T is indeed stable, see [Poizat2000, 17.5,
p.335])

(iii) If T is superstable and R is any rank, p ∈ Sn(A) with R(p) <∞ and q is an
extension of p on B ⊇ A, then R(q) = R(p) if and only if q does not fork
over p. We refer to the literature for the definition of forking. In the stable
context one can use the following: q ∈ Sn(B) does not fork over p ∈ Sn(A) if
and only if for all M ≺ N |= T with A ⊆ M , B ⊆ N there is an extension
p1 of p on M and an heir q1 of p1 on N that extends q. Here q1 is an heir of
p1 if for all formulas ϕ(x̄, ȳ) with parameters from M and every b̄ ∈ N ȳ with
ϕ(x̄, b̄) ∈ q1 there is some ā ∈M ȳ with ϕ(x̄, ā) ∈ p1.
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2.6.7. Definition of Morley rank Let n ∈ N and x̄ = (x1, . . . , xn). By transfinite
induction on ordinals α we define for every formula ϕ = ϕ(x̄) with parameters from
some model M of T the property MR(ϕ) ≥ α as follows:

MR1. MR(ϕ) ≥ 0
MR2. MR(ϕ) ≥ α + 1 ⇐⇒ there are some N � M and formulas ψ1(x̄), ψ2(x̄), . . .

with parameters in N such that ψi[N ]∩ψj [N ] = ∅ for all i 6= j, and ψi[N ] ⊆
ϕ[N ], MR(ψi) ≥ α for all i.

MR3. if α is a limit ordinal, then MR(ϕ) ≥ α ⇐⇒ MR(ϕ) ≥ β for all β < α.

We define MR(ϕ) = max{α | MR(ϕ) ≥ α} (which is an ordinal, or∞). Finally, for
p ∈ Sn(A) we define

MR(p) = min{MR(ϕ) | ϕ ∈ p}.

MR(ϕ), MR(p) is called the Morley rank of ϕ, p respectively.

2.6.8. Comparison of Morley rank and Cantor-Bendixson rank Let T be
any theory. Let M |= T and let A ⊆M . Let ϕ(x̄) ∈ Fml(Ln(A)).

(i) By 2.4.5, we have CB(〈ϕ〉A) ≤ MR(ϕ), where 〈ϕ〉A is the subspace of Sn(A)
consisting of all types containing ϕ. Consequently by 2.4.5 we get CB(p) ≤
MR(p) for all p ∈ Sn(A).

(ii) If A = M and M is ℵ0-saturated, then CB(〈ϕ〉M ) = MR(ϕ). Consequently
by 2.4.5 we get MR(p) = CB(p) for all p ∈ Sn(M).
Proof. Assume MR(ϕ) ≥ α+ 1 and let ψi(x̄) be formulas with parameters in
some N � M as in condition MR2 of 2.6.7. Let B ⊆ N be countable such
that ψi ∈ Fml(L (B)). Let A0 be the finite set of parameters in ϕ. In the
ℵ0-saturated structure we may realize the type tp(B/A0) by an infinite set
C ⊆ M . Then condition MR2 in 2.6.7 is also satisfied for the formulas ψ̃i
obtained from ψi by replacing parameters with the corresponding parameters
from M . (Convince yourself that the property MR(ψ) ≥ α is preserved if
we change from the base model to an elementary extension or if we apply an
automorphism that fixes the parameters of ψ.) Now we may apply induction
and 2.4.5. �

(iii) For p ∈ Sn(A) and M̃ �M ℵ0-saturated we have

MR(p) = max{CB(q) | q extension of p on M̃}
= max{CB(q) | q extension of p on some N �M}
= max{MR(q) | q extension of p on some N �M}.

Proof. Clearly max{CB(q) | q extension of p on M̃} ≤ max{CB(q) |
q extension of p on some N �M}.
By (i) we know max{CB(q) | q extension of p on some N � M} ≤
max{MR(q) | q extension of p on some N �M} and the definition of MR(p)
easily implies max{MR(q) | q extension of p on some N � M} ≤ MR(p). It
remains to show that MR(p) ≤ max{CB(q) | q extension of p on M̃}. Write
α = MR(p), which could be ∞. Then by (ii) for all ϕ ∈ p we know

CB(〈ϕ〉M̃ ) = MR(ϕ) = α and therefore 〈ϕ〉M̃∩δα(Sn(M̃))
2.4.3(v)

= δα(〈ϕ〉M̃ ) 6=
∅. By quasi-compactness, we get ⋂ϕ∈p〈ϕ〉M̃ ∩ δα(Sn(M̃)) 6= ∅ and any type
q in this intersection is an extension of p with CB(q) ≥ α. �
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(iv) It follows from (ii) and (iii) that T is totally transcendental if and only if all
formulas have Morley rank < ∞ if and only if all types of all models have
Morley rank <∞.

2.6.9. Proposition.
(i) MR(ϕ) ≥ α + 1 ⇐⇒ for all k ∈ N there are N � M and formulas

ψ1(x̄), . . . , ψk(x̄) with parameters in N such that ψi[N ] ∩ ψj [N ] = ∅ for all
i 6= j, i, j ≤ k, and ψi[N ] ⊆ ϕ[N ], MR(ψi) ≥ α for all i ≤ k.

(ii) MR (on types) is the smallest Cantorian rank.

Proof. (i). The implication ⇒ is clear. For ⇐ assume MR(ϕ) = α. By 2.6.8(ii) we
may assume that CB(〈ϕ〉M ) = MR(ϕ) = α. Since 〈ϕ〉M is quasi-compact we know
from 2.4.3(viii) that the number of types of Cantor-Bendixson rank α in 〈ϕ〉M is
finite, say of size k. But then using 2.6.8 we see that the property on the right hand
side of (i) fails for k + 1.
(ii) We need to check the properties in 2.6.5. Properties R1, R2 and R3 are easily
deduced from 2.6.8. For R4, assume MR(p) = α < ∞ and A ⊆ B. We claim that
there are only finitely many extensions q of p on B with MR(q) = α. By R1 and
R3 we may assume that B = M is an ℵ0-saturated model. But then CB = MR
and there can only be finitely many extensions of q in δα(Sn(M)) (observe that the
extensions of p on M are a closed set). This shows R4 for the Morley rank.

MR is Cantorian because if p ∈ Sn(A) is a non-isolated point of {q ∈
Sn(A) | MR(q) ≥ α} and M ⊇ A is an ℵ0-saturated model, then a compactness
argument and R2 show that there is an extension p′ of p on M that is non-isolated
in {q ∈ Sn(M) | MR(q) ≥ α}. Thus MR(p) ≥ MR(p′) = CB(p′) ≥ α+ 1.

Finally, if R is any Cantorian rank then using 2.6.8(iii) one shows without diffi-
culty by induction on α that MR(p) ≥ α implies R(p) ≥ α. �

2.6.10. Example.

(i) Let K be a differential field and let Q ∈ K{X} be irreducible with ordQ = 1.
If XX ′′ −X ′ ∈ I(Q), then Q is associated to X ′.

Consequently, the type p ∈ S1(K) with minimal polynomial x′′x − x′ is
the unique non-algebraic type in 〈x′′x− x′, x′ 6= 0〉. Since K is arbitrary this
implies that MR(p) = 1 < 2 = RD(p).
Proof. Suppose X ′ does not divide Q. Let f0, . . . , fn ∈ K[X] with fn 6= 0,
such that Q = fn·(X ′)n + . . .+ f1·X ′ + f0. As X ′ does not divide Q we have
f0 6= 0 and we may assume that the leading coefficient of f0 is 1.

Then S(Q) =
n∑
i=1

i·fi·(X ′)i−1 and with Q∗ :=
n∑
i=0

f ′i ·(X ′)i we have

Q′ = S(Q)·X ′′ +Q∗

Since XX ′′ − X ′ ∈ I(Q) we have P := X·Q′ − S(Q)·(XX ′′ − X ′) ∈ I(Q).
Furthermore

P = X·(S(Q)·X ′′ +Q∗)− S(Q)·(XX ′′ −X ′) = X·Q∗ +X ′·S(Q)

It follows ordP ≤ 1 and the total degree of P is less or equal to 1+ the total
degree of Q, so by 1.2.10(ii) there is some H ∈ K{X} with ordH ≤ 1 and of
total degree ≤ 1 such that P = H·Q. We have f ′i = S(fi)·X ′ + f∗i , where f∗i



INTRODUCTION TO THE MODEL THEORY OF DIFFERENTIAL FIELDS 39

denotes the polynomial which we get by differentiating the coefficients of fi.

From Q∗ =
n∑
i=0

f ′i ·(X ′)i we get

Q∗ = S(fn)·(X ′)n+1 +

n∑
i=1

(S(fi−1) + f∗i )(X ′)i + f∗0

From P = X·Q∗ +X ′·S(Q) we get

P = X·S(fn)·(X ′)n+1 +

n∑
i=1

[X·S(fi−1) +X·f∗i + i·fi]·(X ′)i +X·f∗0

Let H = aX ′ + bX + c with a, b, c ∈ K. From P = H·Q we get X·f∗0 =
(bX + c)·f0. As the leading coefficient of f0 is 1, the degree of f∗0 is less than
the degree of f0. Thus b = 0.

Suppose c 6= 0. Then X divides f0. Let f0 = Xk·g with g ∈ K[X] and
X - g. Then f∗0 = Xk·g∗ and Xk+1·g∗ = X·f∗0 = c·f0 a contradiction. Hence
c must be zero.

So H = a·X ′ and f∗0 = 0. By dividing the equation P = H·Q by X ′ we get

a·Q = X·S(fn)·(X ′)n +

n−1∑
i=0

[X·S(fi) +X·f∗i+1 + (i+ 1)·fi+1]·(X ′)i

hence
(a) a·fn = X·S(fn) and
(b) a·fi = X·S(fi) +X·f∗i+1 + (i+ 1)·fi+1 for all i < n.
By (a) X divides fn. By (b) and induction we see that X divides all fi.

Hence X divides Q, a contradiction.
�

(ii) d
√
XX ′′ −X ′ is prime.

Proof. Let M ⊇ K be differentially closed. Since ( d
√
XX ′′ −X ′)·M lies over

d
√
XX ′′ −X ′ and is radical we may assume that K = M is differentially

closed. Let Q ∈ K{X} be irreducible with P ∈ I(Q). We have to show
that I(P ) ⊆ I(Q). We have ordQ ≤ ordP = 2, so if ordQ = 2, then Q is
associated to P and I(P ) = I(Q). So let ordQ ≤ 1 and let F ∈ I(P ). Take
m ∈ N such that Xm·F ∈ [P ]. Then Xm·F ∈ I(Q). Since X 6∈ I(Q) (ordX <
1 !) we have F ∈ I(Q). Finally assume that ordQ = 0 and F 6∈ I(Q). Since
K is algebraically closed, Q is of the form x − a for some a ∈ K. Then
I(Q) = [Q] = (X − a,X ′ − a′, X ′′ − a′′, . . .). Since X ∈ I(Q) we must have
a = 0. Since F 6∈ I(Q) we have F (0) 6= 0. We write F = F (X,X ′, . . . , X(k)).
Then F (X, 0, . . . , 0) 6= 0. Take a ∈ M with a·F (a, 0, . . . , 0) 6= 0 and a′ = 0.
Then P (a) = 0 and F (a) 6= 0 in contradiction to Xm·F ∈ [P ]. �

2.6.11. Lemma. Let K be a perfect field with algebraic closure K̄ and let P ∈
K[x1, . . . , xn] be irreducible. Write P =

∏m
i=1 P

ki
i with irreducible Pi such that Pi

is not associated to Pj for all i 6= j. Then ki = 1 for all i and for all i, j there is
some c ∈ K̄ and some σ in the Galois group Gal(K̄/K) with σ(Pi) = c·Pj.

Proof. We may assume that one of the coefficients of P1 is 1. Let L/K be a fi-
nite Galois extension containing all coefficients of P1. Then the set {σ(P1) | σ ∈
Gal(K̄/K)} is finite and equal to {σ(P1) | σ ∈ Gal(L/K)}, say of size m. Enumer-
ate the polynomials in this set as P1, . . . , Pm. Then Q = P1· . . . ·Pm ∈ K[x1, . . . , xn]
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divides P (since one of the coefficients of P1 is 1, Pi is not associated to Pj for i 6= j)
and therefore Q is associated to P . This shows the lemma. �

2.6.12. Proposition. The dimension rank is a Cantorian 1-rank for DCF. If
K ⊆ L are differential fields and P ∈ K{x} is irreducible, then the non-forking
extensions of the type corresponding to I(P,K) on L ⊆ K are precisely the types
of L corresponding to I(Q,L), where Q runs through the irreducible factors of P in
L{x}.

Proof. R1 and R3 are clearly satisfied. R2 and R4 are easily deduced from the
following

Claim. If K ⊆ L are differential fields, P ∈ K{x}\{0} irreducible and P1 ∈ L{x}
irreducible factor of P , then I(P1, L) ∩K{x} = I(P,K).
Proof. ⊇: Take F ∈ I(P,K), hence S(P )m·F ∈ [P ] ⊆ [P1]. Write P = P1·A,A ∈
L{x}. Then S(P ) = A·S(P1) + P1· ∂

∂x(n)A, where n = ord(P ). Hence

S(P1)m·Am·F = (S(P )− P1·
∂

∂x(n)
A)m·F ∈ [P1],

and so Am·F ∈ I(P1, L). But P1 - A by 2.6.11 and so F ∈ I(P1, L).
⊆. Let F ∈ I(P1, l) ∩ K{x} and let G be the reduced remainder of F for P .

