
INTRODUCTION TO MODEL THEORY

MARCUS TRESSL

Abstract. These notes are based on my model theory course taught in semes-
ter 1 of 2010/2011. There are several additions and improvements compared
to the original version.

URL of these notes::
http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/papers/ModelTheory.pdf

Date: December 6, 2024.
1

http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/papers/ModelTheory.pdf


2 MARCUS TRESSL

Contents

1. Revision of Predicate Logic 3
1.1. Languages and formulas 3
1.2. Structures and Tarski’s definition of truth 10
1.3. The compactness theorem 12
1.4. Ultraproducts and proof of the compactness theorem 12
1.5. Theories and logical equivalence 18
1.6. Extensions of languages 19

2. Comparing structures 21
2.1. Formulas preserved by maps 21
2.2. Naming elements of structures: Maps and diagrams 24
2.3. The Tarski-Vaught test and the Skolem-Löwenheim theorems 27
2.4. Categoricity by examples 30
2.5. Chains 35
2.6. Intersections and generated substructures 36
2.7. Back and Forth equivalence 37
2.8. The Elementary Joint Embedding Theorem 39

3. Types and definable sets 41
3.1. Definable sets 41
3.2. n-types of structures (warm up) 46
3.3. Types 49
3.4. n-types of theories and structures 53
3.5. Realizing types: Saturated structures 56
3.6. Existentially closed models and model-completeness 58
3.7. Omitting types 63

4. Quantifier elimination 68
4.1. The main tests for quantifier elimination 69
4.2. Some theories with quantifier elimination 75
4.3. Tarski’s Theorem 79

– Introductory Books on Model Theory – 89
– Textbooks on General Model Theory – 90
– Textbooks on Mathematical Logic containing Model Theory – 91
– Model Theory of Special Structures and Research Monographs – 92
– Philosophy of Model Theory – 96
– Other Books and Articles – 96
Index 97
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1. Revision of Predicate Logic

1.1. Languages and formulas.
In this section we shall define what is a first order language, usually denoted by L .
L will consist of an alphabet and a set of finite sequences (strings) of elements of
that alphabet, built according to certain rules; these string will be called formulas.

The alphabet of a language

1.1. Definition. (Alphabet)
The alphabet of a language L consists of the following data:

(I) A set of logical symbols, which are present in every language:
• ¬ (’not’), → (’implies’), ∀ (’for all’)
• The equality symbol: .

=
• Brackets: ) (
• Comma: ,
• Symbols to denote variables: v0, v1, v2, ... Notice that each vi is consid-

ered as a single symbol (and not as a concatenation of two symbols).
(II) • Three mutually disjoint sets R (called the set of relation symbols or

predicate symbols), F (called the set of function symbols) and C
(called the set of constant symbols). Further, none of these sets con-
tains a logical symbol.

• Maps
λ : R −→ N called the “arity of relation symbols”
µ : F −→ N called the “arity of function symbols”

For R ∈ R and F ∈ F , the numbers λ(R) and µ(F ) are called the arity
of R, F respectively. We say that R, F is n-ary, if λ(R) = n, µ(F ) = n,
respectively.

Every logical symbol and every element from R ∪F ∪ C is called an L -symbol
or simply a symbol whenever L is clear from the context. We shall also use the
term (L -)letter instead of (L )-symbol.

We define the set of variables as

Vbl := {vn | n ∈ N0}.
The alphabet of a language L is called finite if R, F and C are finite. Otherwise
the alphabet of L is called infinite

The alphabet of a language L is called countable if R, F and C are countable
or finite. Otherwise the alphabet of L is called uncountable. .

In general, the cardinality of an alphabet of a language L is the cardinality
of R ∪F ∪ C .
Notation. Obviously, the alphabet of a language is uniquely determined by the
data in item II of definition 1.1. These data are called the similarity type of L .
Hence the similarity type of L is given by

(λ : R −→ N, µ : F −→ N,C )

1.2. Examples.
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(i) The empty similarity type. Here R = F = C = ∅.
(ii) The similarity type of a composition (or of an operation ): (∅, µ : {◦} −→
{2}, ∅). This means: R = C = ∅ and F consist of a single element ◦ of arity
2: µ(◦) = 2.

(iii) The similarity type of groups: (∅, µ : {◦,−1} −→ N, {e}) where µ(◦) = 2
and µ(−1) = 1; hence ◦ is a binary function symbol (i.e. of arity 2), −1 is a
function symbol of arity 1 and e is a constant symbol.

(iv) The similarity type of unital rings: (∅, µ : {+,−, ·} −→ N, {0, 1}), where
µ(+) = µ(·) = 2 and µ(−) = 1. Hence − is a unary (i.e. 1-ary) and +, · are
binary function symbols. 0 and 1 are constants.

(v) The similarity type of set theory: (λ : {∈} −→ {2}, ∅, ∅). Here ∈ is a binary
predicate symbol. Sometimes this similarity type also contains a constant
symbol (denoting the empty set).

(vi) The similarity type of partially ordered sets: (λ : {≤} −→ {2}, ∅, ∅). Here ≤
is a binary predicate symbol.

(vii) The similarity type of ordered groups: (λ : {≤} −→ {2}, µ : {◦,−1} −→
N, {e}). Here ≤ is a binary relation symbol.

Terms

1.3. Definition. (L -term)
Given the similarity type (λ : R −→ N, µ : F −→ N,C ) of L , we define subsets
tmk L of strings (i.e. of finite sequences) of the alphabet of L by induction on
k ∈ N0 as follows:

tm0 L = Vbl∪C and
tmk+1 L = tmk L ∪ {F (t1, t2, ..., tn) | n ∈ N, F ∈ F , µ(F ) = n, t1, ..., tn ∈ tmk L }.

The set of L -terms is defined as

tm L := ⋃
k∈N0

tmk L .

The elements of tm L are called L -terms or simply ’terms’ if L is clear from the
context.

The complexity of an L -term t - denoted by c(t) - is the least k ∈ N0 such
that t ∈ tmk L . Notice that for t ∈ tm L and k ∈ N0 we have by definition
c(t) ≤ k ⇐⇒ t ∈ tmk L .

1.4. Theorem. (Unique readability theorem for terms) If t is an L -term, then
either t is a variable or t is a constant symbol or there are uniquely determined
n ∈ N, F ∈ F of arity n and t1, ..., tn ∈ tm L such that

t = F (t1, t2, ..., tn).

1.5. Corollary. For all n ∈ N, all L -terms t1, ..., tn and each n-ary function
symbol F of L we have

c(F (t1, ..., tn)) = 1 + max{c(t1), ..., c(tn)}.

Formulas
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1.6. Definition. (formulas)
Given a similarity type (λ : R −→ N, µ : F −→ N,C ) of a language L , an atomic
L -formula is a string of the alphabet of L of the form

t1
.
= t2,

where t1, t2 are L -terms or
R(t1, ..., tn),

where R is a relation symbol of arity n ∈ N and t1, ..., tn are L -terms. The set of
atomic L -formulas is denoted by at-Fml(L ).

We define

Fml0(L ) = at-Fml(L ) and inductively for each k ∈ N0 :

Fmlk+1(L ) = Fmlk(L ) ∪ {(¬ϕ), (ϕ→ ψ), (∀xϕ) | ϕ,ψ ∈ Fmlk L , x ∈ Vbl}.

The set of L -formulas is defined as

Fml(L ) := ⋃
k∈N0

Fmlk(L ).

If the letter ∀ does not occur in the L -formula ϕ, then ϕ is called quantifier-free.

Warning. Not every formula that has (obvious) meaning in mathematics is a
formula in our sense. This is in particular important after we have proved significant
theorems involving formulas. Here an example:

∀n ∈ N ∃r, q ∈ N0 n = q ·m+ r ∧ r < m.

There is no language (according to our definition) such that the above is a formula
in that language.

Notice that the quantifier introduced in the definition of Fmlk+1 L (cf. 1.6) is
always applied in a nonrestricted way, e.g.

∀n∃r, q n .
= q ·m+ r ∧ r < m

will be a formula in the language of rings after we have introduced the appropriate
abbreviations (concerning the symbols ∃ and ∧)in 1.9.

The language or signature L is the triple consisting of the alphabet of L , the set
of L -terms and the set of L -formulas. Obviously, tm L and Fml L are uniquely
determined by the similarity type of L and we shall simply communicate languages
by their similarity type.

Hence the expression ’let L = (λ : R −→ N, µ : F −→ N,C ) be a language’
stands for ’let L be the language with similarity type (λ : R −→ N, µ : F −→
N,C )’.

We say that a language is finite, infinite, countable or uncountable if the al-
phabet of that language has this property. In general, the cardinality of a language
L , denoted by card(L ), is the cardinality of the alphabet of that language.

1.7. Lemma. The cardinality of Fml L is the maximum of ℵ0 and the cardinality
of L . If L is countable, then the sets tm L and Fml L are countable and infinite.

As for terms we have a unique readability theorem:
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1.8. Theorem. (Unique readability theorem for formulas)
Let L = (λ : R −→ N, µ : F −→ N,C ) be a language and let ϕ be an L -formula.
Then exactly one of the following holds true:
(i) ϕ is atomic and there are uniquely determined t1, t2 ∈ tm L such that ϕ is

t1
.
= t2, or

(ii) ϕ is atomic and there are a unique n ∈ N, a unique R ∈ R and uniquely
determined L -terms t1, ..., tn such that ϕ is R(t1, ..., tn), or

(iii) ϕ is equal to a string of the form (¬ψ) for a uniquely determined ψ ∈ Fml L ,
or

(iv) ϕ is equal to a string of the form (ϕ1 → ϕ2) for uniquely determined ϕ1, ϕ2 ∈
Fml L , or

(v) ϕ is equal to a string of the form (∀xψ) for uniquely determined ψ ∈ Fml L
and x ∈ Vbl.

1.9. Domestication of the notation
• We will omit brackets if this does not lead to ambiguity.
• We use the following abbreviation for L -formulas ϕ,ψ: ϕ ∨ ψ := (¬ϕ) → ψ,
ϕ ∧ ψ := ¬(ϕ → (¬ψ)), ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ) and ∃xϕ := ¬∀x(¬ϕ)
where x is a variable.

• We write

∀x1, ..., xn ϕ instead of ∀x1...∀xnϕ and ∃x1, ..., xn ϕ instead of ∃x1...∃xnϕ

where each xi is a variable.
The strings ∀x and ∃x are called quantifiers. A string of quantifiers is a

string of the form Q1x1...Qnxn, where each Qi is either ∀ or ∃ and each xi is a
variable.

• We write

n∧
i=1

ϕi instead of

n-times︷︸︸︷
(...( ϕ1 ∧ ϕ2) ∧ ϕ3)... ∧ ϕn) and

n∨
i=1

ϕi instead of

n-times︷︸︸︷
(...( ϕ1 ∨ ϕ2) ∨ ϕ3)... ∨ ϕn).

• We write t1 6
.
= t2 instead of (¬t1

.
= t2).

• If R is a binary relation, we write t1Rt2 instead of R(t1, t2).

Complexity and subformulas
The unique readability theorems 1.4 and 1.8 allow us to define new objects from

formulas, and to prove statements about formulas. This will be done via induction
on the construction depth (or the ’complexity’) of terms and formulas:

1.10. Definition. The complexity of an L -formula ϕ - denoted by c(ϕ) - is
the least k ∈ N0 such that ϕ ∈ Fmlk L .

Notice that this is not in conflict with the definition of the complexity of L -
terms (cf. 1.3), since the set of L -terms is disjoint from the set of L -formulas.
Notice also that for any given terms t1, t2, ..., tn and each n-ary relation symbol R
of L , c(R(t1, ..., tn)) = 0. Similarly c(t1

.
= t2) = 0.
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By definition, for every L -formula ϕ and each k ∈ N0 we have

c(ϕ) ≤ k ⇐⇒ ϕ ∈ Fmlk L .

1.11. Lemma. For all L -formulas ϕ,ψ we have

c(¬ϕ) = 1 + c(ϕ), c(ϕ→ ψ) = 1 + max{c(ϕ), c(ψ)} and c(∀xϕ) = 1 + c(ϕ).

Proof. The proof is left as an exercise: Proceed as in 1.5 but use 1.8 instead of
1.4. �

1.12. Definition. (subformula)
We define a binary relation between L -formulas ϕ and ψ

- called “... is a subformula of ...” -
inductively, w.r.t. the complexity of ψ:
(i) If c(ψ) = 0 (equivalently: ψ is atomic), then ϕ = ψ.
(ii) If c(ψ) = k + 1, then

(a) If ψ = (∀xϑ) or ψ = (¬ϑ), then ϕ is a subformula of ϑ or ϕ = ψ
(b) If ψ = (ψ1 → ψ2), then ϕ is a subformula of ψ1 or ϕ is a subformula of

ψ2 or ϕ = ψ.

Notice that this definition is correct by 1.11.
Of course, every subformula of ϕ occurs in ϕ at some position. Also note that by a
straightforward induction on the complexity, we see that the subformula relation is
transitive and a formula ϕ is a subformula of ψ is an only if ϕ occurs as a substring
of ψ.

Free and bound occurrences of variables
Let L = (λ : R −→ N, µ : F −→ N,C ) be a language.

1.13. Definition. (scope of a quantifier)
The scope of a quantifier ∀x in an L -formula ϕ is the set of all positions of letters
in ϕ, which are captured in a subformula of the form (∀xψ) of ϕ.

More formally: the scope of ∀x in ϕ is the set of all k ∈ N such that there is a
subformula of the form (∀xψ) of ϕ, of length l ∈ N which occurs at a position p in
ϕ with p ≤ k < p+ l.

1.14. Example. For example, look at the formula of the language of ordered groups
(cf. 1.2):

ϕ = (∀v2((∀v1 ◦ (e, v1)
.
= v5)→ −1(v1) ≤ e)).

Here the scope of the quantifier ∀v1 in ϕ:

ϕ = (∀v2(

scope of ∀v1︷ ︸︸ ︷
(∀v1 ◦ (e, v1)

.
= v5)→ −1(v1) ≤ e)).

1.15. Definition. (free and bound occurrence of variables)
Let ϕ be an L -formula and let x be a variable.
(i) If x occurs in ϕ at position k ∈ N and if k is not in the scope of the quantifier
∀x in ϕ, then we say x occurs free in ϕ at position k.

(ii) If x occurs in ϕ at position k ∈ N and if k is in the scope of the quantifier ∀x
in ϕ, then we say x occurs bound in ϕ at position k.

(iii) x is a free variable of ϕ if there is some k ∈ N such that x occurs free in ϕ
at position k.
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The set of free variables of ϕ is denoted by Fr(ϕ). If Fr(ϕ) = ∅, then ϕ is called an
(L -)sentence and the set of all L -sentences is denoted by Sen(L ).

It is convenient to extend the notation to terms:
(iv) If t is an L -term, then we define Fr(t) to be the set of all variables occurring

in t and we will also say that x is free in t instead of x ∈ Fr(t). Notice that
there are no variables which are possibly bound in t. If Fr(t) = ∅, then t is
called a closed term or a constant term.

Different occurrences of a given variable in a formula may be free or bound,
depending on where they are. In example 1.14 above, v1 occurs bound at two
positions in ϕ and free at one position.

ϕ = (∀v2((∀
bound occurrence︷︸︸︷

v1 ◦(e,
bound occurrence︷︸︸︷

v1 )
.
= v5)→ −1(

free occurrence︷︸︸︷
v1 ) ≤ e))).

We have Fr(ϕ) = {v1, v5}.

1.16. Lemma. Let ϕ,ψ be L -formulas.
(i) If ϕ is quantifier-free then Fr(ϕ) is the set of variables occurring in ϕ.
(ii) Fr(¬ϕ) = Fr(ϕ)
(iii) Fr((ϕ→ ψ)) = Fr(ϕ) ∪ Fr(ψ).
(iv) Fr(∀xϕ) = Fr(ϕ) \ {x} for all x ∈ Vbl.

1.17. Notation.
• The expressions ’t(x1, ..., xn) ∈ tm L ’ or ’let t(x1, ..., xn) be an L -term’ are

shorthand for
“t ∈ tm L , x1, ..., xn ∈ Vbl with xi 6= xj (i 6= j) and Fr(t) ⊆ {x1, ..., xn}”.

This is common practice in mathematics, for example a polynomial in two vari-
ables is also considered as a polynomial in three variables.

• The expressions ’ϕ(x1, ..., xn) ∈ Fml L ’ or ’let ϕ(x1, ..., xn) be an L -formula’
are shorthand for
“ϕ ∈ Fml L , x1, ..., xn ∈ Vbl with xi 6= xj (i 6= j) and Fr(ϕ) ⊆ {x1, ..., xn}”.

1.18. Definition. Let ϕ be an L -formula.
(i) Let x, y be variables. We define

x is free in ϕ for y or y is substitutable for x in ϕ

if no position of ϕ at which x occurs free in ϕ, is in the scope of the quantifier
∀y in ϕ.

(ii) Let t be an L -term. We define
x is free in ϕ for t or t is substitutable for x in ϕ

if x is free in ϕ for every variable which occurs in t.

So by definition, each variable x is free for x in ϕ and each variable which does not
occur in ϕ is free in ϕ for every term.
In example 1.14, i.e.

ϕ = (∀v2((∀v1 ◦ (e, v1)
.
= v5)→ −1(v1) ≤ e)),

v1 is free for v5 but not free for v2 in ϕ; v5 is not free for the term ◦(v2, v5).

1.19. Definition. Let ϕ ∈ Fml L , t1, ..., tn, t ∈ tm L and let x1, ..., xn be n
distinct variables.
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(i) The expression t(x1/t1, ..., xn/tn) denotes the string obtained from t by re-
placing every occurrence of xi in t with the string ti (1 ≤ i ≤ n).

(ii) If for each i ∈ {1, ..., n} the variable xi is free in ϕ for ti then the expression
ϕ(x1/t1, ..., xn/tn) denotes the string obtained from ϕ by simultaneously re-
placing every free occurrence of xi in ϕ with the string ti (1 ≤ i ≤ n). We
call ϕ(x1/t1, ..., xn/tn) the substitution of x1, ..., xn by t1, ..., tn in ϕ.