Suppose G 6= 0. For some k,m ∈ N we know that L(P )k·S(P )m·F ≡ Gmod [P ]
and so L(P )k·S(P )m·F ≡ Gmod [P1] in L{x}.

Since G 6= 0 we have ord(G) ≤ ord(P ) = ord(P1) (the latter equality from
2.6.11) and therefore F ∈ I(P1, l) entails ord(G) = ord(P1) and P1 | G. By 2.6.11
then P | G, which is impossible by the choice of G. �
It remains to show that RD is Cantorian. This is deduced from the following two
properties:
(a) RD(p) ≤ ω for all 1-types and the unique 1-type p with RD(p) = ω is the one

corresponding to the prime ideal (0).
(b) If P 6= 0 is a minimal polynomial of p with n = ord(P ) then the formula

P (x) = 0 isolates p in the set {q ∈ S1(K) | RD(q) ≥ n}.
�

2.6.13. Summary on ranks in differentially closed fields
(1) U ≤ MR and CB ≤ MR, rk on all types, where rk(p) is the rank of the prime

ideal π(p) in the differential spectrum, see 2.4.9.
(2) On 1-types we have in addition MR ≤ RD by 2.6.12, but also rk ≤ RD as one

checks without difficulty.
(3) On ℵ0-saturated models we have CB = MR and therefore U ≤ CB = MR ≤ rk

for all types and
U ≤ CB = MR ≤ rk ≤ RD

on 1-types.
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2.7. Prime models in totally transcendental theories and the differential
closure.
Our goal in this section is to show that every differential field K has a differential
closure M (i.e., M is a DCF containing K such that M embeds over K into any
other DCF containing K, compare with algebraic closures of fields) and to establish
fundamental properties of M . The existence of such models follows solely from
atomicity of DCF, which itself is implied by ω-stability. This is reviewed first,
more can be found in [Poizat2000, Chapter 10].

Throughout we work with a complete L -theory in some language L .

2.7.1. Definition. A model of T is called prime model if for all N |= T there is
an elementary embedding M −→ N .

If A ⊆ M |= T , then M is called a prime model over A if (M,A) is a prime
model of Th(M,A).[27]

The key feature of many theories with prime models (over all sets) is the presence
of many isolated types.

2.7.2. Definition. If A ⊆ B are sets from some T -model, then B is called atomic
over A if for every n ∈ N and all b̄ ∈ Bn the type tp(b̄/A) is isolated in the space
Sn(A) (equivalently: there is a formula ϕ(x1, . . . , xn) with parameters from A such
that tp(b̄/A) is the unique type containing ϕ; we then say that ϕ isolates the
type).

2.7.3. Technical tool. In the sequel we will many times tacitly apply the fol-
lowing characterization of tuples having the same types. Let A be a set and let
b̄, c̄ be (not necessarily finite) tuples of the same length from some M |= T . Then
tp(b̄/A) = tp(c̄/A) if and only if there is some elementary extension N of M and
an A-automorphism σ of N with σ(b̄) = c̄ (i.e. σ(bi) = ci for all i).

2.7.4. Lemma. Let A ⊆M |= T .
(i) Let b̄, c̄ be finite tuples from M . Then tp(b̄̂ c̄/A) is isolated if and only if

tp(b̄/A) and tp(c̄/A ∪ b̄) are isolated.
(ii) Atomicity is transitive, hence if A ⊆ B ⊆ C ⊆M and B is atomic over A, C

is atomic over B, then C is atomic over A.[28]

Proof. We state the isolating formulas in all claims. For detailed verification use
2.7.3.

(i)⇒: If ϕ(x̄, ȳ) isolates tp(b̄̂ c̄/A), then ∃ȳϕ(x̄, ȳ) isolates tp(b̄/A) and ϕ(b̄, ȳ)
isolates tp(c̄/A ∪ b̄).
(i)⇐: If ψ(x̄) isolates tp(b̄/A) and γ(b̄, ȳ) isolates tp(c̄/A ∪ b̄), then
ψ(x̄) ∧ γ(x̄, ȳ) isolates tp(b̄̂ c̄/A).

(ii). Let c̄ ⊆ C be a finite tuple. Take an L (A)-formula ϕ(x̄, ȳ) and b̄ ⊆ B such
that tp(c̄/B) is isolated by ϕ(b̄, ȳ). Then take a formula ψ(x̄) isolating tp(b̄/A).
Then tp(c̄/A) is isolated by ∃x̄ (ϕ(x̄, ȳ) ∧ ψ(x̄)). �

[27]One should think of T having quantifier elimination (e.g. DCF) and A being some sub-
structure of a model (e.g. a differential field); then M is a prime model over A just if A is a
substructure of M and M embeds over A into any other model of T that has A as a substructure.

[28]Notice that the converse fails in general, i.e., if C is atomic over A then C is in general not
atomic over B. For an example, see 2.7.13 below.
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2.7.5.Definition. Let A ⊆ B. A construction of B over A is a surjective map b :
λ −→ B for some ordinal λ such that for all α < λ the type tp(bα/A∪{bβ | β < α})
is isolated. We say that B is constructed over A if there is such a construction.

2.7.6. Proposition. If A ⊆ M |= T and M is constructed over A, then M is a
prime model over A and M is atomic over A.

Proof. We may assume that A = ∅ (otherwise replace T by Th(M,A)). Let b :
λ −→M be a construction of M over ∅ and let Bα = {bβ | β < α}.

Since Bα+1 is atomic over Bα for all α we may use transitivity, cf. 2.7.4(ii), to
do an induction on α, which shows that Bα is atomic over ∅. It follows that M is
atomic over ∅.

Now let N |= T . Since T is complete we may assume that M and N are com-
mon elementary substructures of some Ω |= T . All types are then to be understood
with respect to Ω. We construct an elementary embedding M −→ N as follows:
Since tp(b0/∅) is isolated there is some c0 ∈ N such that tp(c0/∅) = tp(b0/∅). Sup-
pose by transfinite induction we have already found cβ ∈ N with tp((bβ)β<α/∅) =
tp((cβ)β<α/∅).

Since tp(bα/Bα) is isolated, we may use 2.7.3 to find cα ∈ N such that
tp((bβ)β≤α/∅) = tp((cβ)β≤α/∅).

The map sending bα to cα is now an elementary embedding M −→ N . �

2.7.7. Base example. If M |= T is countable and M is atomic (i.e. atomic
over ∅), then M is a prime model of T .[29] The reason is that by 2.7.4(i), any
enumeration (an)n<ω of M is a constructions of M over ∅.

2.7.8. Theorem. The following are equivalent.
(i) T is atomic, i.e. for all A ⊆M |= T , the isolated points of S1(A) are dense

in S1(A).
(ii) For every A ⊆ M |= T there is a model N ≺ M , A ⊆ N such that N is

constructed over A.
(iii) For every A ⊆M |= T there is an atomic prime model N ≺M of A.
If L is countable, then these conditions are equivalent to each of the the following
conditions.
(iv) For every countable A ⊆M |= T there is a prime model N ≺M of A.
(v) For every countable Ω |= T and all M,N ≺ Ω and any set A ⊆ M ∩N there

is M ′ ≺M containing A and an elementary embedding M ′ −→ N over A.

Remark: Notice that no stability theoretic assumption is made here. For example
real closed fields have an atomic theory, but they are not stable.

Proof. (ii)⇒(iii) holds by 2.7.6.
(iii)⇒(i). The isolated types of Sn(A) are dense in Sn(A), because every satisfiable
formula is satisfied in a model M that is atomic over A. (We don’t need that M is
prime over A for this argument.)
(i)⇒(ii). Again we may assume that A = ∅. For an ordinal α we define elements
bα ∈ M as follows: Let b0 ∈ M be a realization of an isolated type in S1(∅). If bβ

[29]If L is countable, then in fact by the omitting types theorem, every prime model of T is
atomic.



INTRODUCTION TO THE MODEL THEORY OF DIFFERENTIAL FIELDS 43

for β < α have already been defined, then we write B = {bβ | β < α} and take

bα =


b0, if every isolated type from S1(B) is realised in B,
any element b ∈M realising an isolated type from

S1(B), that is not realized in B, otherwise.

Since M is a set there is a smallest α > 0 with bα = b0 and we show that N =
{bβ | β < α} is an elementary substructure of M , by using the Tarski-Vaught
test: Hence we need to show that for every formula ϕ(x) in one free variable with
parameters from B that is realized in M , there is some b ∈ B with M |= ϕ(b).
Since ϕ is realized in M , we know from (i) that there is an isolated type p ∈ S1(B)
with ϕ(x) ∈ p. But now by choice of α we see that p is already realized by some
b ∈ B. Then M |= ϕ(b) as required.

Hence B indeed is an elementary substructure of M and by definition, (bβ)β<α
is a construction of B over ∅. Thus N = B has the required property for (ii).

This shows that (i),(ii) and (iii) are equivalent. Obviously (iii) implies (iv). Now
assume L is countable and that there are prime models over every countable subset.
We show (i) by following the proof from [MarTof2003, Theorem 6.4.16, p. 206].

Assume for a contradiction that there are B ⊆ M |= T such that the isolated
points of S1(B) are not dense in S1(B). Take ϕ(x) ∈ L1(B) satisfiable in M and
suppose there is no ψ(x) ∈ L1(B) implying ϕ(x) such that ψ(x) isolates a type
in S1(B). Let A0 ⊆ B be finite and containing the parameters of ϕ(x). Then for
each satisfiable formula ψ(x) ∈ L1(A0) with ψ(x) → ϕ(x) in M , there is formula
ϑψ(x) ∈ L1(B) such that ϑψ(x) → ϕ(x), ¬ϑψ(x) → ϕ(x) and both ϑψ(x) and
¬ϑψ(x) are satisfiable. Since L is countable, there is some countable A1 ⊆ B such
that all the formulas ϑψ(x) have parameters in A1. We iterate this construction
and obtain a countable chain A0 ⊆ A1 ⊆ A2 ⊆ . . . such that for all n < ω and
every satisfiable formula ψ(x) ∈ L1(An) with ψ(x)→ ϕ(x) inM , there is a formula
ϑψ(x) ∈ L1(An+1) such that ϑψ(x) → ϕ(x), ¬ϑψ(x) → ϕ(x) and both ϑψ(x) and
¬ϑψ(x) are satisfiable.

Obviously then, the set A =⋃nAn is countable and the formula ϕ(x) does not
contain an isolated 1-type of S1(A). Since L is countable, there is no prime model
over A by the omitting types theorem. But this contradicts (iv).

Hence (i)-(iv) are equivalent and obviously (iv) implies (v). Finally, assume (v)
holds. We show (iv) by showing that for every countable set A from some model
Ω of T , the isolated 1-types of A are dense in S1(A) (this suffices, because then
we may construct a countable atomic model of T inside Ω, cf. 2.7.7). Suppose
this is not the case. Then there is a formula ϕ(x) with parameters in A, such that
〈ϕ(x)〉 is nonempty but does not contain an isolated 1-type of S1(A). By passing to
an elementary extension if necessary, we may assume that Ω is ℵ1-saturated. Let
M ≺ Ω be countable with A ⊆ M . Then X = {p ∈ 〈ϕ(x)〉 | p is realized in M} is
countable without isolated points. By the omitting types theorem (and saturation
of Ω), there is some countable N ≺ Ω that omits all types from X. Obviously M
and N are contained in a countable elementary substructure of Ω. Hence by (v)
there are M ′ ≺M with A ⊆M ′ and an elementary embedding f : M ′ −→ N over
A. Now take b ∈ M ′ with M ′ |= ϕ(b). Then p = tp(b/A) ∈ X and so p is realised
in N by f(b). But this contradicts the choice of N . �
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We now turn to the subtle questions of uniqueness of prime models. We explain
the matter but only hint at proofs.

2.7.9. Theorem. [Ressayre] Any two constructed models of any complete theory in
any language are isomorphic.

Consequently, if T is an atomic and complete L -theory, then by 2.7.8 any two
constructed models over a set A of parameters are isomorphic over A.

Proof. The proof may be found in [Poizat2000, section 10.4] and uses a clever
combinatorial generalization of the back and forth method, which delivers the claim
quite easily whenM,N are two countable models that have constructions a : ω −→
M and b : ω −→ N . �

2.7.10. Corollary. If M is constructed over A and b̄, c̄ ∈ Mn with tp(b̄/A) =
tp(c̄/A), then there is an A-automorphism σ of M with σ(b̄) = c̄.

It follows that the definable closure of A in M is the set of all elements of M
that are fixed under all A-automorphisms.

Proof. Let b : λ −→ M be a construction of M over A. Using 2.7.4(i) we see that
b is also a construction of M over A ∪ b̄ and of M over A ∪ c̄. By 2.7.9 there is
an automorphism as required (first apply 2.7.3 to find an automorphism of some
elementary extension of M that maps b̄ to c̄).