Warning. Notice that we replace the variables xi by the terms ti simultaneously
and not consecutively: For example if ϕ is (∀x2 x1

.
= x2) → x2

.
= x3, then

ϕ(x1/t1, x2/t2) is (∀x2 t1
.
= x2)→ t2

.
= x3.

However, in general ϕ(x1/t1, x2/t2) is NOT the same as ϕ(x1/t1)(x2/t2). Why?

1.20. Lemma. Let ϕ ∈ Fml L , t1, ..., tn, t ∈ tm L and let x1, ..., xn be n distinct
variables.
(i) t(x1/t1, ..., xn/tn) is an L -Term and if Fr(t) ⊆ {x1, ..., xn}, then

Fr(t(x1/t1, ..., xn/tn)) ⊆ Fr(t1) ∪ ... ∪ Fr(tn).

(ii) If for each i ∈ {1, ..., n} the variable xi is free in ϕ for ti then the string
ϕ(x1/t1, ..., xn/tn) is an L -formula and in the case Fr(ϕ) ⊆ {x1, ..., xn} we
have

Fr(ϕ) ⊆ Fr(t1) ∪ ... ∪ Fr(tn).

Proof. (i) is a straightforward induction on the complexity of t. (ii) is a straight-
forward induction on the complexity of ϕ. �
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1.2. Structures and Tarski’s definition of truth.

Throughout, L = (λ : R −→ N, µ : F −→ N,C ) denotes a formal language.

1.21. Definition. An L -structure is a tuple

M =

(
M , (RM | R ∈ R) , (FM | F ∈ F ) , (cM , c ∈ C )

)
consisting of
(S1) A nonempty set M , called the universe or the domain or the carrier of

M . We shall also write |M | instead of M .

(S2) A family (RM | R ∈ R) of relations of M such that for R ∈ R, RM ⊆
Mλ(R). Hence RM is a λ(R)-ary relation of M , called the interpretation
of R in M . Observe that for different R1, R2 ∈ R we may have RM

1 = RM
2 .

Formally, (RM | R ∈ R) is a map R −→⋃n∈N P(Mn) such that the image
RM of R ∈ R under this map is a subset of Mλ(R).

(S3) A family (FM | F ∈ F ) of functions, where for F ∈ F , FM : Mµ(F ) −→M .
Hence FM is a µ(F )-ary function of M , called the interpretation of F in
M . Observe that for different F1, F2 ∈ F we may have FM

1 = FM
2 .

Formally, (FM | F ∈ F ) is a map F −→ ⋃n∈N Maps(Mn,M) such that
the image FM of F ∈ F under this map is a function Mµ(F ) −→M .

(S4) A family (cM | c ∈ C ) of elements of M . Hence cM is an element of M ,
called the interpretation of c in M . Observe that for different c1, c2 ∈ C
we may have cM1 = cM2 .
Formally, (cM | c ∈ C ) is simply a map C −→M .

M is called finite/countable/uncountable/infinite if its universe |M | is fi-
nite/countable/uncountable/infinite. If M is finite, we say M is of size k ∈ N if
|M | is of size k.

1.22. Definition. An assignment or a valuation of an L -structure M is a map

h : Vbl −→ |M |.

In the literature, also the pair (M,h) is called a valuation. Given an assignment h
of M , a variable x and an element a ∈ |M | we denote by h(xa ) the assignment of
M which differs from h only at the variable x, with value a at x:

h(
x

a
)(y) =

{
h(y) if y 6= x

a if y = x.

1.23. Definition. Let M be an L -structure with domain M .
(A) We define by induction on the complexity of an L -term t an element tM [h] ∈

M for each assignment h of M as follows:
(i) If c(t) = 0, then

tM [h] =

{
tM if t ∈ C

h(t) if t ∈ Vbl .
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(ii) If t1, ..., tn are L -terms and F ∈ F with µ(F ) = n, then we define

F (t1, ..., tn)M [h] := FM (tM1 [h], ..., tMn [h]).

(B) We define by induction on the complexity of an L -formula ϕ and each as-
signment h of M , the expression ϕ holds in M at h, or ϕ is valid in M
at h, or M satisfies ϕ at h, denoted by

M |= ϕ[h],

as follows:
(i) If ϕ is of the form t1

.
= t2 with L -terms t1, t2 then

M |= t1
.
= t2 [h] ⇐⇒ tM1 [h] = tM2 [h].

If ϕ is of the form R(t1, ..., tn) with R ∈ R of arity n and t1, ..., tn ∈ tm L
then

M |= R(t1, ..., tn) [h] ⇐⇒ (tM1 [h], ..., tMn [h]) ∈ RM .

(ii) For the induction step we take ϕ,ψ ∈ Fml L , x ∈ Vbl and define
• M |= (ϕ→ ψ)[h] ⇐⇒ if M |= ϕ[h] then M |= ψ[h],

• M |= (¬ϕ)[h] ⇐⇒ M 6|= ϕ[h] i.e. M |= ϕ[h] does not hold
and
• M |= (∀xϕ)[h] ⇐⇒ for all a ∈ |M | we have M |= ϕ[h(xa )].

(C) Let Σ ⊆ Fml L and let h be an assignment of M . M is called a model of
Σ at h if

M |= σ[h] for all σ ∈ Σ.

We denote this by
M |= Σ[h].

Some authors also use M |=h Σ instead of M |= Σ[h]. We say that Σ
has a model if it has a model at some assignment. In this case, Σ is called
satisfiable or consistent.

1.24. Lemma. If Σ ⊆ Fml L and h, h′ are assignments of an L -structure M
such that

h(x) = h′(x) for all variables x that occur freely in some σ ∈ Σ,

then
M |= Σ[h] ⇐⇒ M |= Σ[h′].

In particular, if Σ is a set of L -sentences we may define

M |= Σ ⇐⇒ M |= Σ[h] for some assignment h of M .

1.25. Lemma. Let t, t′ ∈ tm L , ϕ ∈ Fml L and x ∈ Vbl. Let h be an assignment
of an L -structure M and let a = tM [h]. Then
(i) (t′(x/t))M [h] = t′M [h(xa )].
(ii) If x is free in ϕ for t then M |= ϕ(x/t) [h] ⇐⇒ M |= ϕ[h(xa )].
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1.3. The compactness theorem.

The compactness theorem says that every finitely satisfiable set of L -formulas
is satisfiable. This statement stands at the beginning of model theory and is used
everywhere. In order to make this crystal clear, let us write out again precisely
what it means:

Let L = (λ : R −→ N, µ : F −→ N,C ) be a formal language and let Σ be a
set of L -formulas.

IF Σ is finitely satisfiable (i.e. for every finite subset Σ0 of Σ, there is an L -
structure M and an assignment h of M such that M |= Σ0[h]),

THEN Σ itself is satisfiable, i,e, there is an L -structure M and an assignment
h of M such that M |= Σ[h].

Some remarks about the proof. Traditionally, this is an easy consequence of Gödel’s
completeness theorem (finite satisfiability implies that Σ is consistent in the proof
theoretic sense by the soundness theorem).

There are other proofs which avoid the syntactic machinery of predicate logic,
but still non-trivial work has to be invested in these alternative proofs. In section
1.4 we give a proof using ultraproducts and the so-called theorem of Łoś (read
“Wosh”), see 1.34.

1.4. Ultraproducts and proof of the compactness theorem.

This section is not examinable and is provided for those who are interested.

1.26. Remark on the proof using the Completeness Theorem of Predicate
Logic The proof of the Compactness Theorem given in this section goes via so
called ultraproducts (see 1.33 and 1.35 below) and does not depend on a proof
system. However, it should be mentioned that this path is available, similar to
what happens in Propositional Logic. More concretely, for each language L there
is a notion of a formal proof in predicate logic, which consist of a set of explicit
L -sentences, called L -axioms (considered as tautologies of L ), together with rules
about which finite sequences of L -sentences are formal proofs from a given set of
L -sentences. The completeness theorem of first order logic then says that for every
unsatisfiable set T of L -sentences, there is a formal proof of a contradiction (i.e.,
the negation of an axiom) from T . Since proofs are finite, this formal proof is then
also a proof from a finite subset of T and so T has a finite unsatisfiable subset.
This implies the Compactness Theorem.

For our proof we first need a combinatorial statement about
Filters and Ultrafilters

1.27. Filters. Let S be a set. A filter of S is a set of subsets F of S (hence
F ⊆ P(S)) that satisfies
(F1) S ∈ F .
(F2) If X,Y ∈ F , then X ∩ Y ∈ F .
(F3) If X ∈ F and X ⊆ Y ⊆ S, then Y ∈ F .

1.28. Examples.
(i) For example {S} is the smallest filter of S and P(S) is the largest filter of S.

Any filter that is different from P(S) is called a proper filter. By (F3) a
filter is proper if and only if it does not contains ∅.
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(ii) If T ⊆ S, then
FT := {X ⊆ S | T ⊆ X}

is a filter. A filters of this form is called principal filter. Convince yourself
that FT is indeed a filter. Obviously FT is proper if and only if T 6= ∅.

(iii) An important role plays the cofinite filter of an infinite S defined as

F = {X ⊆ S | S \X is finite}.
Convince yourself that the cofinite filter of an infinite set is indeed a proper
filter.

1.29. Ultrafilters. A filter U on a set S is called an ultrafilter of S if for all
X ⊆ S we have

X /∈ U ⇐⇒ S \X ∈ U .
Observe that every ultrafilter is proper by (F1). For example a principal filter FT is
an ultrafilter if and only if T is of the form {t} for some t ∈ S. On the other hand,
the cofinite filter on an infinite set S is not an ultrafilter, because S has subsets X
which are infinite and whose complement S \X is also infinite.
Here is a very useful characterisation of ultrafilters. For a filter U on a set S, the
following are equivalent:
(i) U is an ultrafilter.
(ii) U is a maximal proper filter; this means U is a proper filter and if F is any

other proper filter with U ⊆ F , then F = U .
In poset terminology this is saying that U is a maximal element in the poset

of all proper filters of X (partially ordered by the inclusion relation).
(iii) U is a proper filter and for all X,Y ⊆ S we have

X ∪ Y ∈ U =⇒ X ∈ U or Y ∈ U .

Proof. (i)⇒(ii). Suppose U ( F and F is a filter. Then there is some X ∈ F \ U .
Since U is an ultrafilter we get S \ X ∈ U . But then S \ X ∈ F and so ∅ =
X ∩ (S \X) ∈ F (by (F2)). Thus F is not a proper filter. This shows (ii).
(ii)⇒(iii). Assume U is a maximal proper filter and suppose for a contradiction
that there are X,Y ⊆ S with X ∪ Y ∈ U and X /∈ U , Y /∈ U . Consider the set

F = {Z ⊆ S | ∃U ∈ U : U ∩X ⊆ Z}.
Then one checks easily conditions (F1)-(F3) of a filter for F and so F is a filter
with X ∈ F and U ⊆ F . Since X /∈ U , the maximality of U implies that F is not
proper, i.e., ∅ ∈ F . Hence there is some U ∈ U with U ∩ X = ∅. Similarly (and
using Y /∈ U), there is some V ∈ U with V ∩Y = ∅. On the other hand X ∪Y ∈ U ,
hence by (F2), (X ∪ Y ) ∩ U ∩ V ∈ U . However,

(X ∪ Y ) ∩ U ∩ V = (X ∩ U ∩ V ) ∪ (Y ∩ U ∩ V ) = ∅
and this contradicts the assumption that U is proper.
(iii)⇒(i). We need to show

X /∈ U ⇐⇒ S \X ∈ U for all X ⊆ S.
⇐. Suppose S \X ∈ U but also X ∈ U . By (F2) then ∅ ∈ U and by (F3), U is not
proper, a contradiction.
⇒. Suppose X 6∈ U . Since X ∪ (S \X) = S ∈ U , condition (iii) implies S \X ∈ U
as required. �
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The crucial statement about filters needed for the compactness theorem is the
following:
1.30. Ultrafilter Theorem.
Let S be a set. Every proper filter of S is contained in an ultrafilter of S.

Proof. Let F be our proper filter. We will apply Zorn’s lemma and show that
the set K of proper filters of S containing F has maximal elements. By 1.29, this
is enough to confirm that U is an ultrafilter. K is partially ordered by inclusion
(because every set of sets has this property) and K is nonempty because F ∈ K.
Hence by Zorn’s lemma it suffices to show that every chain C in K has an upper
bound in K. We claim that

H = ⋃
G∈C
G

is such an upper bound. Since G ⊆ H for all G ∈ C we only need to confirm that
H is a proper filter. Conditions (F1) and (F3) are readily verified as all G ∈ C are
filters. For condition (F2) we need that C is a chain: Take X,Y ∈ H. Hence there
are G1,G2 ∈ C with X ∈ G1 and Y ∈ G2. Now as C is a chain it follows G1 ⊆ G2 or
G2 ⊆ G1. By symmetry we may assume that G1 ⊆ G2. But then X,Y ∈ G2 and as
G2 is a filter we get X ∩ Y ∈ G2. Consequently X ∩ Y ∈ H as well. It remains to
show that the filter H is proper and we only need to check that ∅ /∈ H. But ∅ is
not in any of the filters from C, hence it is not in H either. �

We now start with the model theoretic part of the proof of the Compactness The-
orem.

Reduced products

Throughout we work with a language L .

1.31. Lemma and Definition Let I be a nonempty set and for each i ∈ I let
Mi be an L -structure. Let F be a filter of I. We define the reduced product∏
i∈I Mi/F as follows:

First define a binary relation ∼ on
∏
i∈I |Mi|[1] as follows:

(ai)i∈I ∼ (bi)i∈I ⇐⇒ {i ∈ I | ai = bi} ∈ F .
Then ∼ is an equivalence relation on

∏
i∈I |Mi|.

Proof. (a) ∼ is reflexive, since I ∈ F by the filter condition (F1), in other words
(ai)i∈I ∼ (ai)i∈I for all (ai)i∈I .

(b) ∼ is obviously symmetric.
(c) ∼ is transitive: To see this, assume (ai)i∈I ∼ (bi)i∈I and (bi)i∈I ∼ (ci)i∈I . By

definition of ∼, this means that

F1 = {i ∈ I | ai = bi} ∈ F and
F2 = {i ∈ I | bi = ci} ∈ F .

By the filter condition (F2) we know F1 ∩ F2 ∈ F . Since
F1 ∩ F2 ⊆ {i ∈ I | ai = ci},

[1]If I is any set and Xi is a set for each i ∈ I, then the product
∏
i∈I Xi is defined as the

set of all maps a : I −→ ⋃i∈I Xi with the property that a(i) ∈ Xi for all i. Normally these
functions are written as (ai)i∈I (so ai = a(i)) and thought of as sequences of elements ai ∈ Xi.
For example, a sequence of real numbers is an element of

∏
n∈NR, so here Xn = R for all n.
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the filter condition (F3) implies that {i ∈ I | ai = ci} ∈ F . Thus (ai)i∈I ∼
(ci)i∈I as required.

�

Now we are ready to define M =
∏
i∈I Mi/F :

(i) The universe of M is the set of equivalence classes of ∼. We denote the
equivalence class of (ai)i∈I by [(ai)i∈I ].

(ii) If R is an n-ary relation symbol of L then we define

RM

(
[(a1i)i∈I ], . . . , [(ani)i∈I ]

)
⇐⇒ {i ∈ I | RMi(a1i, . . . , ani)} ∈ F .

This is well defined: Assume (a1i)i∈I ∼ (b1i)i∈I , . . . , (ani)i∈I ∼ (bni)i∈I . Then

J = {i ∈ I | a1i = b1i & . . . & ani = bni} =
n

⋂
k=1

{i ∈ I | aki = bki} ∈ F

and consequently

{i ∈ I | RMi(a1i, . . . , ani)} ∈ F ⇐⇒ {i ∈ I | RMi(a1i, . . . , ani)} ∩ J ∈ F

⇐⇒ {i ∈ I | RMi(b1i, . . . , bni)} ∩ J ∈ F

⇐⇒ {i ∈ I | RMi(b1i, . . . , bni)} ∈ F .

(iii) If F is an n-ary relation symbol of L then we define

FM

(
[(a1i)i∈I ], . . . , [(ani)i∈I ]

)
=

(
FMi(a1i, . . . , ani)

)
i∈I
.

This is well defined using the same reasoning as in (ii).
(iv) If c is a constant symbol then we define

cM = (cMi)i∈I .

1.32. Example. A prominent example of reduced products is the case when F is
the trivial filter {I}. Then the equivalence relation ∼ in 1.31 is just identity and
the universe of

∏
i∈I Mi/F is just

∏
i∈I |Mi|. The structure

∏
i∈I Mi/F then is

the product of the Mi. For example, if each Mi is a group (in the language of
groups), this defines the ordinary product of groups.

1.33. In model theory, reduced products play an important role when the filter is
an ultrafilter. In this case the reduced product is called ultraproduct. The main
theorem on ultraproducts is

1.34. Łoś’s theorem.
Let I be an index set and let U be an ultrafilter of I. For each i ∈ I let Mi be an
L -structure. Let M =

∏
i∈I Mi/U . If ϕ(x1, . . . , xn) is an L -formula then

(∗) for all a1, . . . , an ∈
∏
i∈I Mi we have

M |= ϕ([a1], . . . , [an]) ⇐⇒ {i ∈ I | Mi |= ϕ(a1i, . . . , ani)} ∈ U .
(Here we write a1 = (a1i)i∈I , . . . , an = (ani)i∈I .)