For the second assertion take b ∈ M \ dcl(A). Since tp(b/A) is isolated and
b /∈ dcl(A) it must have a realization different from b in M . By the first assertion,
b is not fixed under all A-automorphisms of M . �

In [Poizat2000, end of section 18.1] there is an example of a constructed model and
a prime model of a theory that are not isomorphic. However in the stable context
we have

2.7.11. Theorem. Let T be a stable and atomic theory. If T is superstable, or if
the language is countable, then every prime model over any set A is constructed and
consequently by 2.7.9, there is a unique prime model over A up to A-isomorphism.

This applies to DCF by 2.4.11.

Proof. Let M be a prime model over A. Since T is atomic we know that M ≺ N
for some N |= T that is constructed over A.

The stability theoretic assumption now implies that constructibility on N over
A descends to any set B ⊆ N containing A. The proof of that is based on the
combinatorial setup of Ressayre’s theorem but also uses results about forking; it
may be found in [Poizat2000, Proposition 18.1].

Consequently, M is also constructed over A and 2.7.9 applies. �

2.7.12. Scholium. Let T be a totally transcendental theory in some language. For
example DCF. Then for every set A of parameters there is a prime model M over
A. M is constructed over A and unique up to an A-isomorphism.

The prime model M is homogeneous over A in the sense that for all finite tuples
b̄, c̄ ∈Mn of the same type over A there is an A-automorphism of M mapping b̄ to
c̄.

If K is a differential field, then the prime model over K is called the differential
closure of K and is sometimes denotes by K̂.
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2.7.13. Minimality of prime models Before looking closer at the differential
closure we will talk about minimality of prime models. We fix a totally transcen-
dental theory T . For ACF, the prime model of a field K is its algebraic closure K.
This field is not only prime, but also minimal :

A prime modelM of A isminimal if every elementary embeddingM −→M over
A is an automorphism of M . By 2.7.11 this is equivalent to saying that there are
no proper elementary restrictions of M containing A. The following are equivalent
for a prime model M over A:
(i) M is minimal over A.
(ii) M is, up to A-isomorphism, the unique model of T that is atomic over A.
(iii) There is no sequence (an)n<ω in M with an 6= am for n 6= m such that for all

n < ω the type tp(an+1/A∪{ak | k ≤ n}) extends the type tp(an/A∪{ak | k <
n}).

Furthermore, if the prime model of A is not minimal, then for each cardinal κ ≥
card L (A) there is an atomic model N over A of size κ.

For proofs see [Poizat2000, Theorem 18.7].

We now have a closer look at the differential closure.

2.7.14. Theorem. The differential closure of any field K equipped with the trivial
derivation is not minimal.

Proof. This was shown independently by Kolchin, Rosenlicht and Shelah forK = Q.
Rosenlicht in [Rosenl1974] verifies that the set of solutions of x′ = x3 − x2 in K̂
is infinite and has a cofinite subset X that is algebraically independent over K.
From X one can then construct easily a sequence with infinitely many terms as
in 2.7.13(iii), witnessing non-minimality of K̂. Rosenlicht proves the same for the
equation x′(x+ 1)− x = 0. �

2.7.15. Lemma. Let K be a differential field and let p ∈ S1(K) with minimal
polynomial P (x) ∈ K{x}. Then the set

{〈P (x) = 0 ∧Q(x) 6= 0〉 | Q ∈ K{x}, ord(Q) < ord(P )}

is a neighborhood basis of p in S1(K). Hence if p is isolated, then an isolating
formula may be found in the form P (x) = 0 ∧Q(x) 6= 0 with ord(Q) < ord(P ).

Proof. Let U be the set on the right hand side. Using 1.2.10(ii) we know that
⋂U = {p}. Now if O ⊆ S1(K) is any open neighborhood of p then S1(K) \ O ⊆
⋃U∈U S1(K)\U and by compactness there are finitely many Q1, . . . , Qn ∈ K{x} of
order < ord(P ) with p ∈ 〈P (x) = 0∧Q1(x) 6= 0〉∩. . .∩〈P (x) = 0∧Qn(x) 6= 0〉 ⊆ O.
If we set Q =

∏n
i=1Qi we still have ord(Q) < ord(P ) and p ∈ 〈P (x) = 0 ∧Q(x) 6=

0〉 ⊆ O. �

2.7.16. Corollary. Let K be a differential field.
(i) The 1-type over K with minimal polynomial x′ is not isolated.
(ii) If L ⊇ K is a differential field extension of K and L is atomic over K, then

the field of constants CL of L is the algebraic closure (in the field theoretic
sense) of CK in L.

Proof. (i) For any polynomial Q(x) ∈ K[x] there are infinitely many solutions of
x′ = 0 ∧Q(x) 6= 0 in K: for example any rational number that is not a zero of Q.
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(ii). By 2.1.5(ii)(b), the algebraic closure of CK in L is contained in CL. Conversely,
if a ∈ CL, then a′ = 0 and as tp(a/K) is isolated we see from (i) that a is algebraic
over K. By 2.1.5(ii)(b), a is even algebraic over CK . �

2.7.17. Algebraicity, differential algebraicity and isolation. In the context
of algebraically closed fields an element a is algebraic over a field K if and only if
tp(a/K) ∈ S1(K) = S1(M,K) is isolated, where K ⊆M |=ACF. The notion of an
algebraic element also exists in general model theory: b is algebraic over a set
A of parameters of a structure M just if there is a formula ϕ(x) with parameters
in A such that M |= ϕ(b) and such that ϕ has only finitely many solutions in
M . For ACF this coincides with field theoretic algebraicity. Similarly in DCF this
notion agrees with field theoretic algebraicity over the differential field generated
by K ∪ {b} (consider the minimal polynomial in the differential sense of tp(b/K)).

If K ⊆ L are differential fields and a ∈ L, then a is called differentially al-
gebraic over K if it is the differential zero of a non-zero differential polynomial
with coefficients in K. In stark contrast to the case of algebraically closed fields,
differential algebraic elements over a differential field K are not all contained in K̂.
An example is given in 2.7.16(i). (Recall that K̂ is atomic over K.)

On the other hand, every differential field L containing K, which is atomic and
finitely generated as a differential field over K can be embedded over K into K̂:
realize the type of a set of finitely many generators of L in K̂.

Hence isolation is the notion that corresponds more closely to the intuition that
elements in K̂ should be in some sense determined by K.

However, since Q̂ is not minimal, 2.7.13 tells us that not every differential field
that is atomic over Q can be embedded into K̂ and that there is no bound on the
size of elements from a DCF, which have an isolated type over Q.
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3. Differential Galois Theory
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3.1. Non-commutative differential rings and differential modules.

Reference: [vdPSin2003, Chapter 2], [Bourba1989].

Throughout, R is an associative unital ring, which is not necessarily
commutative.

3.1.1. Reminder. Let R be a ring.

(i) Let M be a left module over R and let EndR(M) be the set of all R-
endomorphism of M . Then EndR(M) is a ring via component wise addition
and composition as multiplication. Then M is a left module over EndR(M),
where scalar multiplication is defined as ϕ·m := ϕ(m).

(ii) Let M be a left R-module and let EndZ(M) be the ring of additive maps
M −→ M , where multiplication is given by composition. For r ∈ R, let
rΛ : M −→M be multiplication by r on the left, thus rΛ(m) = rm. Then the
map ι : R −→ EndZ(M) defined by ι(r) = rΛ is a homomorphism of unital
rings, because r+sΛ = rΛ + sΛ and rsΛ = rΛ ◦ sΛ for all r, s ∈ R.[30] If M is
not the null module, then ι is injective, because R is unital.

(iii) Now let ε : R −→ S be a ring homomorphism. Then S is a left R-module with
scalar multiplication r·s := ε(r)s; cf. Bourbaki, bottom of page A II.2

3.1.2. Definition. A derivation of the ring R is an additive map d : R −→ R
such that for all r1, r2 ∈ R we have

d(r1r2) = d(r1)r2 + r1d(r2).

The pair (R,d) is then called a differential ring. We frequently write ′ instead of
d, thus r′ = d(r) for r ∈ R. We write Der(R) for the set of derivations of R.

Given a differential ring R = (R,′ ) and a left R-module M , a map ∂ : M −→M
is a derivation of the R-module M if it is additive and for all r ∈ R,m ∈ M we
have

∂(rm) = r′m+ r∂(m).

The pair (M,∂) is called a differential (R,′ )-module. We will just say differential
R-module if the derivation on R is clear. The set of all derivations of M over R for
′ is denoted by Der(R,′)(M) or just DerR(M) if ′ is clear from the context.

Motivation. We will see shortly that every derivation ∂ of the module Rn is of
the form

∂

 ξ1
...
ξn

 =

 ξ′1
...
ξ′n

+B

 ξ1
...
ξn

 ,

for some B ∈ Mn(R). Hence the kernel of ∂ is the solution set of a linear system
of ODEs. Conversely, we’ll see that every such system comes from and defines a
module derivation.

[30]Observe that rΛ is not an R-module endomorphism in general.
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3.1.3. Remarks.
(i) If (R,d) is a differential ring, then the constants C = {r ∈ R | d(r) = 0} is

obviously a differential subring of R. Further, the center Z of R is a differential
subring because for z ∈ Z, r ∈ R we have rz = zr and d(r)z = zd(r) and so

d(z)r = d(zr)− zd(r) = d(rz)− d(r)z = d(r)z + rd(z)− d(r)z = rd(z).

If a ∈ Z, then ad is again derivation of the ring R, because for x, y ∈ R we
have

(ad)(xy) = ad(x)y + axd(y) = ad(x)y + xad(y) = (ad)(x)y + x(ad)(y).

(ii) If ∂, δ are derivations of the ring R, then the Lie bracket [∂, δ] = ∂ ◦ δ − δ ◦ ∂
is again a derivation of the ring R.[31]

Proof. Clearly ∂ ◦ δ − δ ◦ ∂ is additive. Take x, y ∈ R. Then
(∂ ◦ δ − δ ◦ ∂)(xy) = ∂(δ(x)y + xδ(y))− δ(∂(x)y + x∂(y))

= ∂(δ(x))y + δ(x)∂(y) + ∂(x)δ(y) + x∂δ(y)

− δ(∂(x))y − ∂(x)δ(y)− δ(x)∂(y)− xδ(∂(y))

= ∂(δ(x))y + x∂δ(y)− δ(∂(x))y − xδ(∂(y))

= (∂ ◦ δ − δ ◦ ∂)(x)y + x(∂ ◦ δ − δ ◦ ∂)(y).

�
(iii) If x ∈ R is invertible and d : R −→ R is a derivation, then

d(x−1) = −x−1·d(x)·x−1,

because 0 = d(1) = d(x−1x) = d(x−1)x+ x−1d(x).
(iv) If d is a derivation of the ring R, then obviously d is also a derivation of the

left R-module R for d.
(v) If ′ is a derivation on R and M is a left R-module, then a derivation ∂ of M is

an R-module homomorphism if and only if r′·M = 0 for all r ∈ R; this follows
directly from ∂(rm) = r′m + r∂(m). In particular ∂ is a homomorphism for
the restriction of the module M to the subring of constants of R.

(vi) By (v) the constant map 0 is in general not a derivation and so Der(R,′)(M)
is not a group. In fact if ∂, δ are derivations of the R-module M for ′, then in
general ∂ + δ is not a derivation and neither is r∂ for r ∈ R.

3.1.4. Examples.
(i) Let R = (R,′ ) be a differential ring. If (Mi,di)i∈I is a family of differential R-

modules, then
∑
i∈I(Mi,di) is again a differential R-module with derivation

d(
∑
imi) =

∑
i d(mi), which we refer to as the natural derivation of

∑
iMi.

For any set Γ, let R[Γ] be the direct sum of Γ copies of the left R-module
R. Hence R[Γ] is again a left differential R-module. We will write elements
of R[Γ] as

∑
γ∈Γ rγγ. Then the natural derivation of R[Γ] reads as

(
∑
γ∈Γ

rγγ)′ :=
∑
γ∈Γ

r′γγ

and for any r ∈ R we see that d(rm) = r′m+rd(m), hence d◦ rΛ = r′Λ+rΛ◦d.
The natural derivation on Rn reads as

(r1, . . . , rn)′ = (r′1, . . . , r
′
n).

[31]This implies that (Der(R),+, [ , ]) is a Lie-ring.
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(ii) Now let ε : R −→ S be a ring homomorphism. Then S is an R-module
with scalar multiplication r·s := ε(r)s. If ′ is a derivation on R and if ∂ is a
derivation on S such that ε is a homomorphism of differential rings, then ∂ is
a derivation of the R-module S: For r ∈ R and s ∈ S we have

∂(r·s) = ∂(ε(r)s) = ∂(ε(r))s+ ε(r)∂s

= ε(r′)s+ ε(r)∂s because ε is a differential ring homomorphism

= r′·s+ r·∂s.

3.1.5. The adjoint derivation Let R be any ring. For x, y ∈ R define [y, x] =
yx − xy. Then the map ady : R −→ R, x 7→ [y, x] is a derivation of the ring R.
This map is called the adjoint map of y (cf. [Bourba1989, Chapter 1,§1.2,Def.
2]). Further, for all y, z ∈ R we have ad[y,z] = [ady, adz] (in Der(R) by 3.1.3(ii))[32];
hence if yz = zy, then ady ◦ adz = adz ◦ ady.

Proof. We write d = ady, which clearly is additive. For the Leibniz rule:

d(x1)x2 + x1d(x2) = (yx1 − x1y)x2 + x1(yx2 − x2y)

= yx1x2 − x1yx2 + x1yx2 − x1x2y

= yx1x2 − x1x2y

= d(x1x2).

Hence ady is a derivation. If x ∈ R, then

[ady, adz](x) = ady(adz(x))− adz(ady(x))

= ady(zx− xz)− adz(yx− xy)

= y(zx− xz)− (zx− xz)y − z(yx− xy) + (yx− xy)z

= yzx−yxz−zxy + xzy − zyx+zxy+yxz − xyz
= yzx+ xzy − zyx− xyz
= (yz − zy)x− x(yz − zy)

= ad[y,z](x).

�

3.1.6. Derivations of Modules via Derivations of the endomorphism ring
Let M be a faithful left R-module (i.e. r·M = 0 ⇒ r = 0). If T ∈ EndZ(M)
is arbitrary, then by 3.1.5, the map adT : EndZ(M) −→ EndZ(M) defined by
adT (ε) = T ◦ ε − ε ◦ T is a derivation on the ring EndZ(M). The following are
equivalent (where ι : R −→ EndZ(M) denotes the map from 3.1.1(ii))
(i) adT (ι(R)) ⊆ ι(R), thus adT induces a derivation on the image of ι.
(ii) There is a derivation ′ on R such that T is a derivation of M for ′.

If these conditions hold true, then
(iii) The derivation in (ii) is unique and the co-restriction of ι to its image is an

isomorphism of differential rings (R,′ ) −→ (ι(R), adT |ι(R)). Hence adT can
be seen as an extension of a derivation on R.

[32]This statement says that ad is a Lie-ring homomorphism (R,+, [ , ]) −→ (Der(R), [ , ]).
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Proof. Since M is faithful, the map ι is injective.
(i)⇒(ii). By (i) and the injectivity of ι, for every r ∈ R there is a unique r′ ∈ R
with adT (rΛ) = r′Λ. Let d : R −→ R be the map defined by d(r) = r′. Then
the definition of r′ says adT ◦ ι = ι ◦ d. But adT is a derivation on ι(R), hence d
is a derivation on R and the corestriction of ι to its image is an isomorphism of
differential rings (R, d) −→ (ι(R), adT |ι(R)).

To see that T is a derivation of the module M for d, take r ∈ R. Then T ◦ rΛ−
rΛ ◦ T = adT (rΛ) = r′Λ = d(r)Λ, which expresses T (rm) − rT (m) = r′m for all
m ∈M , as required.
(ii)⇒(i). Let r ∈ R and m ∈M . Then

adT (rΛ)(m) = T (rΛ(m))− rΛ(T (m))

= T (rm)− rT (m)

= r′m+ rT (m)− rT (m) by (ii),

which shows that adT (rΛ) = r′Λ ∈ ι(R). Since ι is injective, this computation also
shows that the derivation ′ on R is uniquely determined by the requirement that
adT is a derivation of M for ′.

This finishes the proof of the equivalence of (i) and (ii). Item (iii) has been
verified on the way. �

3.1.7. If we apply 3.1.6 to the left R-module R and any derivation d of R, then
item (iii) says that the embedding ι : R −→ EndZ(R) is a differential ring homo-
morphism, when R is equipped with d and EndZ(R) is equipped with add.

Hence every derivation of any (not necessarily commutative) ring is the restric-
tion of an adjoint from a ring extension.

3.1.8. Proposition. Let R = (R,′ ) be a differential ring and let ∂ : M −→ M be
a derivation of the left R-module M .
(i) If ϕ : M −→M is an R-module endomorphism, then ∂+ϕ is again a deriva-

tion of M .
(ii) If δ : M −→ M is another derivation and ϕ : M −→ M is an R-module

endomorphism, then ∂ ◦ϕ−ϕ ◦ δ is again an R-module endomorphism.[33] In
particular
(a) ∂ − δ is an R-module endomorphism (set ϕ = idM ).
(b) The derivation ad∂ of the ring EndZ(M) restricts to a derivation

End(M) −→ End(M) (set δ = ∂). (Recall from 3.1.6 that ad∂ also
restricts to the given derivation of R ⊆ EndZ(M) provided M is faith-
ful.)

Hence DerR(M) is the coset ∂+EndR(M) of EndZ(M) for any derivation ∂ of M .
(iii) If ψ : M −→ M is an R-module automorphism, then ψ ◦ ∂ ◦ ψ−1 is again a

derivation. If δ : M −→M is another derivation and ϕ = ∂ − δ, then

ψ−1 ◦ ∂ ◦ ψ = δ +

(
ψ−1 ◦ adδ(ψ) + ψ−1 ◦ ϕ ◦ ψ

)
.

This is called the gauge transformation formula and will be explained
further in 3.1.11 below.

[33]Notice that in general, ∂ ◦ ϕ is neither a derivation (set ϕ = 0), nor an endomorphism (set
ϕ = idM ). Similarly for ϕ ◦ δ.
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Proof. (i). Obviously ∂ + ϕ is additive. Let r ∈ R and m ∈M . Then

(∂ + ϕ)(rm) = ∂(rm) + ϕ(rm)

= r′m+ r∂m+ rϕ(m)

= r′m+ r(∂ + ϕ)(m),

as required for a derivation.
(ii). It is clear that ψ := ∂ ◦ ϕ− ϕ ◦ δ is additive. Take r ∈ R and m ∈M . Then

ψ(rm) = ∂(ϕ(rm))− ϕ(δ(rm))

= ∂(rϕ(m))− ϕ(r′m+ rδ(m))

= r′ϕ(m) + r∂(ϕ(m))− (r′ϕ(m) + rϕ(δ(m)))

= r∂(ϕ(m))− rϕ(δ(m))

= rψ(m),

as required for linearity.
(iii). By (ii), ∂ ◦ ψ−1 − ψ−1 ◦ ∂ is an endomorphism. Hence ψ ◦ ∂ ◦ ψ−1 − ∂ is an
endomorphism as well. By (i), we may add ∂ and get the derivation ψ ◦ ∂ ◦ ψ−1.

Now let δ : M −→M be another derivation and ϕ = ∂ − δ. For m ∈M we have

∂ ◦ ψ(m) = δ(ψ(m)) + ϕ(ψ(m)) as ∂ = δ + ϕ

= adδ(ψ)(m) + ψ(δ(m)) + ϕ(ψ(m)), because adδ(ψ) = δ ◦ ψ − ψ ◦ δ,

and so ∂ ◦ψ = ψ ◦ δ+

(
adδ(ψ) +ϕ◦ψ

)
. Multiplication from the left by ψ−1 shows

the gauge transformation formula. �

For the rest of this section we work with a commutative differential ring R.

3.1.9. Description of module derivations in coordinates We describe deriva-
tions in coordinates and also make 3.1.8 more explicit. Let M be a differential
R-module that is free and finite dimensional (as an R-module). Choose a basis
e1, . . . , en of M . For i ∈ {1, . . . , n} let rij ∈ R with

∂(ei) =
∑
j

rijej .

Then for m ∈M , m = ξ1e1 + . . .+ ξnen, ξi ∈ R we have

∂m =

n∑
i=1

ξ′iei +

n∑
i=1

ξi

n∑
j=1

rijej

=

n∑
i=1

ξ′iei +

n∑
j=1

ξj

n∑
i=1

rjiei

=

n∑
i=1

ξ′iei +

n∑
i=1

n∑
j=1

ξjrjiei

=

n∑
i=1

(
ξ′i +

n∑
j=1

ξjrji

)
ei.
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Hence when elements of M are written in coordinates with respect to e1, . . . , en we
obtain

∂

 ξ1
...
ξn

 =

 ξ′1
...
ξ′n

+AT

 ξ1
...
ξn

 ,

where A = (rij)
n
i,j=1. More precisely, this means that if δ is the natural derivation

on Rn and ϕ ∈ End(Rn) is defined by ϕ(ξ) = AT ξ, then the diagram

M M

Rn Rn,

∂

γ

δ+ϕ

γ

with γ(ξ) =
∑
i ξiei, commutes. Since γ ◦ (δ + ϕ) = ∂ ◦ γ we see that γ : (Rn, δ +

ϕ) −→ (M,∂) is an isomorphism of differential modules.

We see that the kernel of ∂ is the solutions set of the system y′ = −AT y of linear
differential equations of order 1. If we identify such a system with the defining
matrix, 3.1.8 says that every such system is given by a derivation of M (although
solutions sets of these system do not uniquely define the derivation, nor the defining
matrices).

3.1.10. Extension of the derivation to End(Rn) = Mn(R). Let ∂ be the
natural derivation on M = Rn. By 3.1.8(ii)(b), ad∂ restricts to a derivation of
EndR(Rn). We write EndR(Rn) = Mn(R) and compute ad∂ in terms of matrices:

Let ϕ ∈ End(M) and ϕ(x) = Ax with A ∈Mn(R). Then ad∂(ϕ)x = A′x, where
A′ ∈Mn(R) is defined to be the matrix obtained from A by applying the derivation
of R to all the entries of A. The reason is that ad∂(ϕ)x = ∂(Ax) − A∂x, which is
readily seen to be equal to A′x.

Hence ad∂ : Mn(R) −→Mn(R) is the derivation defined by A 7→ A′.

3.1.11. Gauge transformation and change of basis We continue the consid-
eration on coordinates from 3.1.9. Let f1, . . . , fn be another basis of M and let
ε : Rn −→ M be defined by ε(ξ) =

∑
i ξifi. As in 3.1.9, there is a linear map

ρ : Rn −→ Rn such that the following diagram to the right commutes (the diagram
to the left is copied from 3.1.9):

M M

Rn Rn,

∂

γ

δ+ϕ

γ

M M

Rn Rn.

∂

ε

δ+ρ

ε

We want to compute, ρ in terms of ϕ. If we flip and then glue the diagram on the
right on top of the diagram on the left we get the following commutative diagram:
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Rn Rn

M M

Rn Rn,

δ+ρ

ε

ψ

ε

ψ∂

γ

δ+ϕ

γ

where ψ := γ−1 ◦ ε : Rn −→ Rn. Then δ + ρ = ψ−1 ◦ (δ + ϕ) ◦ ψ. By 3.1.8(iii) we
know

ψ−1 ◦ (δ + ϕ) ◦ ψ = δ + ψ−1 ◦ adδ(ψ) + ψ−1 ◦ ϕ ◦ ψ
and so we obtain the base change formula

([) ρ = ψ−1 ◦ adδ(ψ) + ψ−1 ◦ ϕ ◦ ψ
Notice that for A,B ∈ Mn(R) with ψ(ξ) = Bξ and ϕ(ξ) = Aξ (we have now

replaced A by AT compared to 3.1.9), then ([) says that the matrix C with ρ(ξ) =
Cξ satisfies

(†) C = B−1B′ +B−1AB.

(See 3.1.10 for the computation of adδ(ψ) as B′.) This formula is thus the gauge
transformation formula in matrix form expressing the fact that the differential
modules given by δ +A and δ + C on Rn are isomorphic as differential modules if
and only if there is some B ∈ GLn(R) such that (†) holds.
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3.2. The ring of differential operators and classification of differential
modules.

3.2.1. The ring of differential operators We continue to work with a unital, but
not necessarily commutative ring R. Let ′ be a derivation on R. We write d for the
natural derivation on the left R-module R[ω] as explained in 3.1.4, ω = {0, 1, 2, . . .}.
We write elements in R[ω] as

∑
k∈ω rkτ

k. Let Λ : R[ω] −→ R[ω] be the R-module
homomorphism obtained from the shift ω −→ ω, k 7→ k + 1. Hence

Λ(
∑
k∈ω

rkτ
k) =

∑
k∈ω

rkτ
k+1.

One should think of Λ as multiplication by τ from the right. Now, ∂ := d + Λ ∈
EndZ(R[ω]) is a module derivation of R[ω] (by 3.1.8(i)) and we define the ring of
differential operators over (R,′ ) as the subring of EndZ(R[ω]) generated by ∂
over the image of the embedding ι : R −→ EndZ(R[ω]), r 7→ rΛ (cf. 3.1.1(ii)). We
will identify R with its image under ι and thus obtain an overring R[∂] of R. We
record some properties related to the construction of R[∂].

(i) Since d ◦ Λ = Λ ◦ d we see that

∂n = (d+ Λ)n =

n∑
k=0

(
n

k

)
dn−k ◦ Λk,

where powers are taken in the ring EndZ(R[ω]).
(ii) By 3.1.6, the ring homomorphism ι : R −→ R[∂] (identified as being the

inclusion) is differential, when R is equipped with ′ and R[∂] is equipped
with the derivation d = ad∂ of R[∂] from 3.1.5. Hence for r ∈ R we have
∂·r = r′ + r·∂ in the ring R[∂].

(In 3.2.3 we will see see that R[∂] is the non-commutative ring R〈∂〉/(∂·r =
r′ + r·∂ | r ∈ R) and one could use this as the definition of R[∂] as well.)

(iii) Now let ε : R −→ S be a ring homomorphism and let s ∈ S be such that
ε : R −→ S is differential, when R is equipped with the derivation ′ and S
is equipped with the derivation ads from 3.1.5. Explicitly, this means that
s·ε(r) = ε(r′) + ε(r)·s for all r ∈ R. Then
(a) Left multiplication of S with s is a derivation of the left module S for

(R,′ ), because for f ∈ S and r ∈ R:

s·(ε(r)·f) = (s·ε(r))·f = (ε(r′) + ε(r)·s)·f = ε(r′)·f + ε(r)·(s·f).