Proof. The proof is by induction on the complexity of ϕ. For atomic formulas
condition (∗) follows by routine checking from the interpretation of the non-logical
symbols in 1.31; this is left to the reader. For the induction step we have to consider
various cases.
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Case 1. Suppose ϕ(x1, . . . , xn, y) is an L -formula and we know already (∗) for ϕ.
We show (∗) for ∃y ϕ(x1, . . . , xn, y).
Take a1, . . . , an ∈

∏
i∈I Mi. Then

M |= ∃y ϕ([a1], . . . , [an], y) ⇐⇒ there is b ∈
∏
i∈I

Mi : M |= ϕ([a1], . . . , [an], [b])

⇐⇒ there is b ∈
∏
i∈I

Mi : {i ∈ I | Mi |= ϕ(a1i, . . . , ani, bi)} ∈ U , by induction

⇐⇒ {i ∈ I | there is c ∈Mi : Mi |= ϕ(a1i, . . . , ani, c)} ∈ U , using (F3) for U
⇐⇒ {i ∈ I | Mi |= ∃y ϕ(a1i, . . . , ani, y)} ∈ U ,

as required for case 1.
Case 2. Suppose ϕ(x1, . . . , xn), ψ(x1, . . . , xn) are L -formulas and we know already
(∗) for ϕ and ψ. We show (∗) for ϕ ∧ ψ.
Take a1, . . . , an ∈

∏
i∈I Mi. Then

M |= ϕ([a1], . . . , [an]) ∧ ψ([a1], . . . , [an])

⇐⇒ M |= ϕ([a1], . . . , [an]) and M |= ψ([a1], . . . , [an])

⇐⇒ {i ∈ I | Mi |= ϕ(a1i, . . . , ani)} ∈ U and
{i ∈ I | Mi |= ψ(a1i, . . . , ani)} ∈ U , by induction

⇐⇒ {i ∈ I | Mi |= ϕ(a1i, . . . , ani) ∧ ψ(a1i, . . . , ani)} ∈ U , using (F2) for U ,

as required for case 2.
Case 3. Suppose ϕ(x1, . . . , xn) is an L -formula and we know already (∗) for ϕ.
We show (∗) for ¬ϕ. (It is here and only here where we need that U is a maximal
proper filter.)
Take a1, . . . , an ∈

∏
i∈I Mi. Then

M |= ¬ϕ([a1], . . . , [an]) ⇐⇒ M 2 ϕ([a1], . . . , [an])

⇐⇒ {i ∈ I | Mi |= ϕ(a1i, . . . , ani)} /∈ U , by induction
⇐⇒ {i ∈ I | Mi |= ¬ϕ(a1i, . . . , ani)} ∈ U , since U is an ultrafilter,

as required for case 3. �

1.35. Proof of the Compactness Theorem. Let L be any language and let T
be a set of L -sentences such that any finite subset of T has a model. We need to
show that T itself has a model.

Let I be the set of finite subsets of T . For each ϕ ∈ T let

Iϕ = {i ∈ I | ϕ ∈ i}.

Then the set C = {Iϕ | ϕ ∈ T} ⊆ P(I) has the finite intersection property, i.e. for
all n ∈ N and all ϕ1, . . . , ϕn ∈ T we have Iϕ1

∩ . . . ∩ Iϕn 6= ∅; e.g. i = {ϕ1, . . . , ϕn}
is in this intersection. It follows that the filter F = {F ⊆ I | ∃C ∈ C : C ⊆ F} is
proper. By the Ultrafilter Theorem 1.30, applied to the proper filter F there is an
ultrafilter U of I containing F , in particular U contains each Iϕ.

For i ∈ I choose a model Mi of i. We claim that the ultraproduct

M :=
∏
i∈I

Mi/U
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is a model of T . Otherwise there is some ϕ ∈ T with M |= ¬ϕ. By Łoś’s theorem
1.34 then, the set

J := {j ∈ I | Mj |= ¬ϕ}
is in U . Since also Iϕ ∈ U we have J ∩ Iϕ ∈ U and there is some j ∈ J ∩ Iϕ.
By choice of Mj we have Mj |= j. But j ∈ Iϕ means ϕ ∈ j, thus Mj |= ϕ in
contradiction to j ∈ J . �
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1.5. Theories and logical equivalence.

Throughout, L = (λ : R −→ N, µ : F −→ N,C ) denotes a formal language.

1.36. Definition. Let Σ and Ψ be sets of L -formulas. We say that Σ implies Ψ
and write

Σ |= Ψ

If for every assignment h of every L -structure M we have:

M |= Σ[h]⇒M |= Ψ[h].

Σ and Ψ are logical equivalent if Σ |= Ψ and Ψ |= Σ; we also say that Ψ is an
axiom system for Σ, or Σ is axiomatised by Ψ . We write Σ ≡ Ψ in this case.

If ψ ∈ Fml L then we write Σ |= ψ for Σ |= {ψ}. Moreover we write |= Ψ
instead of ∅ |= Ψ.

1.37. Theorem. (Prenex Normal Form Theorem)
Every L -formula is logically equivalent to a formula in prenex normal form.
This means, for every formula ϕ of L , there are n ∈ N0, variables x1, ..., xn,
(xi 6= xj) (i 6= j), a quantifier-free formula χ with Frχ = {x1, ..., xn} ·∪Frϕ and
letters Q1, ..., Qn ∈ {∀,∃} such that

|= ϕ↔ Q1x1...Qnxn χ.

1.38. Definition. Let L be a language and let Σ ⊆ Sen L .
(i) The deductive closure of Σ is the set

DedL Σ := {ϕ ∈ Sen L | Σ |= ϕ}.

If L is clear from the context we will write Ded Σ instead of DedL Σ.
(ii) If Σ = Ded Σ, then Σ is called deductively closed.

1.39.Definition. A subset T of Sen L is called an L -theory or simply a theory,
if T is consistent and deductively closed.

An L -theory T which is maximally consistent (i.e. no proper superset of T in
Sen(L ) is a theory) is called a complete theory .

1.40. Observation. Let L be a language and let Σ ⊆ Sen L .
(i) Σ is consistent if and only if Ded Σ 6= Sen L .
(ii) Ded Σ is deductively closed.
(iii) An arbitrary (nonempty) intersection of L -theories is again an L -theory.

Also observe that for L -theories T and T ′ we have T ≡ T ′ ⇐⇒ T = T ′.

1.41. Proposition. The following are equivalent for every L -theory T :
(i) T is a complete theory.
(ii) For all ϕ ∈ Sen(L ) with ϕ 6∈ T we have ¬ϕ ∈ T .
(iii) For all ϕ,ψ ∈ Sen(L ) with T |= ϕ ∨ ψ we have ϕ ∈ T or ψ ∈ T .
(iv) There is an L -structure M such that T = Th(M ), where Th(M ) denotes

the theory of M :

Th(M ) = {ϕ ∈ Sen(L ) | M |= ϕ}.

Moreover, every satisfiable set of L -sentences is contained in a complete theory.
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1.42. Definition. Two L -structures are called elementary equivalent if
Th(M ) = Th(N ), in symbols:

M ≡ N .

Then, another way of saying that a theory is complete is to say that all models
of T are elementarily equivalent.

1.6. Extensions of languages.

1.43. Definition. Let L = (λ : R −→ N, µ : F −→ N,C ) and L + = (λ+ :
R+ −→ N, µ+ : F+ −→ N,C +) be languages. L + is called an extension of L
and L is called a sublanguage of L + if the following conditions hold:
• R ⊆ R+ and λ+ � R = λ.
• F ⊆ F+ and µ+ � F = µ.
• C ⊆ C +.

If L + is an extension of L with R+ = R and F+ = F (hence also λ+ = λ and
µ+ = µ), then L + is called an extension by constants of L . In this case we
also write L + = L (D), where D = C + \ C .

1.44. Remark and Definition. Let L + = (λ+ : R+ −→ N, µ+ : F+ −→ N,C +)
be an extension of the language L = (λ : R −→ N, µ : F −→ N,C ).
(1) The set of L -terms is the set of all L +-terms which are L -strings. The set

of L -formulas is the set of all L +-formulas which are L -strings.
(2) If M + is an L +-structure then there is a unique L structure M with |M | =
|M +|, RM = RM+

(R ∈ R), FM = FM+

(F ∈ F ) and cM = cM
+

(c ∈ C ).
M is called the restriction of M + to L and M + is called an expansion
of M to L + . M is also called a reduct of M + . We write M = M + � L .

(3) If M is an L structure then M can be expanded to L + (in several ways if
L + 6= L ). Simply choose an arbitrary interpretation of the symbols from
L + which are not symbols of L .

1.45. Lemma. Let L + be an extension of the language L . If M is the restriction
of the L +-structure M + to L , t ∈ tm L , ϕ ∈ Fml L and h : Vbl −→ |M | (hence
h is an assignment of M and of M +), then

tM [h] = tM
+

[h] and M |= ϕ[h] ⇐⇒ M + |= ϕ[h].

Proof. This is a straightforward induction on the complexity of terms and formulas.
�

1.46. Corollary. Let L + be an extension of L and let M be the restriction of
the L +-structure M + to L . Let t(x1, ..., xn) ∈ tm L , ϕ(x1, ..., xn) ∈ Fml L
and let d1, ..., dn be pairwise distinct constants of L +. If h : Vbl −→ |M | with
h(xi) = dM+

i then

tM [h] = t(x1/d1, ..., xn/dn)M+

and M |= ϕ[h] ⇐⇒ M + |= ϕ(x1/d1, ..., xn/dn).

Proof. From 1.45 and 1.25. �

1.47. Theorem. Let L be language and let D = {d0, d1, ...} be a countable set of
new constants. For ϕ(v0, ..., vn) ∈ Fml L let ϕD be the L (D)-sentence

ϕD = ϕ(v0/d0, ..., vn/dn).
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Let Σ ⊆ Fml L and ϕ ∈ Fml L . Then

Σ |=L ϕ ⇐⇒ ΣD |=L (D) ϕD ,

where ΣD = {σD | σ ∈ Σ} .
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2. Comparing structures

Firstly we simplify notation. Let M be an L -structure, t(x1, ..., xn) ∈ tm L ,
ϕ(x1, ..., xn) ∈ Fml L and let a1, ..., an ∈ |M | (not necessarily ai 6= aj for i 6= j).
We write tM [a1, ..., an] instead of tM [h] and M |= ϕ[a1, ..., an] instead of M |=
ϕ[h], where h : Vbl −→ |M | with h(x1) = a1, ..., h(xn) = an. Recall from 1.24 that
this is well defined.

2.1. Formulas preserved by maps.

2.1.1. Definition. Let M ,N be L -structures. A map between M and N is
a map f : |M | −→ |N |. We write f : M −→ N instead of f : |M | −→ |N |.

A formula ϕ(x1, ..., xn) ∈ Fml L is preserved by a map f : M −→ N , or f
respects ϕ, or f is a ϕ-morphism, if for all a1, ..., an we have

M |= ϕ[a1, ..., an]⇒ N |= ϕ[f(a1), ..., f(an)].

2.1.2. Examples.
(i) If x, y are different variables, then the formula ¬x .

= y is preserved by f :
M −→ N if and only if f is injective.

(ii) If f : M −→ N is bijective (i.e. f : |M | −→ |N | is bijective), then we also
have a map f−1 : N −→M and for every formula ϕ,

ϕ is preserved by f ⇐⇒ ¬ϕ is preserved by f−1.

(iii) If L = {∅, {◦}, {e}} is the language of monoids, then a map f : M −→ N
between groups preserves the formulas y = x1 · x2 if and only if f(a1 · a2) =
f(a1)·f(a2) for all a1, a2 ∈ |M |. I.e. we are describing group homomorphisms
here.

(iv) Similarly, an order preserving map between partially ordered sets (M,≤M
) −→ (N,≤N ) is the same as a map M −→ N , which preserves the formula
x ≤ y, where M = (M,≤M ) and N = (N,≤N ) are considered as structures
in the language L = {≤} of a binary relation symbol.

2.1.3. Definition. A map f : M −→ N between L -structures is called an L -
homomorphism if f respects all atomic formulas.

2.1.4. Lemma. Let f : M −→ N be a map between L -structures. The following
are equivalent:
(i) f is an L -homomorphism.
(ii) f satisfies each of the following conditions:

(a) For all R ∈ R of arity n and all a1, ..., an ∈ |M | we have

(a1, ..., an) ∈ RM ⇒ (f(a1), ..., f(an)) ∈ RN .

(b) For all F ∈ F of arity n and all a1, ..., an ∈ |M | we have

f(FM (a1, ..., an)) = FN (f(a1), ..., f(an)).

(c) For all c ∈ C we have

f(cM ) = cN .

(iii) f respects each of the following formulas:
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(a) all formulas of the form R(v1, ..., vn), where R ∈ R is a relation symbol
of L of arity n.

(b) all formulas of the form v0
.
= F (v1, ..., vn), where F ∈ F is a function

symbol of L of arity n.
(c) all formulas of the form v0

.
= c, where c ∈ C is a constant symbol of L

If this is the case, then for every L -term t(x1, ..., xn) ∈ tm L and all a1, ..., an ∈
|M | we have

f(tM [a1, ..., an]) = tN (f(a1), ..., f(an)).

Proof. (i)⇒(iii) and (iii)⇒(ii) are trivial. We assume now (ii) and show (i) as
well as the additional statement. A straightforward induction on the complex-
ity of t(x1, ..., xn) ∈ tm L using (ii)(b) and (ii)(c) shows that f(tM [a1, ..., an]) =
tN (f(a1), ..., f(an)) for all a1, ..., an ∈ |M |.

Clearly this, together with (ii)(a) proves (i). �

2.1.5. Definition. A map f : M −→ N between L -structures is called an
embedding if f preserves every quantifier-free formula. If |M | ⊆ |N | and the
inclusion |M | ↪→ |N | is an embedding then M is called a substructure of N . If
in addition |M | 6= |N |, then M is called a proper substructure of N .

2.1.6. Lemma. Let f : M −→ N be a map between L -structures. The following
are equivalent:
(i) f is an embedding.
(ii) f is an injective L homomorphism such that for all R ∈ R of arity n and all

a1, ..., an ∈ |M | we have

(a1, ..., an) ∈ RM ⇔ (f(a1), ..., f(an)) ∈ RN .

(iii) For all ϕ(x1, ..., xn) ∈ at-Fml(L ) and all a1, ..., an ∈ |M | we have

M |= ϕ[a1, ..., an] ⇐⇒ N |= ϕ[f(a1), ..., f(an)].

Proof. (i)⇒(ii). By 2.1.4 and 2.1.2(i), f is an injective L -homomorphism. If R ∈ R
of arity n and a1, ..., an ∈ |M | then we know

(a1, ..., an) ∈ RM ⇐ (f(a1), ..., f(an)) ∈ RN ,

since f respects the quantifier-free formula ¬R(v1, ..., vn). Since f also respects
R(v1, ..., vn), this proves (ii).

(ii)⇒(iii). Let ϕ(x1, ..., xn) ∈ at-Fml(L ) and a1, ..., an ∈ |M |.
Case 1. ϕ is of the form t

.
= s with t(x1, ..., xn), s(x1, ..., xn) ∈ tm L .

Since f is an L -homomorphism, f respects ϕ. Furthermore, by 2.1.4 , we have

f(tM [a1, ..., an]) = tN (f(a1), ..., f(an)) and

f(sM [a1, ..., an]) = sN (f(a1), ..., f(an)).

Hence if N |= ϕ[f(a1), ..., f(an)], then

f(sM [a1, ..., an]) = sN (f(a1), ..., f(an)) = tN (f(a1), ..., f(an)) = f(tM [a1, ..., an])

and since f is assumed to be injective we obtain M |= ϕ[a1, ..., an].
Case 2. ϕ is of the form R(t1, ..., tk) where R ∈ R is of arity n and t1, ..., tk ∈ tm L
with free variables in {x1, ..., xn}.

Again by 2.1.4, we have

f(tMi [a1, ..., an]) = tNi (f(a1), ..., f(an)) (1 ≤ i ≤ k).
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Together with the equivalence assumed in (ii) this shows

M |= R(t1, ..., tk)[a1, ..., an] ⇐⇒ N |= R(t1, ..., tk)[f(a1), ..., f(an)].

(iii)⇒(i) holds since the equivalence in (iii) is preserved by negation and conjunction
(i.e. if the equivalence holds for ϕ and ψ then it also holds for ¬ϕ and ϕ∧ψ). Since
every quantifier-free formula is provably equivalent to a formula which built up
from atomic formulas using negations and conjunctions, this shows (i). �

2.1.7. Corollary. Let M be an L -structure and let A ⊆ |M |. If cM ∈ A (c ∈ C )
and for each n-ary function symbol F of L , the function FM maps An to A,
then A is the universe of a (unique!) substructure A of M , which is called the
substructure of M induced on A: A has by definition universe A and interprets
the non-logical symbols as follows:
• RA = RM ∩An for all R ∈ R of arity n.
• FA (a1, ..., an) = FM (a1, ..., an) for all F ∈ F of arity n.
• cA = cM for all c ∈ C .

Observe that (ii) and (iii) make sense by the assumption on A.

Proof. Immediate from 2.1.6. �

2.1.8. Definition. A map f : M −→ N between L -structures is called an ele-
mentary embedding if f preserves all formulas. If |M | ⊆ |N | and the inclusion
|M | ↪→ |N | is an elementary embedding then M is called a an elementary sub-
structure of N , denoted by M ≺ N and N is called an elementary extension
of M ,

At the moment we have only one (rather trivial) class of examples of elementary
embeddings:

2.1.9. Definition. A map f : M −→ N is called an (L -)isomorphism if f
is a bijective embedding. Two L -structures are called isomorphic if there is an
isomorphism M −→ N . An isomorphism M −→M is called an automorphism
of M .

2.1.10. Warning. In general, a bijective L -homomorphism is not an embedding.
E.g. if L has a unique non-logical symbol, namely a unary relation symbol R.
Let N be an L -structure with RN = |N | and let M be the L -structure with
universe |N | and RM = ∅. Then the identity map |M | −→ |N | is a bijective
L -homomorphism. But this map is not an embedding!

On the other hand, a bijective L -homomorphism f : M −→ N is an isomor-
phism if and only if the inverse map f−1 : N −→ M is a homomorphism (as
follows from 2.1.6(i)⇔(iii)).

2.1.11. Lemma. Every L -isomorphism is an elementary embedding.

Proof. Let f : M −→ N be an L -isomorphism. It is straightforward to show by
induction on the complexity of ϕ(x1, ..., xn) ∈ Fml L that

M |= ϕ[a1, ..., an] ⇐⇒ N |= ϕ[f(a1), ..., f(an)].

The case of atomic formulas holds by 2.1.6. For quantification use the surjectivity
of f . �
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2.2. Naming elements of structures: Maps and diagrams.

Let L = (λ : R −→ N, µ : F −→ N,C ) be a language and let M be an L -
structure. Let A be a subset of |M |. We want to have a constant symbol for the
elements in A available, in order to name these elements in the language. We do
the following.

Let A be a set of constants, new w.r.t. L , which is in bijection with A: So
A = {a | a ∈ A} and the map A −→ A that sends a to a is bijective. We denote by
L (A) the extension by constants L (A) of L . We expand M to an L (A)-structure,
denoted by (M , A) via

(a)(M ,A) := a.

(Observe that the expression ’(M , A) is an expansion of M ’ leaves no choice for
the interpretation of the L -symbols in (M , A): they have to be interpreted as in
M ; similarly, this expression also clarifies the universe of (M , A): it is the universe
of M ).

This looks like a weird undertaking. What has happened? Let us look at an
example: Let L = (≤,+, ·,−, 0, 1) be the language of ordered rings and let M be
the real field (with its natural definition of the L -symbols). Let A = R, so here A
is all of the universe of M . In (M , A) we have the following terms and formulas:

• Polynomials with coefficients in R are named by terms: Given a0, ..., ad ∈ R
the expression ad·xd + ... + a1·x + a0 is a term in the variable x and the
function t(M ,R) : R −→ R is the polynomial function that is given by the
ordinary polynomial adT d + ...+ a0.

• If t(x) is the term from the previous item, then the L (R)-formula ϕ(x) defined
as

∀ε ε > 0→ (∀y |x− y| < ε→ |t(x)− t(y)| < ε)

(where |z| < u is shorthand for z < u∧−z < u) expresses a strong continuity
property of t(M ,R) at x.

Such terms and formulas obviously are subject of interest in the analysis of the
structure M . So in order to incorporate elements a ∈ |M | in the study of M we
introduce names for them as new constant symbols a.

2.2.1. Remark. A simple but extremely powerful observation is the following: Let
M be an L -structure with universe M . We take A = M in the definition above.
What are the L (A)-structures?

By definition, an L (A)-structure N + is just an L -structure N together with
an interpretation of the new constants a for each a ∈ A. Such an interpretation is
simply given by a map A −→ |N | and by composing this map with the bijection
A −→ A we get a map f : A −→ |N |,

f(a) = (a)N +

.

Conversely, if g : M −→ N is a map between L -structures, then the expansion
N + of N by

(a)N +

:= g(a)

defines an L (A) structure that gives g back when we run through the construction
of the previous paragraph.
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In other words, an L (M)-structure is the same as a map from M to some
L -structure! For those who likes things more formally: The function

L (M)-structures −→ Pairs (N , f), N an L -structure and f : |M | −→ |N |;

which maps N + to (N + � L , a 7→ aN +

), is a bijection (between classes).

We will therefore denote L (M )-structures by (N , f). Carrying on with this set
up we can now read maps that preserve a formula as models of certain theories:
Let M be an L -structure and let ϕ(x1, ..., xn) ∈ Fml L . Let A be the universe of
M and consider in the language L (A) the set

Φ := {ϕ(x1/a1, ..., xn/an) | a1, ..., an ∈ A and M |= ϕ[a1, ..., an]}.
So Φ is a (generally infinite) set of L (A)-sentences: the free variables x1, ..., xn of
ϕ have been replaced by the (new) constant symbols a1, ..., an.

Let N + be an L (A).structure, given by the map f : M −→ N = N + � L .
When is N + a model of Φ? By definition this is the case if and only if for all
a1, ..., an ∈ A with M |= ϕ[a1, ..., an] we have N + |= ϕ(x1/a1, ..., xn/an). Now by
1.46, the latter condition just means N + |= ϕ[a1

N +

, ..., an
N +

] and by 1.45 this
in turn is equivalent to N |= ϕ[f(a1), ..., f(an)] (recall that aiN

+

= f(ai) by the
choice of N + and f). In summary:

An L (A)-structure N +, given by the map f : M −→ N , is a model of Φ if
and only if for all a1, ..., an ∈ |M | (= A) we have

M |= ϕ[a1, ..., an]⇒ N |= ϕ[f(a1), ..., f(an)].

But this simply says: f preserves ϕ!

What have we achieved? We see that under the bijection of L (A).structures
(where again A = |M |) and maps from M to L -structures, the ϕ-preserving maps
correspond precisely to the models of Φ. So ’morphisms’ have been identified with
models of theories. Looking back at our model theoretic tools so far, this opens
the possibility to construct morphisms of all kind with the aid of the compactness
theorem. As we are particulary interested in homomorphisms, embeddings and
elementary embeddings, the theories that encode this type of maps get their own
names:

2.2.2. Definition. Let M be an L -structure with universe M . We define the
following sets of L (M)-sentences:

diag+(M ) = {ϕ(x1/a1, ..., xn/an) | n ∈ N, ϕ(x1, ..., xn) ∈ at-Fml(L ) and
M |= ϕ[a1, ..., an]}

diag+(M ) is called the atomic diagram of M .

diag(M ) = {ϕ(x1/a1, ..., xn/an) | n ∈ N, ϕ(x1, ..., xn) ∈ qf-Fml(L ) and
M |= ϕ[a1, ..., an]}

diag(M ) is called the (quantifier-free) diagram of M .

diag∞(M ) = {ϕ(x1/a1, ..., xn/an) | n ∈ N, ϕ(x1, ..., xn) ∈ Fml(L ) and
M |= ϕ[a1, ..., an]}

diag∞(M ) is called the elementary (or complete) diagram of M .
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Observe that diag+(M ) ⊆ diag(M ) ⊆ diag∞(M ) = Th((M ,M)) and (M ,M) is
a model of all of these sets.

2.2.3. Proposition. Let M be an L -structure with universe M and let f : M −→
N be a map to another L -structure N . Let N + be the unique expansion of N
to an L (M)-structure via

aN +

= f(a) (a ∈M).

Then
(i) f is a homomorphism if and only if N + |= diag+(M ).
(ii) f is an embedding if and only if N + |= diag(M ).
(iii) f is an elementary embedding if and only if N + |= diag∞(M ).

Proof. The proof is a repetition of the argument given above that ϕ-morphisms
correspond to models of Φ (as defined above). This is left as an exercise. �

We can now easily produce arbitrary large elementary extensions of infinite struc-
tures:

2.2.4. Corollary. If M is an infinite L -structure, then M has elementary exten-
sions of arbitrary large cardinalities.

Proof. Let M = |M | and let D be a set of constants, new w.r.t. the language
L (M). We will show that M has an elementary extension that possesses an
injection from D into its universe. This will prove the corollary as there is no
restriction on the cardinality of D and we may have chosen D of cardinality as big
as we like.

We work in the language L (M)(D). Consider the following set Σ of L (M)(D)-
sentences:

Σ = diag∞(M ) ∪ {¬ d .
= e | d, e ∈ D with d 6= e}.

We claim that Σ has a model. By the compactness theorem it suffices to show that
every finite subset of Σ has a model. However each such finite set is contained in a
set of the form

Γ = diag∞(M ) ∪ {¬ d .
= e | d, e ∈ E with d 6= e},

for some finite subset E of D , say E = {d1, ..., dn} is of size n. In order to find
a model of Γ we expand (M ,M) to an L (M)(D)-structure M ∗, by choosing n
elements a1, ..., an ∈M and define for d ∈ D :

dM∗
=

{
ai if d = di for some i ∈ {1, ..., n}
arbitrary otherwise.

Since (M ,M) is a model of diag∞(M ) it is then clear that M ∗ is a model of Γ.
This shows that Σ is finitely satisfiable and so Σ has a model N ∗. Now N ∗ is an
expansion by constants of an L (M )-structure N + and by 2.2.3, N + is given by
the elementary embedding f : M −→ N , f(a) = aN +

, where N = N + � L .
After identifying M with its image under f we may then also assume that N

is an elementary extension of M 8and f is the inclusion map M ↪→ |N |.
It remains to show that there is an injection D ↪→ |N |. However, remember

that N is the restriction of N ∗ to L and N ∗ is a model of Σ. Therefore the map
which sends d ∈ D to dN ∗

is an injection. �

What happens with the statement 2.2.4 in the case of a finite L -structure M ?
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2.3. The Tarski-Vaught test and the Skolem-Löwenheim theorems.

2.3.1. Tarski-Vaught Test
Let M be an L -structure and let A ⊆ |M |. The following are equivalent:
(i) A is the universe of an elementary substructure of M . Since on each subset

of M there can only live at most one substructure of M , this property is
sometimes referred to as “A is a substructure of M ”.

(ii) For every L -formula ϕ(x, ȳ) and all ā ∈ Aȳ, if M |= ∃x ϕ(x, ā) (to be correct
we should actually write M |= (∃x ϕ)[ā]) , then there is some b ∈ A with
M |= ϕ[b, ā].

Proof. (i)⇒(ii) is clear. For the converse we first observe that under assumption
(ii), A is closed under all FM (F ∈ F ) and A contains all cM with c ∈ C : To see
this, take an n-ary function symbol F . Applying condition (ii), where ϕ(x, ȳ) is
the formula F (ȳ)

.
= x we see that FM (ā) ∈ A for all ā ∈ Aȳ. Similarly, using the

formula x .
= c (so, no other variables ȳ are present in ϕ), we see that cM ∈ A for

all c ∈ C .
Hence by 2.1.7 we know that A together with the structure induced from M is

a substructure of M which we denote by A . We now show (and this will prove (i))
by induction on the complexity of an L -formula ϕ(x1, ..., xk):

For all ā ∈ Ak we have A |= ϕ[ā]
(∗)⇐⇒ M |= ϕ[ā].

If ϕ is quantifier-free this certainly holds true, since A is a substructure of M .
Moreover (∗) holds for ¬ϕ if it holds for ϕ and (∗) holds for ϕ ∧ ψ if it holds for ϕ
and for ψ. Thus, for the induction step, it is enough to assume that ϕ(x1, ..., xk)
is ∃y ψ(y, x1, ..., xk) where ψ(y, x1, ..., xk) ∈ Fml L and (∗) holds for ψ and all
(k + 1)-tuples from A. Take ā ∈ Ak.
“⇒”. If A |= ϕ[ā], then there is some b ∈ A with A |= ψ[b, ā] and by the induction
hypothesis we have M |= ψ[b, ā], thus M |= ϕ[ā].
“⇐”. If M |= ϕ[ā] then M |= ∃y ψ(y, ā). By (ii), there is some b ∈ A with
M |= ψ[b, ā]. By the induction hypothesis we get A |= ψ[b, ā], thus A |= ϕ[ā]. �

2.3.2. Skolem-Löwenheim downwards
Let M be an L -structure and let A ⊆ |M |. Then there is an elementary substruc-
ture N of M with A ⊆ |N | such that card |N | ≤ card(A) + card L + ℵ0.

Proof. The strategy is the following: We want to apply the Tarski-Vaught test
2.3.1. By this test, the only thing we need to do is to add elements to A so that
condition (ii) of the test is satisfied for the resulting set. We then have to count
the number of elements we have added to get the cardinality estimates. Here the
details.

We use the following ad-hoc notation for each L -formula ϕ(x, ȳ) and all ā ∈ Sȳ:
If M |= ∃x ϕ(x, ā), choose an element bϕ,ā ∈ |M | with

M |= ϕ(bϕ,ā, ā).

If M 6|= ∃x ϕ(x, ā), then choose bϕ,ā ∈ |M | arbitrarily.
For an arbitrary subset S of |M | we denote by S∗ the following subset of |M |:

S∗ = {bϕ,ā | ϕ(x, ȳ) ∈ Fml L and ā ∈ Sȳ}.
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Observe that S∗ contains S (if we choose ϕ as x .
= y and a ∈ S, then bϕ,a = a).

Moreover, S∗ is the image under the map

D −→ |M |; (ϕ, ā) 7→ bϕ,ā,

where D = {(ϕ(x, ȳ), ā) | ā ∈ Sȳ}. As D ⊆ Fml(L ) ×⋃n∈N S
n we see that the

cardinality of S∗ is at most

(†) card(Fml(L )× ⋃
n∈N

Sn) ≤ ℵ0 + cardS + card L .

By choice of all the bϕ,ā we know that all tests performed on S in condition (ii)
of the Tarski-Vaught test are solvable in S∗. However, we have introduced new
elements and so the test does not give an elementary substructure on S∗.

The trick now is to iterate the construction. So we define (and return to our
set A) A0 := A and by induction on n ∈ N: An = (An−1)∗. Finally we take
B := ⋃nAn and claim that B satisfies the Tarksi-Vaught test: Take ϕ(x, ȳ) ∈
Fml L and ā ∈ Bȳ. Since ā is a finite tuple it is contained in some An. But then
bϕ,ā ∈ An+1 ⊆ B and so B satisfies condition (ii) of the Tarski-Vaught test.
Finally we take N as the structure on B given by the Tarski-Vaught test and we
need to estimate the cardinality of B: By induction on n using (†), we see that
cardAn ≤ ℵ0 +cardA+card L . Then the countable union B of these sets also has
cardinality ≤ ℵ0 + cardA+ card L . �

2.3.3. Skolem-Löwenheim upwards
Let M be an infinite L -structure and let κ be a cardinal with κ ≥ card |M | +
card L . Then there is an elementary extension N of M with card |N | = κ.

Proof. By 2.2.4, there is an elementary extension M ′ of M of cardinality ≥ κ.
Now choose a subset A of M ′ of cardinality κ containing |M | and apply Skolen-
Löwenheim downwards for A and M ′: We obtain an elementary substructure N ≺
M ′ of cardinality at most ℵ0 +cardA+card L . Since κ ≥ card |M |+card L ≥ ℵ0,
this means that N has cardinality ≤ κ and as A ⊆ |N | we get card N = κ as
required. Finally, observe that N is an elementary extension of M by exercise
5(ii). �

We conclude this section with another very useful application of the diagram
method.

2.3.4. Proposition. Let M .N be L -structures. The following are equivalent.
(i) There is an embedding M −→ N ′ for some elementary extension N ′ of N .
(ii) If χ(x̄) is a quantifier-free L -formula and M |= ∃x̄χ, then N |= ∃x̄χ.
(iii) If χ(x̄) is a quantifier-free L -formula and N |= ∀x̄χ, then M |= ∀x̄χ.

Proof. (i)⇒(ii) is left as an exercise.
The equivalence of (ii) and (iii) follows by considering negations and contrapositives.
(iii)⇒(i) By 2.2.3 it suffices to find a model of T ∗ := diag(M )∪ diag∞(N ), in the
language L ∗ which has constant symbols cm, dn for m ∈ |M |, n ∈ |N | with the
convention that cm 6= dn.

Suppose there is no such model. Then T ∗ is inconsistent and therefore there
are L -formulas χ(x̄), ϕ(ȳ), where x̄, ȳ are disjoint tuples of variables such that χ
is quantifier free and ā ∈ |M |x̄, b̄ ∈ |N |ȳ such that M |= χ(ā), N |= ϕ(b̄) and
{χ(ā), ϕ(b̄)} is inconsistent, when considered as sentences in the language L ∗, in
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other words |= ϕ(b̄) → ¬χ(ā) (in L ∗). By 1.47, this implies |= ϕ(x̄) → ¬χ(ȳ)
(in L ). But this means |= ∀x̄, ȳ(ϕ(x̄) → ¬χ(ȳ)). Since x̄, ȳ are disjoint tuples
of variables we obtain |= (∃x̄ϕ(x̄)) → ∀ȳ¬χ(ȳ). In particular N |= (∃x̄ϕ(x̄) →
∀ȳ¬χ(ȳ)). Since N |= ϕ(b̄) we get N |= ∀ȳ¬χ(ȳ)). Now (iii) applied to ¬χ entails
M |= ∀ȳ¬χ(ȳ)), which contradicts M |= χ(ā). �

2.3.5. Corollary. Let T be an L -theory. We write T∀ for the set of all universal
sentences that are true in all models of T . If M is an L -structure, then M |= T∀
if and only if M is a substructure of a model of T .

[In 3.6.5 we will see a similar statement for sentences with higher quantifier
complexity.]

Proof. Since truth of universal sentences in any structure is inherited by all of its
substructures, we know that every substructure of a model of T is a model of T∀.

Conversely suppose M |= T∀. Then T ∪{¬σ | σ a universal sentence, M |= ¬σ}
is consistent. Take any model N of this set. Then condition (iii) of 2.3.4 is satisfied
and by 2.3.4(iii)(i) there is an elementary extension N ′ of N and an embedding
M ↪→ N . Since N ′ � N we get N ′ |= T . By assumption, also M |= T , as
required. �

2.3.6. Corollary. An L -theory T is universal (i.e. T and T∀ have the same
models) if and only if every substructure of a model of T is again a model of T .

Proof. Apply 2.3.5. �
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2.4. Categoricity by examples.

2.4.1. Example. Let L = ∅ be the language of sets. If M and N are infinite sets,
then they are elementary equivalent as L -structures. Another way of saying this
is: The theory of infinite sets is complete.

Proof. Choose a cardinal κ of at least the cardinality of M and N . By 2.3.3,
there are elementary extensions M ′ � M and N ′ � N both of cardinality κ.
In particular M ′ and N ′ are of the same cardinality and there is a bijective map
f : M ′ −→ N ′. So we are in the following situation:

M ′ f // N ′

M
?�

≺

OO

N
� ?

≺

OO

where the vertical maps are the inclusion (they are elementary). Since the vertical
maps are elementary we get M ≡ M ′ and N ≡ N ′. Since f is a bijection and
L has no non-logical symbols, f is an isomorphism M ′ −→ N ′ and we know that
M ′ ≡ N ′ in this case. Altogether we get M ≡M ′ ≡ N ′ ≡ N as desired. �

The strategy in the proof of 2.4.1 is indeed also applicable in more complicated
situations. The next example we are dealing with is vector spaces.

2.4.2. Example. Given a field F we first set up the language for F -vector spaces:
The language of F -vector spaces, denoted by LF−vec.sp. has no relation symbols,
one constant symbol 0, one binary function symbol + and for each a ∈ F a unary
function symbol λa.

If V is an F -vector space then V is turned (naturally) into an LF−vec.sp.-
structure V , by interpreting
• a+V b := a+ b (the sum in V ).