(b) B := {
∑n
k=0 ε(rk)sk | n ∈ N0, rk ∈ R} is the subring of S generated by

ε(R) and s, as follows by a straightforward induction on n showing that
sn·ε(r) ∈ B.

If we apply (a) and (b) to ε = ι : R −→ R[∂] we see, using (ii), that left
multiplication of R[∂] by ∂ is a derivation of both left modules EndZ(R[ω])
and R[∂] for (R,′ ) and

R[∂] = {
n∑
k=0

rk∂
k | n ∈ N0, rk ∈ R}.

We also see that
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(c) for f =
∑n
k=0 rk∂

k,

∂·f =

n∑
k=0

r′k∂
k + f∂ = rn∂

n+1 + (r′n + rn−1)∂n + . . .+ (r′1 + r0)·∂ + r′0.

(Notice that left multiplication of R[∂] by ∂ is not a derivation of the ring
R[∂], because otherwise ∂·(1·f) = (∂·1)·f + 1·(∂·f), implying ∂·r = 0.)

(iv) The kernel of d is C[∂], where C is the ring of constants of R. If C is com-
mutative, then C[∂] is just the commutative polynomial ring in ∂ over C.

3.2.2. Proposition. In the situation of 3.2.1, the evaluation map ev1 : R[∂] −→
R[ω] at 1 = τ0 ∈ R[ω] is a left R-module isomorphism. For r0, . . . , rn ∈ R we have

(

n∑
k=0

rk∂
k)(1) =

n∑
k=0

rkτ
k.

In particular, the elements 1, ∂, ∂2, . . . are R-linearly independent.

Proof. First notice that by 3.2.1(iii), the set R[∂] indeed consist of left linear com-
binations of 1, τ, τ2, . . . over R. We have Λk(1) = τk and dl(τk) = 0 for all
k ≥ 0 and l > 0. Hence by 3.2.1(i) we see that ∂k(1) = τk, which implies
(
∑n
k=0 rk∂

k)(1) =
∑n
k=0 rkτ

k. It is now clear that ev1 is an R-module isomor-
phism. �

3.2.3. Theorem. Let R = (R,′ ) be a differential ring (not nec. commutative).
Consider the ring homomorphism ι : R −→ R[∂] together with the element ∂ ∈ R[∂].
(i) Then ι is a differential ring homomorphism (R,′ ) −→ (R[∂], ad∂) and left

multiplication of R[∂] by ∂ is a derivation of the left R-module R[∂].
(ii) The pointed homomorphism (ι : R −→ R[∂], ∂) is uniquely determined up to

isomorphism of pointed homomorphisms in the following sense:
If ε : R −→ S is a ring homomorphism and a differential map for ′ and

some ads = [s, ], s ∈ S, then there is a unique ring homomorphism R[∂] −→
S extending ε mapping ∂ to s.

Proof. (i) has been shown in 3.2.1(iii) (the assumptions where verified in 3.2.1(ii)).
(ii). By 3.2.2, we may define an R-module endomorphism ϕ : R[∂] −→ S by
ϕ(
∑n
k=0 rk∂

k) =
∑n
k=0 ε(rk)sk and we claim that ϕ is a ring homomorphism.

Claim. For each n we have snε(r) =
∑n
k=0

(
n
k

)
ε(r(n−k))sk.

Proof. This is clear for n = 0, 1. For the induction step we have

sn+1ε(r) = sn(ε(r′) + ε(r)s) = snε(r′) + snε(r)s

=

n∑
k=0

(
n

k

)
ε(r(n−k+1))sk + (

n∑
k=0

(
n

k

)
ε(r(n−k))sk)s

=

n∑
k=0

(
n

k

)
ε(r(n−k+1))sk +

n+1∑
k=1

(
n

k − 1

)
ε(r(n−(k−1)))sk

=

n+1∑
k=0

(
n+ 1

k

)
ε(r(n+1−k))sk.

�
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The claim also applies to ∂ ∈ R[∂] (and the natural map R −→ R[∂]) by 3.2.1(ii).
Then for all n, l ∈ N0 and each r ∈ R we see that

ϕ(∂nr∂l) = ϕ(

n∑
k=0

(
n

k

)
r(n−k)∂k+l)

=

n∑
k=0

(
n

k

)
ε(r(n−k))sk+l = (

n∑
k=0

(
n

k

)
ε(r(n−k))sk)sl

= snε(r)sl.

It is now routine to check that ϕ is multiplicative. �

3.2.4. Corollary. Let ϕ : R −→ S be a homomorphism of differential rings. Then
there is a unique ring homomorphism ϕ[∂] : R[∂] −→ S[∂] making the diagram

R[∂] S[∂]

R S

ϕ[∂]

ϕ

commutative. Explicitly, ϕ[∂] maps
∑
ri∂

i to
∑
ϕ(ri)∂

i.

Proof. By 3.2.3(i) applied to S implies that the composition ε of ϕ with the struc-
ture map S −→ S[∂] is a differential ring homomorphism R −→ S[∂], when the
latter ring is equipped with the derivation ad∂ . By 3.2.3(ii) applied to ε and ∂ ∈ S[∂]
we get the corollary. �

3.2.5. The formal adjoint of R[∂]. Let R = (R,′ ) be a commutative differential
ring and let R[∂]op be the opposite ring of R[∂], hence (R[∂]op,+) = (R[∂],+) and
multiplication in R[∂]op is given by s1 ∗ s2 = s2·s1, where s2·s1 is the product in
R[∂]. Let ι : R[∂] −→ R[∂]op be defined by

ι(
∑

ri∂
i) =

∑
(−1)iri ∗ ∂i.

Then ι is an isomorphism, called the formal adjoint of R[∂]. Notice that ι can
also be seen as a map ι : R[∂] −→ R[∂], where ι(

∑
ri∂

i) =
∑

(−1)i∂i·ri.

Proof. Let ε : R −→ R[∂]op be defined by ε(r) = r·∂0. Since R is commutative, ε
is a ring homomorphism R −→ R[∂]op. Moreover, ε is differential when R[∂]op is
equipped with derivation ad−∂ , because for r ∈ R we have

r′ = ∂r − r∂ = r ∗ ∂ − ∂ ∗ r = (−∂) ∗ r − r ∗ (−∂).

By 3.2.3(ii) applied to ε we get the assertion. �

3.2.6. Proposition. Let R = (R,′ ) be a differential ring. Then the category of
left R[∂]-modules is isomorphic to the category of left differential (R,′ )-modules.
The isomorphism sends a left module M over R[∂] to (M |R, ϑ), where M |R is the
R-module obtained from M via scalar restriction, and ϑ : M −→ M is scalar
multiplication of M by ∂.
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Proof. Let M be a left module over R[∂] and let ϑ : M −→M be defined by (left)
multiplication with ∂. Then for r ∈ R and m ∈M we have

ϑ(rm) = ∂·(rm) = (∂·r)·m
= (r′ + r·∂)·m, by 3.2.1(ii)

= r′·m+ r·ϑ(m).

This shows that ϑ is a derivation on M for (R,′ ).
Conversely, let ϑ : M −→ M be a derivation. Then M is an R[∂]-module with
∂·m = ϑ(m) in the following way. W.l.o.g. assume M 6= 0. Let S be the ring
EndZ(M) and consider S as an overring of R via the embedding ι from 3.1.1(ii).
Since ϑ is a derivation on M , we have ϑ·r = r′+ r·ϑ (i.e. ϑ ◦ rΛ = r′Λ + rΛ ◦ϑ) for
all r ∈ R. Hence by 3.2.3, there is an homomorphism R[∂] −→ S extending ι and
mapping ∂ to ϑ. Since M is an S-module (via evaluation), the scalar restriction to
R[∂] gives the required R[∂]-module structure. �

3.2.7. Example: The first Weyl Algebra over a ring. Let k be a commutative
ring and let R = k[x] be the polynomial ring in one variable over k. Let ′ be the
standard derivative d

dx of R. Then R[∂] is the first Weyl algebra over k: To see this,
notice that the generators x, ∂ of the ring R[∂] over k satisfy ∂·x = x′+x·∂ = 1+x·∂.
Now the defining equation of the first Weyl algebra W is XY − Y X − 1 = 0,
i.e. W := k〈X,Y 〉/(XY − Y X − 1). Hence we have a k-algebra homomorphism
k〈X,Y 〉 −→ R[∂] mapping X to x and Y to ∂, which is obviously surjective. We
obtain a map k〈X,Y 〉/(XY − Y X − 1) −→ R[∂]. To see that this map is injective
we use the universal property of R[∂] from 3.2.3(ii) to produce a compositional
inverse. The inclusion R = k[x] ↪→ W is a an R-algebra and the element s =
Y mod 〈XY − Y X − 1〉 satisfies sr = r′ + rs for all r ∈ R: Modulo the ideal
〈XY − Y X − 1〉 we have Y X −XY = 1 = X ′ and by induction

Y Xn+1 −Xn+1Y = (1 +XY )Xn −Xn+1Y = Xn +XYXn −Xn+1Y

= Xn +X(Y Xn −XnY )

= Xn +X(Xn)′, by induction

= Xn +XnXn−1 = (n+ 1)Xn.

Hence for r =
∑n
k=0 akX

k we get (modulo 〈XY − Y X − 1〉)

Y r − rY =

n∑
k=0

ak(Y Xk −XkY ) =

n∑
k=0

ak(Xk)′ = r′.

Thus, from 3.2.3(ii) we obtain an R-algebra homomorphism R[∂] −→ W mapping
∂ to s. This map is the compositional inverse we were looking for.

3.2.8. Division with remainder in R[∂]. (This is the proof of [Lang2002,
IV,§1,Theorem 1.1,p.173], where special attention to non-commutativity is given.)
Let R = (R,′ ) be a differential ring. Let f, g ∈ R[∂] with g 6= 0 such that the leading
coefficient of g is invertible in R. Then there are unique q, r ∈ R[∂] with f = q·g+r
and deg(r) < deg(g). (Here deg(0) = −∞.)

If R is commutative, then by 3.2.5 we see that there are unique q, r ∈ R[∂] with
f = g·q + r and deg(r) < deg(g).

https://en.wikipedia.org/wiki/Weyl_algebra
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Proof. First we do existence. If deg(f) < deg(g), then take q = 0 and r = f . Hence
we may assume that n = deg(f) ≥ deg(g) = d. We do an induction on n. Since
g 6= 0, also f 6= 0. We write

f = an∂
n + . . .+ a0,

g = bd∂
d + . . .+ b0,

where an, bd ∈ R \ {0}. By assumption bd is invertible in R. If n = 0, then we
may choose q = a0·b−1

0 and r = 0. Now assume n > 0. By 3.2.1(iii)(c) we see
that ∂·g = bd∂

d+1 + g∗, where g∗ ∈ R[∂] is of degree < d + 1. Consequently
∂n−d·g = bd∂

n + g∗, where g∗ ∈ R[∂] is of degree < n. It follows that

f1 = f − anb−1
d ·∂

n−d·g

is of degree < n. By induction there are q1, r ∈ R[∂] with deg(r) < deg(g) such
that f1 = q1·g + r. Consequently

f = q1·g + anb
−1
d ·∂

n−d·g + r

and we may take q = q1 + anb
−1
d ·∂n−d.

Now for uniqueness. Assume f = qi·g + ri with deg(ri) < d. Then (q1 − q2)·g =
r1 − r2. Since the leading coefficient of g is a unit and deg(r1 − r2) < deg(g), this
is only possible if q1 = q2, and consequently r1 = r2. �

3.2.9. Corollary. Let K = (K,′ ) be a differential field. Then every left ideal of
K[∂] is a principal left ideal and every right ideal of K[∂] is a principal right ideal.

Proof. Let I be a left ideal of K[∂] and let g ∈ I \ {0} be of minimal degree. Since
K is a field we may assume that the leading coefficient of f is 1. Now if f ∈ I,
then take q, r ∈ K[∂] with f = q·g + r and deg(r) < deg(g). Since I is a left ideal
of K[∂] we know that q·g ∈ I. But then r ∈ I as well. Since deg(r) < deg(g) the
choice of g implies r = 0. Thus I = K[∂]·g.

Since K is commutative, the assertion also holds for right ideals by 3.2.5 �

3.2.10. Theorem. [vdPSin2003, Proposition 2.9], pdf If K is a differential field
and M is a finitely generated K[∂]-module then there is some n ≥ 0 and some
f ∈ K[∂] with

M ∼= K[∂]n ⊕K[∂]/K[∂]f

as K[∂]-modules.
Hence if M is finite dimensional as a K-vector space, then M ∼= K[∂]/K[∂]f is

cyclic, i.e. has a cyclic vector v, i.e. M is the differential submodule ofM generated
by v (take v = ∂ +K[∂]f).

3.2.11. Corollary. If K is a differential field and A ∈Mn(K), then there is some
L(y) = yn+an−1y

(n−1)+. . .+a0y ∈ K{y} such that the matrix differential equation
Y ′ = A·Y is equivalent to the matrix differential equation Y ′ = AL·Y , where

AL =



0 1 . . . 0 0

0 0
. . . 0 0

...
...