• 0V := 0 (the neutral element in V w.r.t. +)

• λV
a (v) := a·v, where v ∈ V and a·v is the scalar multiplication in V of a ∈ F

with v.
The theory TF−vec.sp. of F -vector spaces is defined to be the deductive closure of
the axioms of vector spaces in the language LF−vec.sp.: These are the axioms of
abelian groups (in the language (+,−, 0)) together with the following sentences:
• for all a ∈ F the sentence ∀xy λa(x+ y) = λa(x) + λb(x).
• for all a, b ∈ F the sentence ∀x λa+b(x) = λa(x) + λb(x).
• for all a, b ∈ F the sentence ∀x λa(λb(x)) = λa·b(x)
• the sentence ∀x λ1(x) = x.

Now we claim that all infinite F -vector spaces are elementary equivalent. In other
words, the theory of infinite F -vector spaces is complete.

Proof. Let V,W be our F -vector spaces and let κ be an uncountable cardinal that
is at least the cardinality of V and W . Moreover we choose κ strictly bigger than
the cardinality of the field F . By Skolem-Löwenheim upwards (using that V andW
are infinite), there are elementary extensions V ′ � V and W ′ � W of cardinality
κ.
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As in 2.4.1 it now suffices to show that V ′ and W ′ are isomorphic. Consider the
following counting argument from linear algebra:

Let U be an F -vector space and let B be a basis of U , i.e. B is a maximally
linearly independent subset of U . Then every element of U is a finite linear combi-
nation of elements from B and we get a surjection

S := {Maps(E,F ) | E ⊆ B finite}� U,

which sends σ : E −→ F to
∑
e∈E σ(e)·e. In particular, the cardinality of U is at

most the cardinality of the set S on the left hand side. We estimate the cardinality
of S: For E ⊆ B finite, the cardinality of Maps(E,F ) is at most max{ℵ0, card(F )}.
Hence

cardS ≤ (max{ℵ0, card(F )})· card{E ⊆ B | E finite}.

Now card{E ⊆ B | E finite} ≤ max{ℵ0, card(B)} and so

cardS ≤ max{ℵ0, card(F ), card(B)}.

Altogether it follows

(∗) card(B) ≤ dimU ≤ cardS ≤ max{ℵ0, card(F ), card(B)}.

Hence if cardU is bigger than ℵ0 and bigger than cardF , then

max{ℵ0, card(F ), card(B)} = card(B)

and the estimation (∗) becomes cardB = cardU , in other words the dimension of
U is the cardinality of U .

Returning to our vector spaces V ′ and W ′, this explains our choice of κ: κ is
the dimension of V ′ and of W ′. However, vector spaces of the same dimension are
isomorphic (if you have some doubts here, because we are working with infinite
dimensional vector spaces, then consider this as an exercise). �

2.4.3. Examples. Let L = (≤) be the language of po-sets (partially ordered sets)
and let T be the L -theory of densely, totally ordered sets without endpoints.
This theory is axiomatised by the following L -sentences:

• Axioms for po-sets: ∀x ≤ x, ∀xy (x ≤ y ∧ y ≤ x→ x
.
= y), ∀xyz (x ≤ y ∧ y ≤

z → x ≤ z)
• The axiom of totality (or linearity) ∀xy (x ≤ y ∨ y ≤ x).
• The density axiom ∀xy (x < y → ∃z x < z < y), where x < y stands for
x ≤ y and x 6= y.

• Axioms which say that models have no endpoint: ∀x ∃yz y < x < z.

We will show that all models of T are elementary equivalent, in other words, T is
complete.

Proof. This time we will use Skolem-Löwenheim downwards instead of Skolem-
Löwenheim upwards:

Firstly, convince yourself that all models of T are infinite. If M and N are
models of T , then by the Skolem-Löwenheim downwards theorem 2.3.2 says that
there are countable elementary substructures M ′ ≺M and N ′ ≺ N . We will show
below that all countable models of T are isomorphic. Choosing an isomorphism
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f : M ′ −→ N ′ we proceed as follows: We have

M N

M ′?
�

≺

OO

f
// N ′
� ?

≺

OO

where the vertical maps are the inclusion (they are elementary). It follows

M
as M ′≺M≡ M ′ as f is an isomorphism

≡ N ′ as N ′≺N≡ N

It remains to show that two countable, densely ordered sets without endpoints
are isomorphic. This will be explained in detail now, because the method in the
proof has a vast generalisation and more consequences than in our situation. It
will be studied later for structures in arbitrary languages. The method is the
back-and-forth technique: Let us denote our countable, densely ordered sets
without endpoints by X = (X,≤) and Y = (Y,≤) (using the ordinary abuse of
mathematical language to increase readability).
We enumerate the set X by x1, x2, x3, ... and the set Y by y1, y2, y3, .... Our goal is
to construct by induction on n the following objects:
(1) a finite subset Xn of X containing Xn−1 and containing x1, ..., xk provided

n = 2k is even (so if n is odd, the only requirement is Xn−1 ⊆ Xn)
(2) a finite subset Yn of Y containing Yn−1 and containing y1, ..., yk, provided

n = 2k − 1 is odd (so if n is even, the only requirement is Yn−1 ⊆ Yn)
(3) an isomorphism fn : Xn −→ Yn which extends fn−1 : Xn−1 −→ Yn−1. Here

by isomorphism we mean an isomorphism between the induced (total) orders.
To start with, we take X1 = {x1}, Y = {y1} and f1 the unique map X1 −→ Y1.
Suppose we have already constructed Xn−1, Yn−1 and f : Xn−1 −→ Yn−1.
Case 1. n = 2k is even (The “forth”-construction):

We already know by induction that x1, ..., xk−1 ∈ Xn−2 ⊆ Xn−1 (provided
n > 2).
Case 1.1. xk ∈ Xn−1. Then we take Xn = Xn−1, Yn = Yn−1 and fn = fn−1.
Case 1.2. xk < Xn−1. Since Yn−1 is finite and Y has no smallest element, there
is some y ∈ Y with y < Yn−1. We take Xn = Xn−1 ∪ {xk}, Yn = Yn−1 ∪ {y} and
extend fn−1 to fn : Xn −→ Yn by fn(xk) = y.
Case 1.3. Xn−1 < xk. Since Yn−1 is finite and Y has no largest element, there is
some y ∈ Y with Yn−1 < y. We take Xn = Xn−1 ∪ {xk}, Yn = Yn−1 ∪ {y} and
extend fn−1 to fn : Xn −→ Yn by fn(xk) = y.
Case 1.4. There are x, x′ ∈ Xn−1 with x < xk < x′ such that x′ is the immediate
successor of x in Xn−1 (recall that by induction Xn−1 is finite, so this is indeed the
remaining case).

Since fn−1 : Xn−1 −→ Yn−1 is an isomorphism of po-sets, fn−1(x′) is also the
immediate successor of fn−1(x) in Yn−1. Since Y is densely ordered, there is some
y ∈ Y with fn−1(x) < y < fn−1(x′). We take Xn = Xn−1 ∪ {xk}, Yn = Yn−1 ∪ {y}
and extend fn−1 to fn : Xn −→ Yn by fn(xk) = y.

In all 4 cases it is straightforward to check that fn is an isomorphism Xn −→ Yn
that extends fn−1. This finishes the “forth”-construction.
Case 2. n = 2k − 1 is odd (The “back”-construction):
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This is the same as case 1 where the roles of X, Y , Xn−1, Yn−1 and fn−1, f
−1
n−1

are swapped:
We already know by induction that y1, ..., yk−1 ∈ Yn−2 ⊆ Yn−1 (provided n > 2).

Case 2.1. yk ∈ Yn−1. Then we take Yn = Yn−1, Xn = Xn−1 and fn = fn−1.
Case 2.2. yk < Yn−1. Since Xn−1 is finite and X has no smallest element, there
is some x ∈ X with x < Xn−1. We take Yn = Yn−1 ∪ {yk}, Xn = Xn−1 ∪ {x} and
extend fn−1 to fn : Yn −→ Xn by fn(x) = yk.
Case 2.3. Yn−1 < yk. Since Xn−1 is finite and X has no largest element, there is
some x ∈ X with Xn−1 < x. We take Yn = Yn−1 ∪ {yk}, Xn = Xn−1 ∪ {x} and
extend fn−1 to fn : Yn −→ Xn by fn(x) = yk.
Case 2.4. There are y, y′ ∈ Yn−1 with y < yk < y′ such that y′ is the immediate
successor of y in Yn−1 (recall that by induction Yn−1 is finite, so this is indeed the
remaining case).

Since fn−1 : Yn−1 −→ Xn−1 is an isomorphism of po-sets, f−1
n−1(y′) is also the

immediate successor of f−1
n−1(y) in Xn−1. Since X is densely ordered, there is some

x ∈ X with f−1
n−1(y) < x < f−1

n−1(y′). We take Yn = Yn−1 ∪ {yk}, Xn = Xn−1 ∪ {y}
and extend fn−1 to fn : Yn −→ Xn by fn(x) = yk.

In all 4 cases it is straightforward to check that fn is an isomorphism Yn −→ Xn

that extends fn−1. This finishes the “back”-construction.

So we have constructed the family fn : Xn −→ Yn as indicated. Since fn extends
fn−1 for all n, we can take a common extension f :⋃nXn −→⋃n Yn. Clearly f
is an isomorphism. Finally, ⋃nXn = X by (1) and ⋃n Yn = Y by (2). �

Obviously in the previous three examples a general property of the class of
models of a theory is responsible for the completeness of a theory. This is called
categoricity: An L -theory T without finite models is categorical in an infinite
cardinal κ if all models of T of cardinality κ are isomorphic. We have

2.4.4. Theorem. If T has no finite models and T is categorical in some infinite
cardinal ≥ card L , then T is complete.

Proof. Let T be categorical in the cardinal κ ≥ card(L ). We have to show that all
models of T are elementary equivalent. Take M ,N |= T . By Skolem-Löwenheim
upwards OR Skolem-Löwenheim downwards, there are L -structures M ′ and N ′

with M ≡M ′,N ≡ N ′ such that M ′ and N ′ are of cardinality κ. By assumption,
M ′ and N ′ are isomorphic, in particular they are elementary equivalent. It follows
M ≡M ′ ≡ N ′ ≡ N as required. �

Another example where this theorem applies is the theory of algebraically closed
fields. Recall that a field K is algebraically closed if every non-constant polynomial
p(T ) ∈ K[T ] in one indeterminate has a zero in K. For example the field of complex
numbers is algebraically closed.

2.4.5. Example. Let L = (+,−, ·, 0, 1) be the language of rings. Let ACF be the
L -theory of algebraically closed fields. This theory is axiomatised by the axioms
of fields together with all the axioms

∀x0....xd−1 ∃y yd + xd−1y
d−1 + ...+ x0 = 0,

where d ∈ N.
If p is a prime number or 0, then ACFp denotes the L -theory of algebraically

closed fields of characteristic p, which is axiomatized by ACF and



34 Comparing structures

• p·1 .
= 0, if p 6= 0, OR

• all the statements n·1 6= 0 (n ∈ N), if p = 0.
We claim that ACFp is complete. In fact ACFp is categorical in all uncountable
cardinals, hence completeness follows with 2.4.4.

Proof. Let κ be an uncountable cardinal. The categoricity of ACFp is a statement
of algebra that you might or might not have seen. It says:

If K,L are algebraically closed fields of the same characteristic, then they are
isomorphic if and only if they have the same transcendence degree. The tran-
scendence degree of an arbitrary fieldK is the cardinality of a maximal algebraically
independent subset B of K. The situation is similar to the one in vector spaces: If
we replace “linear independence” by “algebraic independence” this gives a notion of
dimension for fields (called ’transcendence degree’) and a proof similar to the one
given in example 2.4.2 shows that the cardinality of an uncountable field is equal
to the cardinality of some/any maximally algebraically independent subset. Hence
if K and L are uncountable fields of the same cardinality, then they have the same
transcendence degree. If in addition K and L have the same characteristic and both
are algebraically closed, then they are isomorphic. This is not difficult to prove, in
particular if you have seen some introduction to algebra. We refer to [Lang2002,
chap. V, §1–2]. �



Chains 35

2.5. Chains.

Let I be a totally ordered index set and let Mi be an L -structure for each i ∈ I.
Suppose for all i ≤ j from I, Mi is a substructure of Mj . Then we call the family
(Mi | i ∈ I) a chain of L -structures. Given such a chain, we define a new
structure M , called the union of the Mi as follows:
• The universe M of M is ⋃i∈I |Mi|.
• For an n-ary relation symbol R and elements a1, ..., an ∈M we define

(a1, ..., an) ∈ RM ⇐⇒ there is some i ∈ I with (a1, ..., an) ∈ RMi .

Observe that for i ≤ j from I and (a1, ..., an) ∈ |Mi| we have (a1, ..., an) ∈
RMi ⇐⇒ (a1, ..., an) ∈ RMj .

• For an n-ary function symbol F and elements a1, ..., an ∈M we define

FM (a1, ..., an) = FMi(a1, ..., an) whenever i ∈ I with (a1, ..., an) ∈ |Mi|.
Observe that for i ≤ j from I and (a1, ..., an) ∈ |Mi| we have

FMi(a1, ..., an) = FMj (a1, ..., an),

so this indeed makes sense.
• For a constant symbol we define cM as cMi for some/every i.

We write ⋃i∈I Mi for this structure.

2.5.1. Elementary chain lemma
We again write M = ⋃i∈I Mi. For every i ∈ I, Mi is an L -substructure of

M . If in addition all extensions Mi ↪→ Mj are elementary (i ≤ j ∈ I), then also
Mi ↪→M is elementary for all i ∈ I.

Proof. Mi is a substructure of M , since by definition, the inclusion Mi ↪→ M is
a homomorphism and by the remark in the definition of RM this inclusion is an
embedding (use 2.1.6). So we only need to prove that Mi ≺ M for all i. We
take ϕ ∈ Fml L in prenex normal form and show by induction on the number of
quantifiers that

(∗) for all i ∈ I, the inclusion Mi ↪→M preserves ϕ.

If ϕ is quantifier-free then we know this already, since all Mi are substructures of
M . If ϕ is of the form ∃uψ and we know (∗) for ψ, then it is easy to see that (∗)
holds for ϕ (exercise!). So the substantial case here is when ϕ is of the form ∀uψ,
where we may assume that (∗) holds for ψ(u, x̄) ∈ Fml L . Take an x̄-tuple ā with
entries in Mi and assume Mi |= ∀uψ[ā]. We must show M |= ∀uψ[ā]. So take
some b ∈ |M | and choose j ∈ I with b ∈ Mj . If j ≤ i, then we may replace j by
i as Mj ⊆ Mi in this case. So we may assume that i ≤ j, hence Mi ⊆ Mj . As
Mi ≺ Mj by assumption and Mi |= ∀uψ[ā] we know Mj |= ∀uψ[ā], in particular
Mj |= ψ[b, ā]. Now by induction M |= ψ[b, ā], as desired. �

There will be more results about chains presented in 3.6.6.
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2.6. Intersections and generated substructures.

Let L = (λ : R −→ N, µ : F −→ N,C ) be a language.
In the case C = ∅, it is convenient to extend the definition of a structure also to

the empty set. We have no choice and must interpret all relation symbols and all
function symbols as the empty set. We call this structure the empty structure
and denote it by ∅ again. Observe that ∅ is a substructure of every L -structure.

2.6.1. Definition. Let N be an L -structure and let (Mi | i ∈ I) be an arbitrary
family of substructures of N . Using 2.1.7 it is clear that the intersection of the
universes of all the Mi is again the universe of a substructure P of N . P is called
the intersection of the Mi and denoted by

⋂
i∈I

Mi.

2.6.2.Definition. Let M be an L -structure and let A ⊆ |M |. The substructure
generated by A is defined as the intersection of all substructures N of M with
the property A ⊆ |N | and it is denoted by

〈A〉M .

2.6.3. Proposition.

〈A〉M =⋃{tM (An) | t(x1, ..., xn) is an L -term} =

= {tM (ā) | t(x̄) is an L -term and ā ∈ Ax̄}.

Proof. This is again immediate from 2.1.7. �
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2.7. Back and Forth equivalence.

2.7.1. Definition. Let M and N be L -structures. A partial isomorphism
M −→ N is a triple (p,A,B) such that
(1) A ⊆ |M |,
(2) B ⊆ |N |,
(3) p : A −→ B is a bijection and
(4) for every quantifier-free L -formula ϕ(x1, ..., xn) and all a1, ..., an ∈ A we have

M |= ϕ[a1, ..., an] ⇐⇒ N |= ϕ[p(a1), ..., p(an)].

2.7.2. Remarks.
(i) If (p,A,B) is a partial isomorphism M −→ N , then obviously, (p−1, B,A) is

a partial isomorphism N −→M .
(ii) In the definition of a partial isomorphism, A and B may be empty. In this

case p is empty, too. This partial isomorphism (provided it exists) is called
the empty partial isomorphism M −→ N .

(iii) The notation (p,A,B), strictly speaking is slightly ambiguous because the
definition a priori depends also on M and N . However, given A ⊆ |M |,
B ⊆ |N | and a map p : A −→ B the following are equivalent.
(i) (p,A,B) is a partial isomorphism M −→ N .
(ii) There is an isomorphism f : 〈A〉M −→ 〈B〉N with the property f(a) =

p(a) for every a ∈ A.

Proof. Exercise 12. �

2.7.3. Definition. A back and forth system between infinite L -structures
M and N is a non-empty family ((pi, Ai, Bi) | i ∈ I) of partial isomorphisms
M −→ N satisfying the following conditions:

Forth: For all i ∈ I and every a ∈ |M | there is some j ∈ I with a ∈ Aj such that pj
extends pi; hence also Ai ⊆ Aj and Bi ⊆ Bj .

Back: For all i ∈ I and every b ∈ |N | there is some j ∈ I with b ∈ Bj such that pj
extends pi.

If there is a Back and Forth system between M and N , then M and N are
called back and forth equivalent.

Observe that many times the empty partial isomorphism M −→ N is in the
system, which explicitly is allowed. Also, if we have a Back and Forth system we
may always add the empty partial isomorphism M −→ N to get again a Back and
Forth system M −→ N .

A trivial but useful observation is the following.