. . .
...

0 0 . . . 0 1
−a0 −a1 . . . −an−2 −an−1

 .
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Equivalence here means that the associated differential modules are isomorphic as
differential modules. Alternatively, that A and AL are obtained from a gauge trans-
formation as in 3.1.11.

Proof. [vdPSin2003, Exercise 2.12.7], pdf One finds L as follows: Let M be the
K[∂]-module given by d+A. By 3.2.10 there is some f = ∂n+bn−1∂

n−1+. . .+b0∂
0 ∈

K[∂] with M ∼= K[∂]/K[∂]f . Now take ai = (−1)i·bi. �

In [vdPSin2003, Section 2.2] one can find a wealth of properties of differential
modules, which reflect natural questions about linear ODEs.
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3.3. Picard-Vessiot extensions.

3.3.1. Where to solve linear ODEs? Let K be a differential field and let

P (y) = y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y ∈ K{y}.

Since P is irreducible with separant 1 we know from 1.2.12 that I(P ) = [P ] =
(P, P ′, P ′′, . . .) is a differential prime ideal of K{y}. Hence the residue α = y+[P ] ∈
K{y}/[P ] is a solution of P (y) = 0 and the transcendence degree of K〈α〉 over K
is n, see 2.6.3. Therefore, when n > 0:
(i) We can always find solutions of P (y) = 0 outside of K, in stark contrast to

the classical case of polynomial equations in one variable (over algebraically
closed fields).

(ii) By iteration we can find arbitrary many algebraically independent (over K)
solutions of P (y) = 0 in some differential field containing K.

Hence if we want to study solutions of P (y) = 0 (and suppose there is only the
trivial solution in K), we need to decide in which ambient differential field we
want to look at solutions. The differential closure of K will provide a framework,
suitable for Galois theory. Furthermore, the field K〈α〉 obtained from f by adding
the generic solution α to K will in general not serve as splitting field of f(y) in
differential Galois theory.

3.3.2. Proposition. Let M = (M,∂) be a differential module over the differential
field K = (K,′ ) and let C be the field of constants of K.
(i) ∂ is a C-vector space homomorphism and therefore ker(∂) is a C-vector space.
(ii) If m1, . . . ,mn ∈ Ker(∂) are C-linearly independent, then they are K-linearly

independent. In particular dimC ker(∂) ≤ dimK(M).
(iii) If K is differentially closed and M is finite dimensional as a K-vector space,

then ker(∂) generates M as a K-vector space and dimC ker(∂) = dimK(M).

Proof. (i) follows directly from the definition 3.1.2 of “module derivation".
(ii) Assume by induction that m1, . . . ,mn−1 are already K-linearly independent
and that there are r1, . . . , rn−1 ∈ K with mn = r1m1 + . . .+ rn−1mn−1. Applying
∂ gives

(∗) ∂(mn) = r′1m1 + . . .+ r′n−1mn−1 + r1∂(m1) + . . .+ rn−1∂(mn−1).

As all mi ∈ Ker(∂), this means

0 = r′1m1 + . . .+ r′n−1mn−1.

Since m1, . . . ,mn−1 are K-linearly independent we see that r′1 = . . . = r′n−1 = 0,
i.e. mn is in the C-span of m1, . . . ,mn−1 by (∗).
(iii). We may assume that M = Kn as vector space. By 3.1.9 we know that
∂(x) = x′−A·x (x ∈M) for some A ∈Mn(K). Choose generic solutions Y1, . . . , Yn
of ∂(x) = 0, i.e., choose indeterminates Yi,j over K, 1 ≤ i, j ≤ n and let d be the
derivation of the polynomial ring K[Yi,j | 1 ≤ i, j ≤ n] extending the derivation of
K with d(Yi,1)

...
d(Yi,n)

 = A

Yi,1...
Yi,n

 .
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For existence of d use 1.1.7. Then the formula
n∧∧
i=1

y′i = A·yi & det(y1, . . . , yn) 6= 0

(in n2 variables yi,j) has a solution in the differential field extension (K(Yi,j | 1 ≤
i, j ≤ n), d) of K given by Yi,j ; observe that det(Y1, . . . , Yn) 6= 0, since the Yi,j are
algebraically independent. Since K is differentially closed there are z1, . . . , zn ∈
Kn with z′i = A·zi and det(z1, . . . , zn) 6= 0. It follows that z1, . . . , zn ∈ ker(∂)
are K-linearly independent. Hence ker(∂) generates M as a K-vector space and
dimC ker(∂) ≥ dimK(z1, . . . , zn) = dimK(M). By (ii) we get equality. �

3.3.3. Definition of Picard-Vessiot extensions for matrix ODEs Let y′ = Ay
be a matrix ODE over the differential field K = (K,′ ), A ∈Mn(K).
(i) A fundamental system of solutions of y′ = Ay is a tuple (y1, . . . , yn),

yi ∈ Ln of solutions y′i = Ayi for all i ∈ {1, . . . , n} from some differential field
extension L with det(y1, . . . , yn) 6= 0; equivalently: y1, . . . , yn are solutions of
y′ = Ay and they are linearly independent over the constant field of L, see
3.3.2.)

(ii) A differential field L ⊇ K is called a Picard-Vessiot extension of K for
y′ = Ay if it is generated as a differential field by (the coordinates of) a
fundamental system of solutions of y′ = Ay in L and if the constant field of L
is the constant field of K. Notice that L is then already finitely generated as
a field by y1, . . . , yn, since y′i ∈ K(y1, . . . , yn). A Picard-Vessiot extension
of K is a Picard-Vessiot extension of K for some matrix ODE of K.

3.3.4. Definition. The differential Galois group of a differential field extension
L/K is the group of differential K-automorphism of L. It is denoted by Gal(L/K).
Notice that there is no conflict with the classical notation: If L/K is an algebraic
extension, then every field automorphism of L over K is differential: deploy the
formula (∗) in 2.1.5.

3.3.5. Existence, uniqueness and normality of Picard-Vessiot extensions
Let K = (K,′ ) be a differential field with algebraically closed constant field C. Let
y′ = Ay be a matrix ODE over K = (K,′ ), where A ∈Mn(K).
(i) If F is a differential field containing the differential closure K̂ of K and the

constant field of F is the constant field of K̂ [34], then the subfield L of F
generated by all (entries of) solutions of y′ = Ay in F is the unique Picard-
Vessiot extension of K for y′ = Ay inside F .

(ii) Every differential K-automorphism of K̂ restricts to a K-automorphism of L
and the restriction map Gal(K̂/K) −→ Gal(L/K) is surjective.

(iii) All Picard-Vessiot extensions of K for y′ = Ay are differentially isomorphic
over K.

Consequently: Up to differential K-isomorphism, there is a unique Picard-
Vessiot extension L of K for y′ = Ay, namely the field generated by all (entries
of) solutions of y′ = Ay in the differential closure of K. By 3.3.2(iii), the
solutions of y′ = Ay in Ln is a C-vector space of dimension n.

[34]The main case being F = K̂. Notice that every differential field has an extension that does
not change the constants: The quotient field of the differential polynomial ring.
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Proof. (i). By 3.3.2(iii), there is a fundamental system (y1, . . . , yn) of solutions of
y′ = Ay in K̂. Since K̂ is atomic over K, we know from 2.7.16 that C is also the
constant field of K̂. Hence the field L generated by such a system also has constant
field C and is therefore a Picard-Vessiot extension for y′ = Ay.

Now let L̃ be another Picard-Vessiot extension for y′ = Ay inside F . and let
(z1, . . . , zn) be a fundamental system of solutions of y′ = Ay that generates L̃ as
a field. Since the constant field of F is the constant field of K̂ and this field is C
we know that F and K have the same constant field. By 3.3.2(ii), the solutions of
y′ = Ay in F is of C-dimension ≤ n. However, both L as well as L̃ are generated
by the entries of n elements of Fn that are linearly independent over C. Hence
L̃ = L.

(ii). By (i), every differential K-automorphism of K̂ restricts to a K-automorphism
of L. Since L is differentially finitely generated over K we may apply 2.7.10 and see
that every differential K-automorphism extends to a differential K-automorphism
of K̂.

(iii). Let F be another Picard-Vessiot extensions of y′ = Ay. Since F has constant
field C, its differential closure F̂ has again constant field C. Since K̂ can be
embedded into F̂ over K, also L can be embedded into F̂ over K. By (i) applied
to F̂ (which has constant field C), this embedding must be an isomorphism onto
F . �

3.3.6. Corollary. If L/K is a Picard-Vessiot extension with algebraically closed
constant field, then the fixed field of Gal(L/K) is K.

Proof. By 2.7.10 we know that the fixed field of Gal(K̂/K) is K. Hence by
3.3.5(iii),(ii) we get the corollary. �

3.3.7. Remark. Without the assumption that the constants of K are algebraically
closed, neither existence nor uniqueness of Picard-Vessiot extensions is true in gen-
eral:

In [CreHaj2011, Exercises (25) for Chapter 5, page 137] an example for non-
existence is given.

In [CreHaj2011, Exercises (26) for Chapter 5, page 137] an example of non-
isomorphic Picard-Vessiot extensions for the linear ODE y′′ + y = 0 over R (with
the trivial derivation) is given.

3.3.8. Characterization of Picard-Vessiot extensions [Magid1994, Proposi-
tion 3.9]

Let K ⊆ L be differential fields and assume K and L have the same constant field
C and C is algebraically closed. Then L/K is Picard-Vessiot if and only if

(a) L is the differential field generated by a finite dimensional C-vectorspace V .
(b) There is a subgroup G ⊆ Gal(L/K) with fixed field K such that σ(V ) ⊆ V

for all σ ∈ G.
If L/K is a Picard-Vessiot extension and y1, . . . , yn is a C-basis of a C-vector space
as in (a),(b), then L/K is a Picard-Vessiot extension for

wr(Y, y1, . . . , yn)

wr(y1, . . . , yn)
,
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where wr is the Wronskian, See [Magid1994, Chapter 2] for definitions. In this
course we are not talking about the Wronskian (due to time limitations), but the
reader is strongly advised to connect to this important part of the theory.

3.4. The differential Galois group as definable group and as a linear al-
gebraic group.

3.4.1. Remark. Let K be a differential field and let A ∈ Mn(K). Suppose the
matrix ODE y′ = Ay has a fundamental system of solutions (y1, . . . , yn) ∈ Kn. We
write Y = (y1, . . . , yn) for the matrix from Mn(K) with columns y1, . . . , yn. By
definition of “fundamental system of solutions" then Y ∈ GLn(K) and Y ′ = A·Y
in Mn(K), which can be seen as an equation in the differential ring Mn(K), where
derivations of matrices are taken entry wise, see 3.1.10. The matrix Y is called a
fundamental matrix for y′ = Ay. Let C be the field of constants of K. Then
(i) If y ∈ Kn with y′ = Ay, then Y−1·y ∈ Cn is the unique c ∈ Cn with

y = c1y1 + . . .+ cnyn.
Proof. By 3.3.2, y1, . . . , yn is a C-basis of solutions of y′ = Ay in Kn. Hence
there is a unique c ∈ Cn with y = c1y1 + . . .+ cnyn. Since y1, . . . , yn are the

columns of Y this reads as y = Y·c (= Y·

c1...
cn

), i.e. Y−1·y = c. �

(ii) The set of all fundamental matrices of y′ = Ay (from GLn(K)) is the coset
Y·GLn(C). Hence if Z ∈ GLn(K) is another fundamental matrix for y′ = Ay,
then

Y−1·Z ∈ GLn(C).

Proof. If B ∈ GLn(C), then (Y·B)′ = Y ′·B = A·Y·B, hence Y·B is again a
fundamental matrix for y′ = Ay. For the other inclusion, if Z ∈ GLn(K) is
another fundamental matrix for y′ = Ay with columns z1, . . . , zn, then

Y−1·Z = (Y−1·z1, . . . ,Y−1·zn) ∈Mn(C) by (i).

Hence Y−1·Z ∈ GLn(C) and Z = Y·(Y−1·Z) ∈ Y·GLn(C).
�

3.4.2. Proposition. Let K be a differential field with constant field C (which is
not necessarily algebraically closed) and let L/K be a Picard-Vessiot extension for
the matrix ODE y′ = Ay, A ∈ Mn(K). Fix a fundamental system of solutions
(y1, . . . , yn) ∈ Ln of y′ = Ay and let Y = (y1, . . . , yn) ∈ GLn(L). By 3.4.1(ii) we
may define a map

ΦY : Gal(L/K) −→ GLn(C); ΦY(σ) = Y−1·σ(Y).

Then
(i) ΦY is an embedding of groups.
(ii) If Z ∈ GLn(K) is another fundamental matrix for y′ = Ay, then by 3.4.1(ii)

we know that Z = Y·B for B = Y−1·Z ∈ GLn(C). Then

ΦZ(σ) = ΦY·B(σ) = B−1·ΦY(σ)·B.