2.7.4. Observation. If ((pi, Ai, Bi) | i ∈ I) is a Back and Forth system between
M and N , then ((p−1

i , Bi, Ai) | i ∈ I) is a Back and Forth system between N and
M .

2.7.5. Example. In example 2.4.3 we have constructed a Back and Forth system
between any two countable, densely, totally ordered sets without endpoints. There,
we actually deduced that the involved structures are isomorphic!

Moreover, in this example any two partial isomorphisms (fi, Xi, Yi) have the
property that fi extends fj or vice versa. This is in general not the case and in
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general, also structures of different cardinalities can be Back and Forth equivalent:
Consider again densely, totally ordered sets (X,≤) and (Y,≤) without endpoints,
but this time without any cardinality restriction. We show that (X,≤) and (Y,≤)
are Back and Forth equivalent. We define the following family of partial isomor-
phisms. Let the index set I be defined as

I = {(A,B) | A ⊆ X,B ⊆ Y, A,B finite of the same size}.
For i = (Ai, Bi) ∈ I, let pi : Ai −→ Bi be the unique bijection which preserves
the orders induced by X and Y on Ai, Bi respectively. Then the same case by case
analysis as in 2.4.3 shows that ((pi, Ai, Bi) | i ∈ I) is a Back and Forth system
between X and Y .

2.7.6. Theorem. If M and N are back and forth equivalent L -structures, then
they are elementary equivalent.

Proof. We show by induction on the complexity of L -formulas ϕ(x1, ..., xn) the
following:

If i ∈ I and a1, ..., an ∈ Ai then(∗)
M |= ϕ[a1, ..., an] ⇐⇒ N |= ϕ[pi(a1), ..., pi(an)].

If ϕ is quantifier-free then this holds true by the definition of partial isomorphisms.
For the induction step, observe that the case of boolean connectives is obvious: If
(∗) holds for ψ and γ, then (∗) also holds for ψ ∧ γ and for ¬ψ.

Therefore, it remains to show that (∗) holds for ∃yψ(x̄, y) if it holds for ψ(x̄, y).
So let us assume that (∗) holds for ψ(x̄, y). We prove (∗) for ∃yψ(x̄, y):
⇒: We have M |= ∃yψ[a1, ..., an], i.e. there is some a ∈ |M | with M |=
ψ[a1, ..., an, a]. Now by the “Forth”-condition for our Back and Forth system, there
is some j ∈ I such that a ∈ Aj and pj extends pi. We may now apply the implica-
tion “⇒” of the induction hypothesis for pj and a1, ..., an, a and ψ(x1, ..., xn, y) to
obtain N |= ψ[pj(a1), ..., pj(an), pj(a)]. As pj extends pi we get

N |= ψ[pi(a1), ..., pi(an), pj(a)],

in particular N |= ∃yψ[pi(a1), ..., pi(an)], as desired.
⇐: Similar to “⇒”, using the “Back” condition for our Back and Forth system.
Another proof is the following: The implication “⇐” for our Back and Forth system
is the implication “⇒” for the inverse Back and Forth system ((p−1

i , Bi, Ai) | i ∈ I).

This finishes the induction and so we know that (∗) holds true for all formulas.
Now by assumption our Back and Forth system contains at least one element, i.e.
we can actually apply (∗) !! Doing this for sentences (and any i) shows

M |= ϕ ⇐⇒ N |= ϕ

for all L -sentences ϕ. Thus M ≡ N . �
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2.8. The Elementary Joint Embedding Theorem.

2.8.1. Elementary Joint Embedding Theorem
Let I be an arbitrary index set and for i ∈ I let Mi be an L -structure. If all Mi

are elementary equivalent, then there is an L -structure P in which all Mi embed,
i.e. there are elementary embeddings Mi −→P for every i.

Proof. We will first show that two elementary equivalent L -structures M and N
can be elementarily embedded into another L -structure. We choose disjoint sets
of new (w.r.t. L ) constants M = {m | m ∈ |M |}, N = {n | n ∈ |N |} and work in
the language L (M ∪N). So this language is the “union” of the languages L (M )
and L (N ), where it is important to notice that the newly introduced constants
are disjoint.

By 2.2.3(iii) it is enough to show that

Σ := diag∞(M ) ∪ diag∞(N )

is satisfiable. Suppose this is not the case. Then by compactness there are finite
subsets Γ ⊆ diag∞(M ) and ∆ ⊆ diag∞(N ) such that

(∗) Γ ∪∆ is not satisfiable.

Since all elementary diagrams are closed under finite conjunctions we may assume
that Γ = {γ} and ∆ = {δ} with γ ∈ diag∞(M ) and δ ∈ diag∞(N ).

From (∗) it follows that

(+) γ |= ¬δ.

By definition, δ is of the form ψ(y1/n1, ..., yl/nl), for some L -formula ψ(y1, ..., yl)
and some n1, ..., nl ∈ |N |. By choice of the new constant symbols, the constants
symbols n1, ..., nl are new w.r.t. the language L (M ), whereas δ is an L (M )-
sentences. Using 1.46 we therefore deduce from (+) that

(++) γ |= ∀y1...yl ¬ψ.

(Convince yourself that this is indeed a consequence of 1.46).
Now (++) implies

(+ + +) |= γ → ∀y1...yl ¬ψ.

By definition, γ is of the form ϕ(x1/m1, ..., xl/mk), for some L -formula ϕ(x1, ..., xk)
and some m1, ...,mk ∈ |M |. Clearly (+ + +) implies

(†) |= (∃x1, ...xkϕ)→ ∀y1...xl ¬ψ.

Since γ ∈ diag∞(M ) we know from 1.46 that M |= ∃x1, ...xkϕ. As N ≡M , also
N |= ∃x1, ...xkϕ. Together with (†) we infer N |= ∀y1...yl ¬ψ.

However, δ = ψ(y1/n1, ..., yl/nl) is in diag∞(N ) which is equivalent to N |=
ψ[n1, ..., nl], a contradiction.

This finishes the proof in the case of two models. For the general case, we work
in the language L + which expands L and has new constant symbols a for every
a ∈Mi, where we assume that a 6= b, if a ∈ |Mi| and b ∈ |Mj | with i 6= j.

By 2.2.3(iii) the assertion of the theorem is equivalent to the satisfiability of

Σ :=⋃
i∈I

diag∞(Mi).
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By compactness, we may then assume that I in fact is finite. Now the finite case
follows by a trivial induction on the size k of I once we know it for k = 2. But this
is what we have shown already. �

2.8.2. Corollary. The following are equivalent for all L -structures M and N .
(i) M and N are elementary equivalent
(ii) There is an elementary embedding M −→P into some elementary extension

of N .
(iii) there are elementary extensions M ′ � M and N ′ � N which are isomor-

phic:

M ′ ∼= // N ′

M
?�

≺

OO

N
� ?

≺

OO

Proof. (iii)⇒(ii)⇒(i) are obvious.
(i)⇒(iii). By the Elementary Joint Embedding Theorem there is an L -structure
P and elementary embeddings f : M −→P and g : N −→P.

We construct M ′ according to the “identification process” of M in P via f . To
be precise we construct an L -structure M ′ �M and an isomorphism f ′ : M ′ −→
P such that the following diagram commutes:

M ′ f ′ //P

M
f

==
≺

OO

Take a set A that is disjoint from |M | and in bijection f ′ : A −→ |P| \ f(|M |).
DefineM ′ = |M |∪A and extend f ′ to a bijectionM ′ −→ |P| by mappingm ∈ |M |
to f(m). Now transfer the L -structure of P via the bijection f ′ to M ′ and call
the resulting structure M ′. Then by definition, f ′ is an isomorphism M ′ −→ P.
Since f is an elementary embedding, also (f ′)−1 ◦ f is an elementary embedding.
However, (f ′)−1 ◦ f is just the inclusion |M | −→M ′ by definition of M ′ and f ′.

We do the same with the elementary embedding g : N −→ P and obtain
N ′ � N and an isomorphism g′ : N ′ −→ P. Hence we are in the following
situation:

M ′ f ′ //P N ′g′oo

M

f

==

≺

OO

N

≺

OO

g

aa

and we can define h = (g′)−1◦f ′ to obtain an isomorphism M ′ −→ N ′ as required.
�
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3. Types and definable sets

We will now simplify the notation further and denote L -structures by M,N,P, ....
That is, we will not distinguish the structures from their universe when this is not
necessary. This is the standard in mathematics, e.g. in the expression

“let G be a group and let a ∈ G”
it is well understood that the first occurrence of “G” refers to a structure and the
second refers to the universe of this structure.

3.1. Definable sets.

3.1.1.Definition. LetM be an L -structure. A subset S ofMn is called definable
if there is some L -formula ϕ(x1, ..., xn, y1, ..., yk) and a k-tuple ā ∈Mk such that

S = ϕ[Mn, ā] := {(m1, ...,mn) ∈Mn | M |= ϕ[m1, ...,mn, a1, ..., ak]}.

One should think of such a definable set S as the
“solution set of the formula ϕ(x1, ..., xn, a1, ..., ak)”

This is ambiguous because strictly speaking ϕ(x1, ..., xn, a1, ..., ak) is not an L -
formula. So to be correct we should say ϕ(x1, ..., xn, a1, ..., ak) is an L (M)-formula
and then it is shorthand for ϕ(x1, ..., xn, y1/a1, ..., yk/ak). This can not be misun-
derstood and we will use this notation from now on.

For example in the structure M = (R,≤,+,−, ·), ϕ might be the formula

x8 + y7·x7 + ...+ y1·x+ y0 ≥ y8

and ā might be (π, 1, 2, 3, 4, 5, 6,
√

2, 0). So ϕ(x1, ..., xn, a1, ..., ak) is

x8 +
√

2·x7 + ...+ 1·x+ π ≥ 0

and S ⊆ R is the solution set of this inequality. It is clear that we are interested in
the analysis of such sets when we are analysing the reals.

The elements a1, ..., ak play the role of “coefficients” or “parameters” and it is
suitable to think of them in this way, also in the general situation.

One might answer the question “What is Model Theory?” by saying “Model Theory
is the analysis of structures in terms of first order logic”. More precisely, we want
to understand the shape of its definable sets! In this sense we have arrived at a
central notion of Model Theory.

For example in the case of the real field we might ask topological questions about
definable sets (are they connected, open, closed, or finite unions of such sets?). Or
we might ask whether there is a formula in the language of rings which describes
the graph of a Peano curve (i.e. a continuous and surjective function R −→ R2).

In an arbitrary structure M , the following sets are always definable:
(1) Finite and cofinite subsets ofMn (recall that cofinitemeans: the complement

in Mn is finite)
(2) For every ā ∈Mn, the set {ā} ×Mk ⊆Mn ×Mk.
(3) The diagonal {(a, a) | a ∈M} ⊆M2.

It is important to keep track of the parameters that are necessary to define a set.
We extend definition 3.1.1 as follows:
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3.1.2. Definition. Let M be an L -structure and let A ⊆ M be a set. A subset
S of |M |n is called A-definable or definable with parameters from A if there
is some L -formula ϕ(x1, ..., xn, y1, ..., yk) and a k-tuple ā ∈ Ak such that

S = {(m1, ...,mn) ∈Mn | M |= ϕ[m1, ...,mn, a1, ..., ak]}.

Hence “definable” means definable with parameters from M .

For example, in the structure (R,+,−, ·, 0, 1), the singleton {
√

2} (
√

2 denotes
the positive square root of 2) is ∅-definable by the formula

x2 .
= 2 ∧ ∃u u2 .

= x.

Whereas in the structure (C,+,−, ·, 0, 1), the singleton {
√

2} is not ∅-definable (cf.
exercise 19)

3.1.3. Proposition. Let M be an L -structure and let A ⊆M .
(i) If S, T are A-definable subsets of Mn, then also S ∩ T , S ∪ T and S \ T are

A-definable. If p is the projection Mn −→Mk and S is an A-definable subset
of Mn, then p(S) is an A-definable subset of Mk.

(ii) If f : M −→ N is an isomorphism between L -structures and S ⊆ Mn is
defined by ϕ(x̄, ā), then f(S) is defined by ϕ(x̄, f(ā)) (here we also consider
f as a map Mn −→ Nn obtained from f by applying f coordinate wise; thus
f(S) ⊆ Nn and f(ā) ∈ Nn).

(iii) If S ⊆ Mn is A-definable and f : M −→ M is an automorphism of M that
fixes A pointwise (i.e. f(a) = a for all a ∈ A), then M fixes S setwise (i.e.
f(S) = S).

Proof. Exercise. �

3.1.4. Example. Let M be a set considered as a structure in the empty language.
Then every definable subset of M is finite or cofinite.

Proof. Suppose S ⊆ M is infinite and M \ S is infinite, too. It is clear that for
every finite set A ⊆ M , there is a bijection f : M −→ M which fixes A pointwise,
but does not fix S setwise, i.e. f(S) 6⊆ S. Hence by 3.1.3(iii), S is not A-definable.
Since A was arbitrary, S is not definable either. �

3.1.5. Remark. Firstly a warning: Statement (ii) of 3.1.3 is not true anymore if
we replace ’isomorphism’ by ’elementary embedding’: If M ≺ N is an elementary
extension and S ⊆M is definable, then in general, S (which is f(S) for the inclusion
f : M −→ N) in general is not definable in N . For example the set M itself is
definable in M , but in general not definable in N : take example 3.1.4 (and your
favorite Skolem-Löwenheim theorem to produce M ≺ N as required).

Despite of the warning above, given an elementary extension M ≺ N , there is a
natural way to attach a definable set of N to each definable set of M :

If S ⊆Mn is definable, then for every elementary extension N �M we define a
set SN ⊆Mn as follows:

Pick a formula ϕ(x̄, ā) that defines S and let SN be the set defined by ϕ(x̄, ā) in
Nn. Of course we have to confirm that this is well defined: Exercise 16.

A particularly interesting class of definable sets is given through properties of
functions. First a definition.
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3.1.6. Definition. LetM be an L -structure, A ⊆M and let S ⊆Mn. A function
f : S −→ Mk is called A-definable (in M) if its graph is an A-definable subset of
Mn ×Mk.

As a (trivial example): If F is an n-ary function symbol of L , then clearly
FM : Mn −→ M is ∅-definable. However, not every ∅-definable function is of
this form. For example in the structure M = (Z,+, ·), the successor function is
∅-definable.

3.1.7. Remark. Let M be an L -structure, A ⊆M and let S ⊆Mn. Let f : S −→
Mk be a function.
(i) f is A-definable if and only if each component of f is an A-definable map

Sn −→M .
(ii) f is A-definable, then S and the image of f are A-definable.
(iii) The composition of A-definable maps is A-definable.

Proof. Exercise. �

For example, look at M = (R,+, ·) and a definable (i.e. M -definable) map
f : Rn −→ Rk. The definition from real analysis of differentiability of such a
function can be used to show that the set D of all points where f is differentiable,
is again definable in M .

3.1.8. Definition. An element s of an L -structureM is called A-definable (where
A ⊆M), if {s} is A-definable. The set of all elements of M that are A-definable is
called the definable closure of A (in M) and denoted by

dclM (A).

The set A is called definably closed (in M) if A = dclM (A).

Warning. The notion “definable closure” is slightly misleading in the sense that it
indicates that dclM (A) might be “the smallest definable subset of M containing A”.
However this is in general not the case and in exercise 18 you should give examples
which show
• In general, there is no smallest definable subset of M containing A.
• dclM (A) is in general not the intersection of all (A-)definable subsets of M .

3.1.9. Proposition. Let A be a subset of a structure M . Then A ⊆ dclM (A) and
(i) A subset S of Mn is A-definable if and only if S is dclM (A)-definable. In

particular dclM (A) is definably closed.
(ii) dclM (A) is closed under all A-definable functions, hence if f : Sn −→ M

is A-definable, then for every n-tuple b̄ ∈ S with entries in dclM (A), also
f(b̄) ∈ dclM (A).

(iii) dclM (A) is a substructure of M .
(iv) If M ≺ N , then dclN (A) = dclM (A).

Proof. Obviously A ⊆ dclM (A).
(i) The implication ⇒ is clear. Conversely assume S = ϕ[Mn, b̄] with b1, ..., bk ∈
dclM (A). Take ϕ1(y, z̄), ..., ϕk(y, z̄) ∈ Fml L and ā1, ..., āk ∈ Az̄ such that

{bi} = ϕi[M, āi] (1 ≤ i ≤ k).
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Then S is defined by

∃y1, ..., yk

(
ϕ(x̄, y1, ..., yk) ∧

k∧
i=1

ϕi(yi, āi)

)
and so S is A-definable.

This proves the equivalence. It follows that dclM (A) is definably closed: every
element that is dclM (A)-definable is also A-definable.
(ii) Let the graph of f be defined by γ(x̄, y, ā) with ā a tuple with entries from A.
Then f(b̄) is defined by γ(b̄, y, ā). Consequently f(b̄) is dclM (A)-definable and by
(i) therefore A-definable.
(iii) To see that dclM (A) is a substructure of M (note that this strictly speaking
means: dclM (A) is the universe of a substructure of M) we only need to show that
cM ∈ dclM (A) and that FM maps dclM (A)n into dclM (A) for every n-ary function
symbol F of L . However, cM and FM are ∅ definable functions, so this holds by
(ii).
(iii). Let ϕ(y, x̄) be an L -formula and let ā ∈ Ax̄.

If b ∈ dclM (A) and {b} is defined by ϕ(y, ā) in M , then b the unique element of
M with the property M |= ϕ[b, ā]. Since M ≺ N we have
• N |= ϕ[b, ā] and
• N |= ∃!y ϕ[y, ā]. Here ∃!y is an abbreviation for “there exists a unique y”.

But this means {b} is defined by ϕ(y, x̄) in N .
Conversely if c ∈ N is defined by ϕ(y, ā) in N , then b the unique element of N

with the property N |= ϕ[b, ā]. Since M ≺ N we have

(∗) M |= ∃!y ϕ[y, ā].

Take some b ∈M withM |= ϕ[b, ā]. AsM ≺ N we also have N |= ϕ[b, ā]. However,
in N there is only one element with this property and this element is c. Thus c = b.
From M |= ϕ[b, ā] and (∗) we see that c = b ∈ dclM (A). �

3.1.10. Example. Let M be a set considered as a structure in the empty language.
Take A ⊆ M . We compute dclM (A) and claim that dclM (A) = A if and only if
M \A has at least two elements or M is infinite. In the remaining case, when M is
finite and M \ A is a singleton we have dclM (A) = M . To show this we do a case
by case analysis.
Case 1. If A = M , then trivially dclM (A) = M .
Case 2. If M \A contains at least 2 elements.

Then take a bijection f : M \ A −→ M \ A without fixed point and extend f
to M by f(a) = a for a ∈ A. Then f is an automorphism of M that fixes A, but
does not fix any element outside A. Hence by 3.1.3(iii), no element outside A is
definable over A. Hence A = dclM (A).
Case 3. If M is finite and M \ A is a singleton, say A = {a1, ..., an}, then the
unique element in M \A is A-definable by the formula

x 6= a1 ∧ x 6= a2 ∧ ... ∧ x 6= an.

Case 4. The remaining case is when M is infinite and M \A is a singleton.
Here we can not apply the automorphism argument from case 2, since every

bijection M −→M that fixes A pointwise also fixes the missing point. However we



Definable sets 45

can apply 3.1.9(iv): Since M is infinite, M has proper elementary extensions N . In
particular N \A contains at least 2 elements. So by case 2 we know dclN (A) = A.
By 3.1.9(iv) we get dclM (A) = dclN (A) = A.
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3.2. n-types of structures (warm up).

Let M be an L -structure. In subsection 3.1 we have looked at definable subsets
of Mn and we have seen that knowledge obtained about these definable sets is a
key tool to understand the structure M . We will now introduce topology into our
study and get a new and very fruitful way of looking at definable sets and first
order structures. To do this we will add points to Mn and install a topology on the
extended set. Then we will see that definable subsets of Mn can be characterised
by those subsets of the space which are closed and open. The resulting space will
be compact due to the compactness theorem! This is where the name comes from.
In what follows it is a good idea to have a concrete model M in mind, For example
one might think of M as a one-dimensional vector space over a field or as a densely
linearly ordered set without endpoints.

We fix n ∈ N and distinct variables x1, ..., xn. We write x̄ = (x1, ..., xn). The
new points “code” properties of n-tuples from elementary extensions of M . If N is
an elementary extension of M and ᾱ ∈ Nn, then we define the type of ᾱ in N
over M by

tpN (ᾱ/M) = {ϕ(x̄) ∈ Fml L (M) | (N,M) |= ϕ(ᾱ)}.
(Note that in this definition, ϕ has parameters from M , which are interpreted in
(N,M) by the elements they name, see section 2.2)

Every such subset (N and ᾱ may vary) of formulas of L (M) with free variables
among the x1, ..., xn is called an n-type over M . The n-tuple ᾱ is called a real-
ization of p in N if N �M and p = tpN (ᾱ/M). These types are our new points
and we define the space of n-types over M

Sn(M) = {p | p is an n-type over M}.
Well, at the moment this is just a set and it is not clear why we ’added’ points
to Mn. Moreover the name ’space’ is not yet justified as we still need to define a
topology. We address the first issue now:

3.2.1. Observation. The map

ι : Mn −→ Sn(M); ι(ā) = tpM (ā/M)

is injective and its image is exactly the set of all types that are realised in M .

Proof. If ā 6= b̄ ∈ Mn, then for some i ∈ {1, ..., n} we have ai 6= bi. Thus the
L (M)-formula xi

.
= ai is in tpM (ā/M) but not in tpM (b̄/M).

It is clear that the image of ι is exactly the set of all types that are realised in
M . �

In the proof above we should have written xi
.
= ai, because this formula is an

L (M)-formula. However, we will drop the underlining now, since it will never be
unambiguous which language we are talking about; therefore xi

.
= ai will also be

unambiguous.
The injection in 3.2.1 explains in which way we see the types as new points: If

we consider n-tuples of Mn as the types they realise in Sn(M), all the other types
are added to Mn.

Now we are heading towards the topology on Sn(M). Firstly, we extend our
intuition of formulas ϕ of L (M) with free variables among the x1, ..., xn, and the
way they are related to each other and to points in Mn, to types: The formula ϕ
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defines the subset S = ϕ[Mn] of Mn and an n-tuple ā might or might not be in S.
If we consider the set S as the ’geometric incarnation’ of the formula ϕ, the relation
between an n-tuple ā and ϕ is given by the membership

ā ∈ S, which is equivalent to (M,M) |= ϕ(ā).

However (M,M) |= ϕ(ā) is equivalent to ϕ ∈ tpM (ā/M). So wee see that

(+) ā ∈ ϕ[Mn] ⇐⇒ ϕ ∈ tpM (ā/M).

We define
〈ϕ〉 = {p ∈ Sn(M) | ϕ ∈ p} ⊆ Sn(M)

and obtain

(++) p ∈ 〈ϕ〉 ⇐⇒ ϕ ∈ p.
You should verify that indeed condition (++) boils down to condition (+) if p is
realised in M .
Thus we have extended the membership question ā ∈ S = ϕ[Mn] to the larger set
Sn(M): the set S is replaced by the set 〈ϕ〉 and the relation of 〈ϕ〉 to the new
points is exactly the same as the relation of ϕ[Mn] to the old points.

3.2.2. Definition. We define a topology on Sn(M) which has all the sets 〈ϕ〉
above (so ϕ now ranges over all formulas ϕ of L (M) with free variables among the
x1, ..., xn) as a sub-basis of open sets. Sn(M) with this topology now deserves the
attribute ’space’.

The interesting thing about this space is the following:

3.2.3. Theorem. Sn(M) is a compact Hausdorff space and the sets 〈ϕ〉 are exactly
those subsets of Sn(M) that are at the same time open and closed.

The interest consist here in the introduction of topology to the subject, which
gives a new point of view of first order logic; e.g. we may now say that formulas
with parameters in M “are” subsets of Sn(M) which are at the same time open
and closed. We will prove 3.2.3 in 3.4.3 below; for applications we need and we will
prove it in greater generality. We finish this section with a look back to the original
set Mn and how it sits inside Sn(M) (we don’t need 3.2.3 for this):

3.2.4. Proposition. The image of ι : Mn −→ Sn(M) is exactly the set of all types
p which are isolated (i.e. the set {p} is open in Sn(M)). Moreover the image of ι
is dense in Sn(M) (i.e. its closure is all of Sn(M)).

Proof. We first show that the image of ι is dense in Sn(M): We take a nonempty
open subset O of Sn(M) and we have to find some ā ∈Mn with ι(ā) ∈ O.

Take an arbitrary p ∈ O. Since the sets 〈ϕ〉 are a sub-basis of open sets of Sn(M)
and O is open, there are ϕ1, ..., ϕk ∈ Fml L (M), all with free variables among the
x1, ..., xn such that

p ∈ 〈ϕ1〉 ∩ ... ∩ 〈ϕk〉 ⊆ O.
Take a realization ᾱ of p in N � M (thus ᾱ ∈ Nn for some N � M and p =
tpN (ᾱ/M)). Then p ∈ 〈ϕi〉 means

(N,M) |= ϕi[ᾱ] (1 ≤ i ≤ k)

and therefore
(N,M) |= ∃x1...xn (ϕ1 ∧ ... ∧ ϕk).
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Since M ≺ N we have

(M,M) |= ∃x1...xn (ϕ1 ∧ ... ∧ ϕk)

which means that for some ā ∈Mn we have

(M,M) |= ϕ1(ā) ∧ ... ∧ ϕk(ā).

Another way of saying this is tpM (ā/M) ∈ 〈ϕi〉 for each i ∈ {1, ..., k}. This shows
ι(ā) = tpM (ā/M) ∈ 〈ϕ1〉 ∩ ... ∩ 〈ϕk〉 ⊆ O,

as required.
So we know that the image of ι is dense in Sn(M). In particular, if p is an isolated
point of Sn(M), then {p} is open and so p has to be in this image already.

It remains to show that conversely, all types, realised in M are isolated: Let
ā ∈ Sn(M). We show that tpM (ā/M) is isolated. Take ϕ to be the formula

x1
.
= a1 ∧ ... ∧ xn

.
= an.

We claim that 〈ϕ〉 = {tpM (ā/M)}. The inclusion ⊇ holds true, since (M,M) |=
ϕ[ā]. To see the other inclusion take p ∈ 〈ϕ〉 and let ᾱ ∈ Nn for some N �M such
that p = tpN (ᾱ/M). Since p ∈ 〈ϕ〉 we have (N,M) |= ϕ[ᾱ]. But this means

α1 = a1 and ... and αn = an.

Hence p = tpN (ᾱ/M) = tpM (ᾱ/M) (as M ≺ N). �

The interest in 3.2.4 is that we can topologically recover the setMn from the Sn(M)
and that the set Mn is topologically “big” in Sn(M). Another consequence is

3.2.5.Corollary. The relative topology induced by Sn(M) onMn (after identifying
Mn with its image under ι) is discrete. (i.e. all subsets of Mn are open).

Proof. Since all points of Mn in the relative topology are open, this is clear. �
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3.3. Types.

We will restart and introduce type spaces in full generality. This looks slightly
artificial at the beginning, but the general set up simplifies proofs and we will see
shortly that the space Sn(M) constructed in section 3.2 is an instance of what we
define now:

Let Σ be a set of L -sentences. The set of types of Σ (in L ) is

S(Σ) := {p ⊆ Sen(L ) | p is a complete L -theory with Σ ⊆ p}.
For an L -sentence ϕ we define

〈ϕ〉 = {p ∈ S(Σ) | ϕ ∈ p},
so that p ∈ 〈ϕ〉 ⇐⇒ ϕ ∈ p. If we have to specify Σ we write 〈ϕ〉Σ instead of 〈ϕ〉.

We will see (and actually exploit) that S(Σ) is very language dependent, i.e. if
we enlarge L , S(Σ) will change dramatically. If it is unclear which language we
are working in we add a superscript L and write SL (Σ), 〈ϕ〉L , etc. In this section
however, L is fixed throughout.

3.3.1. Lemma. For ϕ,ψ ∈ Sen(L ) we have
(i) 〈ϕ〉 = ∅ ⇐⇒ Σ ∪ {ϕ} is not satisfiable.
(ii) 〈ϕ〉 = S(Σ) ⇐⇒ Σ |= ϕ.
(iii) 〈ϕ〉 ∩ 〈ψ〉 = 〈ϕ ∧ ψ〉.
(iv) 〈ϕ〉 ∪ 〈ψ〉 = 〈ϕ ∨ ψ〉.
(v) S(Σ) \ 〈ϕ〉 = 〈¬ϕ〉.
(vi) 〈ϕ〉 ⊆ 〈ψ〉 ⇐⇒ Σ |= ϕ→ ψ.
(vii) 〈ϕ〉 = 〈ψ〉 ⇐⇒ Σ |= ϕ↔ ψ.

Proof. Recall from 1.41 that

(∗) a complete L -theory is the same thing as the theory of an L -structure.

(i) 〈ϕ〉 = ∅ says that Σ ∪ {ϕ} is not contained in any complete theory. Using (∗)
this means Σ ∪ {ϕ} is not satisfiable.
(ii) 〈ϕ〉 = S(Σ) says that Σ ∪ {ϕ} is contained in any complete theory containing
Σ. Using (∗) this means Σ |= ϕ.
(iii) holds since ϕ ∧ ψ ∈ p ⇐⇒ ϕ ∈ p and ψ ∈ p for every (complete) L -theory p.
(iv) holds since ϕ∨ψ ∈ p ⇐⇒ ϕ ∈ p or ψ ∈ p for every complete L -theory p (use
(∗)).
(v) holds since for every complete L -theory p, exactly of ϕ or ¬ϕ is in p (use (∗)).
(vi) Using (∗), 〈ϕ〉 ⊆ 〈ψ〉 is the definition of Σ |= ϕ→ ψ.
(vii) is obvious from (vi). �

Item (vii) of 3.3.1 says that if we are interested in L -sentences up to logical equiv-
alence, assuming Σ as set of axioms, then these sentences can be studied entirely
via the subsets 〈ϕ〉.
By 3.3.1, the set

B(Σ) = {〈ϕ〉 | ϕ ∈ Sen(L )}
is a boolean algebra w.r.t. intersection, union and complement, called the
Tarski-Lindenbaum algebra of Σ. What this means is that B(Σ) is closed
under finite intersections, unions and complement.
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In particular B(Σ) is a basis of open sets of a topology on S(Σ). This means
that the collection

O = { arbitrary unions of sets from B(Σ) }

is (the collection of open sets of) a topology on S(Σ). What has to be checked here
is that O is closed under finite intersections and this is what follows from 3.3.1(iii).

3.3.2. Definition. The topological space S(Σ) is called the type space of Σ

From now on we will consider S(Σ) equipped with this topology. Hence if we say
’let O ⊆ S(Σ) be open’, then we mean open with respect to the topology defined
above.

The statement that gives the compactness theorem its name is:

3.3.3. Theorem. S(Σ) is compact.

Proof. By definition of ’compact’ we need to show that for every set {Oi | i ∈ I}
of open subsets of S(Σ) with the property that

(+) S(Σ) =⋃
i∈I

Oi,

(we say that {Oi | i ∈ I} covers S(Σ)) there is a finite subcover, that is, there is
a finite subset J of I with

(++) S(Σ) = ⋃
j∈J

Oj .

By the definition of open sets before 3.3.2, every Oi is the union of all 〈ϕ〉 contained
in it (see the definition of open sets before 3.3.2). In other words, if we define

Γ = {γ ∈ Sen(L ) | 〈γ〉 is contained in Oi for some i ∈ I},

then every p ∈ S(Σ) is contained in some Oi (by (+)) and so p contains some γ ∈ Γ.
But then the set ¬Γ (defined as {¬γ | γ ∈ Γ}) can not be contained in any type of
Σ. In other words Σ ∪ ¬Γ is not satisfiable.

Now by the compactness theorem, for some finite subset ∆ of ¬Γ, also Σ ∪ ∆
is not satisfiable. We unwind this: there is a finite subset Γ0 of Γ such that ∆ =
{¬γ | γ ∈ Γ0}. This in turn means that for every p ∈ S(Σ), p must contain some
γ ∈ Γ0, in other words

(†) S(Σ) = ⋃
γ∈Γ0

〈γ〉.

For each γ ∈ Γ0, take an index i(γ) ∈ I with 〈γ〉 ⊆ Oi(γ) and let J be the finite set
{i(γ) | γ ∈ Γ0}. Now clearly (†) implies (++) for J . �

We can now recover L -sentences (modulo Σ, see 3.3.1(vii) and the remark after
this lemma) topologically:

3.3.4. Corollary. A subset S(Σ) is of the form 〈ϕ〉 for some ϕ ∈ Sen(L ) if and
only if 〈ϕ〉 is clopen (i.e. closed and open).

Proof. Since S(Σ) = 〈ϕ〉 ·∪〈¬ϕ〉 and both sets are open by definition, 〈ϕ〉 is clopen.
Conversely if X ⊆ S(Σ) is clopen, then it is compact, since closed subsets of

compact spaces are compact and S(Σ) is compact by 3.3.3. On the other hand X is
also open, so X is a union of sets of the form 〈ϕ〉 by definition. Since X is compact
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it is a finite union of sets of the form 〈ϕ〉. Thus there are ϕ1, ..., ϕn ∈ Sen(L ) such
that

X = 〈ϕ1〉 ∪ ... ∪ 〈ϕn〉.
By 3.3.1(iv) we see that

X = 〈ϕ1 ∨ ... ∨ ϕn〉.
�

3.3.5. Corollary. S(Σ) Hausdorff and S(Σ) has a basis of clopen sets. It follows
that S(Σ) is also totally disconnected, i.e. the only connected subsets of S(Σ)
are singletons.

Proof. S(Σ) is Hausdorff because for p, q ∈ S(Σ) with p 6= q there is some ϕ ∈ p \ q
(note that the complete theories p and q are not comparable w.r.t. inclusion if they
are different). Hence p ∈ 〈ϕ〉, q ∈ 〈¬ϕ〉 and 〈ϕ〉, 〈¬ϕ〉 are nonempty and disjoint
open sets as required for the Hausdorff property.

Since B(Σ) is a basis of the topology and all sets in B(Σ) are clopen, S(Σ) has
a basis of clopen sets.

Concerning the last statement, recall that a subset X of a topological space
is connected if for all open and disjoint open subsets U, V of that space with
X ⊆ U ∪ V we have X ⊆ U or X ⊆ V . In our situation, if X ⊆ S(Σ) is a
set containing at least two points p, q, then take a clopen subset U of S(Σ) with
p ∈ U 63 q. Then with V = S(Σ) \U we have X ⊆ U ∪V , X 6⊆ U and X 6⊆ V . This
shows that X is not connected. �

We can also code L -theories containing Σ topologically. Firstly, if Γ ⊆ Sen(L ),
then the set

C(Γ) := ⋂
γ∈Γ

〈γ〉

is a closed subset of S(Σ) (since all sets of the form 〈ϕ〉 ∈ B(L ) are closed and
since the intersection of closed sets is closed).

Secondly, if X is a subset of S(Σ), then

T(X) := {ϕ ∈ Sen(L ) | X ⊆ 〈ϕ〉}

is a deductively closed subset of Fml L containing Σ as follows readily from 3.3.1

3.3.6. Proposition.
(i) For every Γ ⊆ Sen(L ) the set

T(C(Γ)) is the deductive closure of Σ ∪ Γ.

(ii) For every subset X of S(Σ), the set

C(T(X)) is the closure of X in S(Σ).

(iii) C and T define bijections

C : {L -theories containing Σ} −→ {nonempty closed subsets of S(Σ)}

and

T : {nonempty closed subsets of S(Σ)} −→ {L -theories containing Σ},

which are inverse to each other.
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Proof. (i) That T(C(Γ)) contains the deductive closure of Σ∪Γ is left as an exercise.
For the other inclusion, take ϕ ∈ T(C(Γ)), i.e.

⋂
γ∈Γ

〈γ〉 = C(Γ) ⊆ 〈ϕ〉.