(iii) If σ ∈ Gal(L/K), then Φσ(Y) = ΦY .
(iv) If σ ∈ Gal(L/K) and y ∈ Ln with y′ = Ay, then σ(y) = Y·ΦY(σ)·Y−1·y.
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(v) The map

ΞY : Gal(L/K) −→ GLn(K); ΞY(σ) = σ(Y)·Y−1.

is also an embedding of groups and for any other fundamental matrix Z ∈
GLn(K) we have ΞY = ΞZ . We may thus just write Ξ instead of ΞY . The
image of Ξ (which is independent of the chosen Y but does not have values
in the constants in general) is therefore called the intrinsic Galois group,
whereas the image of ΦY (which is dependent on Y but has values in the
constants) is called the extrinsic Galois group.

The automorphism GLn(K) −→ GLn(K) mapping B to Y·B·Y−1 makes
the diagram

GLn(K) GLn(K)

GLn(C) GLn(K)

Gal(L/K)

B 7→Y·B·Y−1

∼=

id

ΦY Ξ

commutative. Hence ΦY = Y−1·Ξ·Y.

Proof. (i). We write Φ = ΦY . Let σ, τ ∈ Gal(L/K). Then

Φ(σ·τ) = Y−1·(σ ◦ τ)(Y) = Y−1·σ(τ(Y))

= Y−1·σ(Y·Φ(τ)), since Φ(τ) = Y−1·τ(Y)

= Y−1·σ(Y)·Φ(τ)·, because σ|K = idK and the constants of L are in K
= Φ(σ)·Φ(τ).

Hence Φ is a group homomorphism. If Φ(σ) = In, then Y−1·σ(Y) = Φ(σ) = In,
i.e. σ(Y) = Y and since L is generated by Y over K we get σ = idL. Hence Φ is an
embedding of groups.

(ii). Now take another fundamental matrix Z = Y·B for y′ = Ay, B ∈ GLn(C).
For σ ∈ Gal(L/K) we have

ΦZ(σ) = Z−1·σ(Z) = (Y·B)−1·σ(Y·B)

= B−1·Y−1·σ(Y)·B, as σ|K = idK and the constants of L are in K

= B−1·ΦY(σ)·B.

(iii). Now suppose Z = σ(Y). Then the matrix B in (ii) is

B = Y−1·Z = Y−1·σ(Y) = ΦY(σ)

and so by (ii) we see that Φσ(Y) = B−1·ΦY(σ)·B = ΦY(σ).
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(iv). We have

Y·Φ(σ)·Y−1·y = Y·Y−1·σ(Y)·Y−1·y
= σ(Y)·Y−1·y
= σ(Y·Y−1·y), since Y−1·y ∈ Cn by 3.4.1(i), and because

σ|K = idK and the constants of L are in K
= σ(y).

(v). We have

ΞY(σ·τ) = σ(τ(Y))·Y−1

= σ(Y·Y−1·τ(Y))·Y−1

= σ(Y)·Y−1·τ(Y)·Y−1 because Y−1·τ(Y) ∈ GLn(C)

= ΞY(σ)·ΞY(τ).

Further, write Z = Y·B with B ∈ GLn(C) (using 3.4.1(ii)). Then

ΞZ(σ) = σ(Z)·Z−1 = σ(Y·B)·(Y·B)−1

= σ(Y)·B·B−1·Y−1

= σ(Y)·Y−1 = ΞY(σ).

The diagram commutes because

Y·ΦY(σ)·Y−1 = Y·Y−1·σ(Y)·Y−1 = Ξ(σ).

�

3.4.3. Proposition. Let K be a differential field with algebraically closed constant
field C and let K̂ be the differential closure of K. Let S ⊆ K̂n be the set of solutions
of the matrix ODE y′ = Ay, A ∈ Mn(K), and let L ⊆ K̂ be the Picard-Vessiot
extension of K for y′ = Ay (cf. 3.3.5).

Fix a fundamental matrix Y ∈ GLn(L) of y′ = Ay and let HY be the image of
the embedding Φ := ΦY : Gal(L/K) −→ GLn(C) from 3.4.2.

Then the map ΘY : HY × S −→ S defined by ΘY(B, y) = Y·B·Y−1·y are K-
definable in the differential field K̂. (Hence also HY and S are K-definable.) The
diagram

Gal(L/K)× S S

HY × S S

ΦY×idS

(σ,y)7→σ(y)

idS

ΘY

y 7→Y·B·Y−1·y

commutes, i.e. ΘY(B, y) = Φ−1
Y (B)(y).

We see that the action of Gal(L/K) on S is isomorphic to the K-definable (in
K̂) action ΘY : HY × S −→ S.

Proof. We write Φ = ΦY , H = HY and Θ = ΘY and keep in mind the dependency
on Y. The diagram commutes by 3.4.2(iv). Since K̂ is atomic over K, the type
tp(Y/K) is isolated by some formula ϕ(Y ) (in the language of differential rings,
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Y = (yi,j)
n
i,j=1), with parameters from K. We claim that the (graph of the) map

Θ : H × S −→ S is defined in K̂ by the following formula ϑ(X, y, z) in the free
variables X = (xij)

n
i,j=1, y and z:

X ′ = 0 & det(X) 6= 0 & y′ = Ay & ∃Y
(
ϕ(Y ) & ϕ(Y ·X) & z = Y ·X·Y −1·y

)
.

(It follows that H is defined in K̂ by the formula X ′ = 0 & det(X) 6=
0 & ∃Y (ϕ(Y ) & ϕ(Y ·X)). Notice that ϑ indeed has parameters from K only.)

To see this, first suppose that Θ(B, y) = z, i.e., B ∈ H, y ∈ S and σ(y) = z
for the automorphism σ ∈ Gal(L/K) with Φ(σ) = H, i.e. σ(Y) = Y·B. Since
K̂ |= ϕ(Y) and ϕ has parameters inK we know K̂ |= ϕ(Y·B). Since z = Y·B·Y−1·y
by definition of Θ, we see that K̂ |= ϑ(B).

Conversely take B ∈ GLn(C), y ∈ S, z ∈ K̂n and Z ∈ Mn(K̂) with K̂ |=
ϑ(B, y, z). Then B′ = 0 and det(B) 6= 0 says B ∈ GLn(C). Furthermore y′ = Ay

and K̂ |= ϕ(Z) & ϕ(Z·B) & z = Z·B·Z−1·y. Since K̂ |= ϕ(Z), we know that
tp(Y/K) = tp(Z/K) and by 2.7.10 there is some τ̂ ∈ Gal(K̂/K) with τ̂(Y) = Z.
By 3.3.5 we know that τ̂ restricts to an element τ ∈ Gal(L/K). Then Z is a
fundamental matrix for y′ = Ay and by 3.4.2(iii) we know that ΦY = ΦZ . Similarly,
from K̂ |= ϕ(Z·B) we get some σ ∈ Gal(L/K) with σ(Z) = Z·B. Consequently
ΦY(σ) = ΦZ(σ) = B and it remains to show that σ(y) = z. Take c ∈ Cn with
y = Z·c. Then σ(y) = σ(Z)·c = Z·B·c = Z·B·Z−1·y = z as required. �

3.4.4. Proposition. The image HY of ΦY in 3.4.3 is a Zariski closed subgroup of
GLn(C), hence it is a linear algebraic group.

Proof. HY is of course a group. Let Y = (yij | i, j ∈ {1, . . . , n}) be indeterminates.
Fix a fundamental matrix Y ∈ GLn(L) for y′ = Ay and let ε : K[Y ] −→ L be the
evaluation map at Y. We furnish K[Y ] with the derivation extending the one on K

satisfying y′i = A·yi, where yi =

yi1...
yin

, see 1.1.7. Then ε is a differentialK-algebra

homomorphism and its kernel I = {P (Y ) ∈ K[Y ], P (Y) = 0} is a maximal ideal
of the ring K[Y ] (ε is surjective!) as well as a differential ideal of the differential
ring K[Y ].

Claim. If B ∈ GLn(C), then B ∈ HY ⇐⇒ P (Y·B) = 0 for all P ∈ I.
Proof. ⇒. Since B ∈ HY , there is some σ ∈ Gal(L/K) with B = ΦY(σ). If P ∈ I,
then P (Y·B) = P (Y·ΦY(σ)) = P (σ(Y)). Since σ|K = idK , we get P (σ(Y)) =
σ(P (Y)) = 0, as required.
⇐. Let Σ : K[Y ] −→ K[Y ] be the K-automorphism defined by Σ(P (Y )) =

P (Y ·B). Since B has constant entries, Σ is differential and the kernel J of ε ◦Σ is

J = {P (Y ) ∈ K[Y ] | P (Y·B) = 0}.

By assumption, I ⊆ J . Since I is a maximal ideal we get I = J and therefore ε ◦Σ
factors through a differential K-automorphism σ : L −→ L so that the diagram
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K[Y ] K[Y ]

L L

Σ

ε ε

σ

commutes. We claim that ΦY(σ) = B (showing B ∈ HY):

ΦY(σ) = Y−1σ(Y) = ε(Y )−1·σ(ε(Y ))

= ε(Y )−1·ε(Σ(Y )) by commutativity of the diagram

= ε(Y −1·Σ(Y )) = ε(Y −1·Y ·B)

= B as ε|K = idK .

�
The claim says precisely that HY is the intersection of GLn(C) with the Zariski
closed subset of Ln

2

defined by {P (Y·X) ∈ L[X] | P (Y ) ∈ K[Y ], P (Y) = 0},
X = (xij)

n
i,j=1. By 2.2.6(ii), the set HY is a Zariski closed subset of GLn(C). �

3.4.5. Fundamental Theorem of Differential Galois Theory for Picard-
Vessiot extensions Let L/K be a Picard-Vessiot extension of differential fields
for the matrix ODE y′ = Ay, A ∈ Mn(K). Suppose C has algebraically closed
constant field. Let Y ∈ GLn(L) be a fundamental matrix for y′ = Ay. Then the
map
(i)

Gal(L/__) :

{
L1

L1 differential field

with K ⊆ L1 ⊆ L

}
−→

{
G

G ⊆ Gal(L/K)

linear algebraic group

}
L1 7−→ Gal(L/L1)

is an inclusion reversing bijection. Its inverse sends G to the fixed field

LG = {a ∈ L | σ(a) = a for all σ ∈ G}.

(ii) Under the bijection in (i) the differential fields L1 that are normal (i.e. all
σ ∈ Gal(L/K) restrict to automorphisms L1 −→ L1), are in bijection with
the normal Zariski closed subgroups of Gal(L/K). Such a field L1 is again a
Picard-Vessiot extension of some matrix ODE of K.

Proof. [vdPSin2003, Proposition 1.34], [CreHaj2011, Proposition 6.3.1 and 6.3.2],
[Magid1994, Theorem 6.5] �

3.4.6. Classical Galois extensions If K is a differential field with algebraically
closed constant field, then every finite Galois extension L/K (in the classical sense)
is a Picard-Vessiot extension, see [vdPSin2003, Exercises 1.24], or [CreHaj2011,
Example 6.1.6].

Proof. Firstly, since L/K is algebraic and the constant field C of K is algebraically
closed, 2.1.5(ii)(b) implies that L also has constant field C.

As we are in characteristic 0 the primitive element theorem tells us that L = K[α]
for some α ∈ L. Let d be the degree of L/K, i.e. the K-vector space dimension of
L.
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Then α, α′, . . . , α(d) are linearly dependent over K and there is a maximal k ≤
d such that α, α′, . . . , α(k−1) are linearly independent over K. Then there are
a0, . . . , ak−1 ∈ K such that α solves

y(k) + ak−1y
(k−1) + . . .+ a1y

′ + a0y = 0.

By 3.3.2(ii), the C-vector space V ⊆ L of solutions of this equation is finite dimen-
sional. As all field automorphisms of L/K preserve the derivation (by formula (∗)
in 2.1.5), we see that conditions (a) and (b) of 3.3.8 are satisfied for L/K (take
G = Gal(L/K)), which implies the claim. �

3.4.7. Examples. [CreHaj2011, Examples 6.1.4 and 6.1.5] Let K be a differential
field with (not necessarily algebraically closed) constant field C.
(i) (Adjunction of an integral).

Let L = K〈α〉, α′ = a ∈ K, α /∈ K.
If a has an integral b ∈ K, then b

α is a new constant. Now assume a has
no integral in K. Then
(a) α is transcendental over K
(b) L/K is Picard-Vessiot for the equation y′′ − a′

a y = 0

(c) A fundamental system of solution for y′′ − a′

a y = 0 is {1, α}.
(d) An element σ ∈ Gal(L/K) maps α to some α+ c, c ∈ C and

Gal(L/K) ∼= {
(

1 c
0 1

)
| c ∈ C} ∼= (C,+).

(ii) (Adjunction of an exponential of an integral).
Let L = K〈α〉 with α′

α = a ∈ K×. Assume L has no new constants (e.g.
α ∈ K̂). Then
(a) α is a fundamental system of the linear ODE y′ − ay = 0 and L/K is

Picard-Vessiot for this linear ODE.
(b) If α is algebraic over K, then αn ∈ K for some K and Gal(L/K) is a

finite cyclic group.
(c) If α is transcendental over K, then Gal(L/K) ∼= (C×, ·).
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3.5. Kolchin’s strongly normal extensions.
This is essentially an annotated write up of parts of [Poizat2000, Section 18.3],
where definitions and statements are compared with the corresponding ones in
Picard-Vessiot theory.

3.5.1. Definition. Let K be a differential field with algebraically closed constant
field. AKolchin formula ofK is a formula ϕ(x) in the language of differential rings
in one free variable x, with parameters from K, that has the following property:

There is a differentially closed field M ⊇ K such that for every
differentially closed field L ⊇ M and each α ∈ L with L |= ϕ(α),
the differential fieldM〈α〉 generated by α overM in L, is generated
over M by constants of M〈α〉.

In the case of linear ODEs: Let ϕ(x) be a homogeneous linear ODE of the
form

(L) x(n) + an−1x
(n−1) + . . .+ a1x

′ + a0x = 0,

with ai ∈ K. This formula is Kolchin, because by 3.3.2(iii), every differentially
closed field contains a fundamental system of solutions of the matrix ODE y′ = ALy
for

AL =



0 1 . . . 0 0

0 0
. . . 0 0

...
...

. . .
...

0 0 . . . 0 1
−a0 −a1 . . . −an−2 −an−1


and by 3.3.2, for any differential field L containing a fundamental system, solutions
of y′ = ALy are generated by this system over the constants. (Recall that solutions
y ∈ Ln of y′ = ALy are isomorphic to solutions of L, i.e. realizations of ϕ(x), by
projecting onto the first coordinate of y.) An example of a Kolchin formula that
is not linear is x′2 = x3 + px + q, where p and q are constants of the Weierstrass
℘-function.

3.5.2. Lemma. Let ϕ(x) be a Kolchin formula over K. Then there are 0-definable
(for DCF) functions fi(ȳ, z̄), i = {1, . . . , k} such that for any differentially closed
field M containing K there is a ȳ-tuple ā ∈M ȳ with the following property:

(†) for all α ∈ N �M with N |= ϕ(α) there is a z̄-tuple of constants of N with

α = f1(ā, c̄) ∨ . . . ∨ α = fk(ā, c̄).

A tuple ā from a DCFM ⊇ K is called a fundamental system of parameters
for ϕ(x) if there are finitely many 0-definable functions fi as above such that (†)
holds. If this is the case, then every realization of the formula

∀x
(
ϕ(x)↔ (

k∨∨
i=1

∃z̄ (d(z̄) = 0 & x = fpi(ȳ, z̄)))

)
.

(in the free variables ȳ) is a fundamental solutions of ϕ(x) such that (†) holds for
f1, . . . , fk. In the case of linear ODEs: ā will be the first row of a funda-
mental matrix for AL, hence ā is an n-tuple of solutions of L and we only need
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one function, namely

f(ȳ, z̄) = (y1, . . . , yn)·

z1

...
zn

 .

Proof. Let M̃ ⊇ K be a DCF such that for every differentially closed field L ⊇ M̃
and each α ∈ L with L |= ϕ(α), the differential field M̃〈α〉 generated by α over M̃
in L, is generated over M̃ by constants of M̃〈α〉. Hence if p ∈ S1(M̃) contains ϕ
and α is a realization of p from some L �M . Then there is a 0-definable function
fp(ȳ, z̄) and some āp ∈ M̃ ȳ such that p contains the M̃ -formula ϕp(x) defined as

∃z̄ (d(z̄) = 0 & x = fp(āp, z̄)).

By compactness of S1(M̃) there are p1, . . . , pk ∈ S1(M̃) containing ϕ(x) such that

M̃ |= ϕ(x)↔ (ϕp1(x) ∨ . . . ∨ ϕpk(x)).

Consequently

M̃ |= ∃ȳ1, . . . , ȳk∀x
(
ϕ(x)↔ (

k∨∨
i=1

∃z̄i (d(z̄i) = 0 & x = fpi(ȳi, z̄i)))

)
.

By writing ȳ = (ȳ1, . . . , ȳk), z̄ = (z̄1, . . . , z̄k) and modifying the fpi accordingly, we
get

M̃ |= ∃ȳ∀x
(
ϕ(x)↔ (

k∨∨
i=1

∃z̄ (d(z̄) = 0 & x = fpi(ȳ, z̄)))

)
.

This sentence has only parameters in K (only occurring in ϕ) and so by quantifier
elimination for DCF, this sentence is true in every DCF containing K. This is what
the lemma asserts. �

To proceed we need one model theoretic input:

3.5.3. Definable sets in stable theories are large. Let M be a model of
a stable theory and let D ⊆ Mn be a set that is definable with parameters from
M . Let A be the set of all entries of tuples from D. Then the natural restriction
Sn(M) −→ Sn(A) is injective on the set 〈D〉 of n-types of M containing (the
formula defining) D.

Proof. [Poizat2000, Theorem 12.30]. �
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3.5.4. Proposition. If ϕ(x) is a Kolchin formula of the differential field K, then
in any differentially closed field M containing K there is a fundamental system of
parameters for ϕ(x) in M consisting of realizations of ϕ(x) in M .

Proof. We can repeat the compactness argument of the proof of 3.5.2, once we have
shown the following claim: If N � M and α ∈ N with N |= ϕ(α), then there is
some ā ⊆M whose coordinates are realizations of ϕ(x) such that α ∈ Q〈ā ∪ CN 〉:

Let S be the set defined by ϕ in M and let L = Q〈S ∪ CM 〉. Since ϕ(x) is
Kolchin, there is some tuple c̄ ⊆ CN with α ∈M〈c̄〉. Now, α ∈ SN and the tuple c̄
is in Clength(c̄)

N .

CN N

M〈α〉 α = f(b̄, c̄), c̄ ∈ CN

CM M ⊇ S 3 b̄

L = Q〈S ∪ CM 〉

Since L contains S and CM we may apply 3.5.3 and get that tp(α, c̄/L) `
tp(α, c̄/M). Consequently tp(α/L ∪ {c̄}) ` tp(α/M ∪ {c̄}). Since α is in the
definable closure of M ∪ {c̄}, it must also be in the definable closure of L ∪ {c̄}.
But then there is some ā ⊆M whose coordinates are realizations of ϕ(x) such that
α ∈ Q〈ā ∪ CN 〉. �

3.5.5. Corollary and Definition. If ϕ(x) is a Kolchin formula over K and K
has algebraically closed constants, then the Kolchin extension of K for ϕ(x) is
the differential field generated by K and the set defined by ϕ(x) in the differential
closure of K̂. Kolchin calls these extensions strongly normal. Then
(i) L is differentially finitely generated over K by any fundamental system of

parameters of ϕ(x) whose entries are realizations for ϕ.
(ii) Every σ ∈ Gal(K̂/K) restricts to an element of Gal(L/K) and the restriction

map is surjective.

Proof. (i) follows from 3.5.4.
(ii). It is clear that every σ ∈ Gal(K̂/K) restricts to an automorphism of L. For
the converse we use (i) and 2.7.10. �
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3.5.6. The Galois group as a definable group. Let L/K be Kolchin for ϕ(x)
and fix a fundamental solution ā for ϕ in L whose entries are realizations of ϕ(x).
Let ψ(x̄) be a formula (with parameters from K) isolating tp(ā/K).

(i) The map Φ = Φā : Gal(L/K) −→ ψ[K̂] (realizations of ψ in K̂) that sends
σ to σ(ā) is bijective, because the action of σ is uniquely determined by its
action on the generator ā of L (note that K has alg. closed constant field by
assumption). For surjectivity use the property of tp(ā/K) being isolated by
ψ and apply 2.7.10 again.

(ii) We claim that the group law of Gal(L/K) is K-definable in K̂ when passed
through Φ.
Proof. Choose 0-definable functions fi(ȳ, z̄), i = {1, . . . , k} for ā as in 3.5.2.
Then for σ1, σ2, σ3 ∈ Gal(L/K) we have

σ2 ◦ σ1 = σ3 ⇐⇒ ∀c̄
(
d(c̄) = 0→

k∧∧
i=1

(σ1(ā) = fi(ā, c̄)→ σ3(ā) = fi(σ2(ā), c̄))

)
.

Proof. ⇒: if σ2 ◦ σ1 = σ3 and σ1(ā) = fi(ā, c̄), then applying σ2 gives
σ3(ā) = fi(σ2(ā), c̄).
⇐: We know that for some i we have σ1(ā) = fi(ā, c̄) and so σ3(ā) =

fi(σ2(ā), c̄) by assumption. However we also have σ2(σ1(ā)) = fi(σ2(ā), c̄)
and so σ3 = σ2 ◦ σ1. �
Hence the multiplication ȳ2·ȳ1 = ȳ3 defined by

∀c̄
(
d(c̄) = 0→

k∧∧
i=1

(ȳ1 = fi(ā, c̄)→ ȳ3 = fi(ȳ2, c̄)).

defines a group on ψ(K̂) and Φ is an isomorphism of groups. �
(iii) The action of ψ(K̂) on L is given as follows: Pick α ∈ L, i.e. α = g(ā) for some

K-definable function g(v̄), v̄ an ā-tuple of variables. Then for σ ∈ Gal(L/K)

and ȳ = σ(ā) ∈ ψ(K̂) we have

σ(α) = σ(g(ā)) = g(σ(ā)) = g(ȳ).

3.5.7. Theorem. [Poizat2000, Proposition 18.15] If L/K is the Kolchin extension
of the Kolchin formula ϕ(x) and the constant field of K is algebraically closed, then
for any fundamental system of parameters ā for ϕ(x) from the differential closure
K̂ of K, the map Φ = Φā from 3.5.6(i) induces a Galois correspondence

Φ Gal(L/__) :

{
L1

L1 differential field

with K ⊆ L1 ⊆ L

}
−→

{
G

G ⊆ ψ(K̂) subgroup,

L-definable in K̂

}

L1 7−→ Φ(Gal(L/L1)).

Hence Φ Gal(L/__) is an inclusion reversing bijection. Its inverse Fix sends G to
the fixed field

Fix(G) = {a ∈ L | σ(a) = a for all σ ∈ Φ−1(G)}.
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Proof. If α ∈ L, then Gal(L/K〈α〉) is the stabilizer of α in Gal(L/K). By 3.5.6(iii),
the image Φ Gal(L/K〈α〉) is the set of all ȳ ∈ ψ(K̂) with g(ȳ) = g(ā). Hence
Φ Gal(L/K〈α〉) is defined by this formula.

Now if K ⊆ L1 ⊆ L, then Φ Gal(L/L1) = ⋂α∈L1
Φ Gal(L/K〈α〉). The latter

group is a finite intersection, since DCF is totally transcendental, using the following
Claim. In a totally transcendental theory there is no strictly decreasing chain of

definable subgroups G1 ⊇ G2 ⊇ G3 ⊇ . . . in any model.
Proof. Suppose there is such a chain. By passing to a subsequence we may assume
thatGi+1 has infinite index inGi for all i. By definition of the Morley rank it follows
by transfinite induction on ordinals α that MR(G1) ≥ α. But then MR(G1) = ∞
contradicting the assumption of total transcendence. �

The claim implies that there are α1, . . . , αk ∈ L with Gal(L/L1) =
Gal(L/K〈α1, . . . , αk〉). By 2.7.10 (and 3.5.6) we know that K〈α1, . . . , αk〉 is the
fixed field of Gal(L/K〈α1, . . . , αk〉). Since L1 is fixed by all automorphisms from
Gal(L/K〈α1, . . . , αk〉), we get that L1 ⊆ K〈α1, . . . , αk〉. But αi ∈ L1 and so we see
that that L1 = K〈α1, . . . , αk〉 is finitely generated and Φ(Gal(L/L1)) is a definable
subgroup of ψ(K̂).

This shows that the map Φ Gal(L/__) is well defined and that the composition
Fix ◦Φ Gal(L/__) is the identity on the set of differential fields between K and L.

Conversely, let G ⊆ ψ(K̂) be a subgroup that is definable in K̂ by a formula γ(v̄, l̄),
l̄ ⊆ L.
Claim. Φ−1(G) = {σ ∈ Gal(L/K) | σ preserves G setwise.}
Proof. If σ preserves G, then from γ(ā, l̄) (corresponding to id ∈ G) we know
γ(σ(ā), l̄). But this means that σ ∈ Φ−1(G), because G = {τ(ā) | τ ∈ Φ−1(G)}.

Conversely, if σ ∈ Φ−1(G) and z̄ = τ(ā) ∈ G with τ ∈ Φ−1(G), then as σ ◦ τ ∈
Φ−1(G) we have στ(ā) ∈ G, meaning that |= γ(σ(z̄), l̄). �

Now we invoke elimination of imaginaries of DCF, see 2.3.7. By 2.3.3 applied to
the 0-definable equivalence relation ε(ū, w̄) defined as ∀v̄(γ(v̄, ū)↔ γ(v̄, w̄)), there is
a finite set B ⊆ K̂, such that the automorphisms of K̂ that preserve γ(K̂, l̄) setwise
(these are the same as the automorphisms preserving the ε-equivalence class of l̄
setwise) are precisely the automorphisms that preserve B pointwise. Since γ(K̂, l̄)

is defined over L it follows that Gal(K̂/L) ⊆ Gal(K̂/Q〈B〉) and so by 2.7.10 we see
that that B ⊆ L.

But now the the claim (together with 3.5.5(ii)) implies that Φ−1(G) is the group
of automorphisms of L that fix L1 = K〈B〉 pointwise, in other words Fix(G) = L1.
This show that Φ Gal(L/__)◦Fix is the identity on the set of L-definable subgroups
of Φ Gal(L/K). �

Further generalizations of the fundamental theorem of Galois theory, beyond
(expansions of) fields, may be found in [Poizat1983].
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