Hence
S(Σ) = 〈ϕ〉 ∪ (S(Σ) \ ⋂

γ∈Γ

〈γ〉) = 〈ϕ〉 ∪ ⋃
γ∈Γ

〈¬γ〉

Since S(Σ) is compact there is a finite subset Γ0 ⊆ Γ with

S(Σ) = 〈ϕ〉 ∪ ⋃
γ∈Γ0

〈¬γ〉.

This in turn means
⋂
γ∈Γ0

〈γ〉 ⊆ 〈ϕ〉

and using 3.3.1 we see that Σ |= (
∧

Γ0) → ϕ. Hence ϕ is in the deductive closure
of Σ ∪ Γ.
(ii) That C(T(X)) contains the closure of X is left as an exercise. For the other
inclusion, take p ∈ C(T(X)), i.e.

(∗) p ∈ ⋂
γ∈T(X)

〈γ〉.

We must show that every open subset of S(Σ) containing p also contains points
from X. Since B(Σ) is a basis of the topology we may assume that our open set is
of the form 〈ϕ〉. If X ∩〈ϕ〉 were empty, then X ⊆ 〈¬ϕ〉, in other words ¬ϕ ∈ T(X).
However, by (∗), we then had p ∈ 〈¬ϕ〉, in contradiction to p ∈ 〈ϕ〉.
(iii) That both maps are well defined is left as an exercise. By (i) we have T(C(T )) =
T for every L -theory T containing Σ. By (ii) we have C(T(C)) = C for every closed
subset C of S(Σ). This shows (iii). �

Here a summary of what we have shown in this section:

3.3.7. Summary. Let Σ ⊆ Sen(L ).
(i) S(Σ) is a boolean space, i.e. S(Σ) is

(a) compact,
(b) Hausdorff and
(c) has a basis of clopen sets.

In particular S(Σ) is totally disconnected.

(ii) The Tarski-Lindenbaum algebra B(Σ) of all sets of the form 〈ϕ〉 is the set of
all clopen subsets of S(Σ).

(iii) The closed subsets of S(Σ) are in bijection with the L -theories containing Σ.
�

It should be said that every boolean space is of the form S(Σ) for some Σ and some
language L . We will not use this and omit the proof.

Warning. The notion “type” is used in various different ways (in model theory).
If you read a model theory text make sure you first check what the author(s) mean
by “type”.
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3.4. n-types of theories and structures.

We will now define three type spaces as instances of the space S(Σ) from section
3.3. Let n ∈ N.

(A) For an L -theory T , we define the space of n-types of T , denoted by Sn(T )
as the space S(T ) in the language L (c̄), where c̄ = (c1, ..., cn) is an n-tuple
of new (w.r.t. L ) constant symbols. In compact form:

Sn(T ) = SL (c̄)(T ).

(B) (this is an instance of (A)). For an L -structure M and a subset A of M we
define the space of n-types of M with parameters in A as the space of n-types
of the L (A)-theory Th(M,A). In symbols

Sn(M,A) := Sn(Th(M,A)).

(C) (this is an instance of (B)). For an L -structure M we define

Sn(M) = Sn(M,M).

Remark on the notation. In the literature the notion “type” most of the time is
used for n-types in the sense of (A), (B) or (C). Sometimes, “type” refers only to
“incomplete types” which are just a collection of formulas (in some language); so in
these texts, the elements of the various type spaces that we have defined now are
called “complete types”.

Of course we need to check that the notation in (C) is compatible with what we
have done in section 3.2. In fact it is convenient to rephrase the spaces above in
terms of formulas.

Throughout we fix n distinct variables x1, ..., xn and c1, ..., cn, new constant
symbols. We write Fml Ln for the set of all L -formulas with free variables among
{x1, ..., xn}.

First recall from 1.47 that the injection

C : Fml Ln −→ Sen L (c̄)

ϕ 7−→ ϕ(x1/c1, ..., xn/cn)

also respects logical implication.
C is ’essentially surjective’ in the sense that for every ψ ∈ Sen(L (c̄)), there is

some ϕ ∈ Fml Ln such that |= C(ϕ) ↔ ψ: Take variables y1, ..., yn not occurring
in ψ and different from x1, ..., xn and let ψ′ be the result of replacing xi by yi in
the string ψ. It is clear that |= ψ ↔ ψ′. Moreover, the L -formula ϕ obtained from
ψ′ by replacing each ci with xi now satisfies C(ϕ) = ψ′, thus |= C(ϕ)↔ ψ.

Now fix an L -theory T . It follows that for each q ∈ Sn(T ), the set C−1(q) ⊆
Fml Ln uniquely determines q, i.e.

C(C−1(q)) |= q.

Note that
C−1(q) = {ϕ(x̄) | ϕ ∈ Fml Ln and ϕ(x̄/c̄) ∈ q}

and
C(C−1(q)) = {ϕ(x̄/c̄) | ϕ ∈ Fml Ln and ϕ(x̄/c̄) ∈ q}.
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3.4.1. Proposition. A subset p of Fml Ln(M) is of the form C−1(q) for some
q ∈ Sn(T ) if and only if there is a model M of T and a so-called realization ᾱ of
p in M , i.e. ᾱ ∈Mn and p is equal to

tpM (ᾱ) := {ϕ(x̄) ∈ Fml Ln | M |= ϕ[ᾱ]},

called the type of ᾱ in M .

Proof. If q ∈ Sn(T ), then pick a model M+ of q. Let M := M � L and let
ᾱ = (cM

+

1 , ...., cM
+

n ). Then by 1.46, M+ |= q implies p = C−1(q) = tpM (ᾱ).
Conversely, if p = tpM (ᾱ), then again by 1.46, the L (c̄)-structure M+ = (M, ᾱ)

satisfies ϕ(x̄/c̄) if and only if ϕ ∈ p for every ϕ ∈ Fml Ln. But this means p =
C−1(q) where q is the L (c̄)-theory of M+. �

By 3.4.1 it is enough to talk about n-types of theories in terms of the formulas
ϕ ∈ Fml Ln that occur in these types after we have replaced the variables by
constants. In this sense we will refer to n-types as such sets of formulas.

As a matter of fact, a good way of thinking about the entire matter is to think
of Sen L (c̄) as the image of C (the other sentences all being presented up to logi-
cal equivalence), and then to use L -formulas with free variables among x1, ..., xn
interchangeably with L (c̄)-sentences.

3.4.2. Corollary. Let M be an L -structure, A ⊆ M and let n ∈ N. Let p ⊆
Fml Ln(A). The following are equivalent:
(i) p ∈ Sn(M,A) (formulated in the rigorous setup above we should say p =

C−1(q) for some q ∈ Sn(M,A), where now C is the replacement map
Fml Ln(A) −→ Fml L (A)(c̄))

(ii) There is an elementary extension N �M and a so-called realization ᾱ of p
in N , i.e. ᾱ ∈ Nn and p is equal to

tpN (ᾱ/A) := {ϕ(x̄) ∈ Fml L (A) | (N,A) |= ϕ[ᾱ]},

called the type of ᾱ over A in N .

Proof. This is 3.4.1 applied to the language L (A) and the L (A)-theory T =
Th(M,A). By 3.4.1 we know that p ∈ Sn(M,A) if and only if

(∗) p = tpP
+

(β̄) for some L (A)-structure P+ and some β̄ ∈ P+.

Hence it suffices to show that (∗) is equivalent to (ii).

(ii)⇒ (∗). If N � M and ᾱ ∈ Nn with p = tpN (ᾱ/A), then (N,A) |= Th(M,A)
and we may take P+ = (N,A) (now use 1.46 again).

(∗) ⇒(ii) By the elementary joint embedding theorem (or rather 2.8.2), there is
an elementary extension N+ � (M,A) (in the language L (A)) and an elementary
embedding f : P+ −→ N+. Since p is the type of β̄ in P+, p is also the type of
f(β̄) in N+. We take N = N � L (A) and ᾱ = f(β̄). And see that

p = tpP
+

(β̄) = tpN
+

(ᾱ) = tpN (ᾱ/A).

�

3.4.3. Corollary. The definition of Sn(M) in item (C) above is justified and the-
orem 3.2.3 is an instance of 3.3.7. �
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3.4.4. Remark. Let M ≺ N be L -structures and let A ⊆ M . It then follows
directly from the definition of Sn(M,A), that

Sn(N,A) = Sn(M,A).

Proof. Exercise �

3.4.5. Remark. Let M be an L -structure and let A ⊆ B ⊆ M . If q ∈ Sn(M,B),
then one can see directly from the definition or use the characterisation in 3.4.2
that q � A, defined as

q � A = q ∩ Fml Ln(A)

is in Sn(M,A). Moreover every realization of q is a realization of q � A.
Conversely, if we start with p ∈ Sn(M,A) it follows directly from the definition or

using the characterisation in 3.4.2 that there is some q ∈ Sn(M,B) with p = q � A.

Proof. Exercise. �
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3.5. Realizing types: Saturated structures.

3.5.1. Lemma. Every infinite L -structure M possesses an elementary extension
N such that for all n ∈ N and all A ⊆M , every p ∈ Sn(M,A) is realized in N .

Proof. By 3.4.5 it suffices to find N � M in which all types of Sn(M) for all
n are realised. For n ∈ N and p ∈ Sn(M) choose Np � M and a realization
ᾱp ∈ Nn

p of p. In particular for each p, the theory of the L (M)-structure (Np,M) is
Th(M,M). Hence all the (Np,M) are elementary equivalent and by the elementary
joint embedding theorem 2.8.1, there are an L (M)-structure N+ and elementary
embeddings fp : (Np,M) −→ N+ in the language L (M) for all p ∈ Sn(M), n ∈ N.

Using 2.8.2 we may then also assume that N+ is an elementary extension of
(M,M), in other words M ≺ N := N+ � L .

Since fp : (Np,M) −→ (N,M) is elementary in L (M), this implies fp fixes M
pointwise. Therefore, the realization ᾱp of p is mapped onto the realization fp(ᾱ)
of p in N . Hence N has the required properties. �

3.5.2. Definition. Let κ be an infinite cardinal. An infinite L -structure M is
called κ-saturated if for any A ⊆ M of cardinality strictly less than κ and every
n ∈ N, every n-type from Sn(M,A) is realized in M .

If you don’t know cardinals: we only need one instances here:
An infinite L -structure M is called ℵ0-saturated if for any finite A ⊆M and

every n ∈ N, every n-type from Sn(M,A) is realized in M .
If you know cardinals, it might be interesting to notice that a saturated structure
is defined to be an infinite structure which is saturated in its own cardinality.

3.5.3. Theorem. For every cardinal κ, every infinite L -structure M has a κ+-
saturated elementary extension of size 2κ.

Hence if you believe in the generalized continuum hypothesis, then this elementary
extension is saturated. If you don’t believe in the generalized continuum hypothesis:
the existence of saturated elementary extensions of a given structure can in general
not be shown from ZFC alone.

Proof. For us it is only important to have this theorem for κ = ℵ0 - and we do not
need a bound on the size of N .

Hence we only need the following statement:

(∗) Every L -structure M has an ℵ0-saturated elementary extension.

We simply iterate 3.5.1: By 3.5.1 there is an elementary chain (Mi | i ∈ N) starting
at M = M1 such that for each i ∈ N, every n-type over all A ⊆ Mi is realised in
Mi+1.
We take N = ⋃iMi and use the elementary chain lemma 2.5.1: If A ⊆ N is
finite, then there is some i ∈ N such that A ⊆ Mi. Take p ∈ Sn(N,A). By 3.4.4,
Sn(Mi, A) = S(N,Ai). But p is realised in Mi+1 ≺ N by some ᾱ ∈Mn

i+1. So then
p is also realized by ᾱ in N . This finishes the proof of (∗).
Remark: For those who are acquainted with cardinal arithmetic, the proof of (∗)
can be easily amended to a proof of the full statement by choosing a “longer” chain,
namely a chain of length κ+. The cardinal bound comes for free if we do careful
bookkeeping - already in 3.5.1. �
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In saturated structures we can do restricted compactness arguments. This means
the following. Let M be κ-saturated (ℵ0-saturated) and let A ⊆ M such that
card(A) < κ (A is finite). If I is an arbitrary index set and (Xi | i ∈ I) is a
collection of subsets Xi of Mn, all defined over A, then the Heine-Borel covering
property is satisfied for this collection, i.e.:

IF Mn =⋃i∈I Xi,
THEN there is a finite subset J of I with Mn =⋃j∈J Xj .

By taking complements and taking into account that a subset of Mn is definable
over A if and only if its complement in Mn is definable over A, this property s
equivalent to the following.

If I is an arbitrary index set and (Xi | i ∈ I) is a collection of subsets Xi of Mn,
all defined over A, such that (Xi | i ∈ I) has the finite intersection property
(abbreviated as FIP), then

⋂
i∈I

Xi 6= ∅.

Proof. Since each Xi is definable over A, there is a formula ϕi(x1, ..., xn) in the
language L (A) that defines Xi, i.e.

Xi = {b̄ ∈Mn | (M,A) |= ϕi[b̄]}.
Now (Xi | i ∈ I) has the FIP if and only if the set

Σ := Th(M,A) ∪ {ϕi(x̄) | i ∈ I} ⊆ Fml L (A)

is finitely satisfiable. This is the case if and only if there is a type p ∈ Sn(M,A)
containing Σ.

Now we use the assumption that M is κ-saturated and card(A) < κ (or in the
countable case, that M is ℵ0-saturated and A is finite): p is realised in Mn, i.e.
there is some b̄ ∈ Mn such that (M,A) |= ϕi[b̄] for all i ∈ I. Now this means
b̄ ∈⋂i∈I Xi as desired. �
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3.6. Existentially closed models and model-completeness.

3.6.1. Definition. Let L be a language.
(i) An existential L -formula is a formula of the form ∃ȳχ(x̄, ȳ), where χ(x̄, ȳ)

is a quantifier-free L -formula. The set of all existential L -formulas is denoted
by ∃-Fml(L ).

(ii) A universal L -formula is a formula of the form ∀ȳχ(x̄, ȳ), where χ(x̄, ȳ) is
a quantifier-free L -formula. The set of all universal L -formulas is denoted
by ∀-Fml(L ).

(iii) If A is an L -structure, n ∈ N0 and ā ∈ |A |n then we define the ∃-type of ā
in A as

tp∃(A , ā) = {δ(v1, . . . , vn) | δ ∈ ∃-Fml(L ), A |= δ(ā)}.
(iv) An L -structure A is said to be existentially closed in an L -structure B

if it is a substructure of B and if for every quantifier-free L -formula χ(x̄, ȳ)
and every ā ∈ |A |x̄ we have

B |= ∃x̄χ(x̄, ā) =⇒ A |= ∃x̄χ(x̄, ā).

(v) If C is a class of L -structures, then a structure A is called existentially
closed in C if A ∈ C and A is existentially closed in B for all B ∈ C with
A ⊆ B.

(vi) If T is an L -theory, then an existentially closed model of T is an exis-
tentially closed structure in the class of all models of T .

We abbreviate the expression existentially closed by e.c.

3.6.2. Observation. Let A ⊆ B be an extension of L -structures. The following
are equivalent.
(i) A is existentially closed in B
(ii) The inclusion map A ↪→ B preserves all universal formulas in the sense of

2.1.1.
(iii) For all n ∈ N and all ā ∈ A n we have tp∃(A , ā) = tp∃(B, ā)[2]

Proof. (i) is equivalent to (ii) by taking contrapositives and negation. (iii) is just a
reformulation of (i). �

3.6.3. Proposition. Let A ⊆ B be an extension of L -structures. The following
are equivalent.
(i) A is existentially closed in B.
(ii) B is a substructure of an elementary extension of A .
Further characterizations are given in 3.6.8 and in 3.6.17.

Proof. The implication (ii)⇒(i) is clear. For the converse we proceed very similar
to the proof of 2.3.4.

Claim. Σ := diag∞(A ) ∪ diag(B) in the language L (B) (which has a new
constant symbol cb for every b ∈ |B|) is consistent.
Proof. Otherwise Σ∗ is inconsistent and therefore there are L -formulas χ(x̄, ȳ),
ϕ(x̄), where x̄, ȳ are disjoint tuples of variables such that χ is quantifier free and

[2]Notice that tp∃(A , ā) ⊆ tp∃(B, ā) is true for any extension B of A .
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ā ∈ |A |x̄, b̄ ∈ |B|ȳ such that B |= χ(ā, b̄), A |= ϕ(ā) and {χ(ā, b̄), ϕ(ā)} is
inconsistent, when considered as sentences in the language L (B), in other words
|= ϕ(ā)→ ¬χ(ā, b̄) (in L (B)). By 1.47 this implies |= ϕ(x̄)→ ¬χ(x̄, ȳ) (in L ).

We thus obtain |= ∀x̄, ȳ(ϕ(x̄)→ ¬χ(x̄, ȳ)). Since x̄, ȳ are disjoint tuples of variables
this says |= ∀x̄(ϕ(x̄) → ∀ȳ¬χ(x̄, ȳ)). In particular A |= ∀x̄(ϕ(x̄) → ∀ȳ¬χ(x̄, ȳ)).
Since A |= ϕ(ā) we get A |= ∀ȳ¬χ(ā, ȳ)).

Since A is e.c. closed in B we get B |= ∀ȳ¬χ(ā, ȳ)), in contradiction to B |=
χ(ā, b̄). �

Now take a model M ∗ of Σ and let M be its reduct to L . Then the map
f : A −→ M , f(a) = cM

∗

a is an elementary embedding, witnessed by M ∗ |=
diag∞(A ), and the map g : B −→ M , g(b) = cM

∗

b is an embedding, witnessed
by M ∗ |= diag(B) (also see 2.2.3). Hence g extends f and after appropriate
identifications we see that B is a substructure of the elementary extension M of
A . �

3.6.4. Definition. An L -formula is called an ∀∃-formula if it is logically equiv-
alent to a formula of the from ∀x̄∃ȳχ for some quantifier-free L -formula χ. If T is
an L -theory, then T∀∃ denotes the set of all ∀∃-sentences ϕ with T |= ϕ.

Similar to 2.3.5 we have

3.6.5. Proposition. Let T be an L -theory. If M is an L -structure, then M |=
T∀∃ if and only if M is e.c. in a model of T .

Proof. Since truth of ∀∃- sentences in any structure M is inherited by all of its
substructures that are e.c. in M , we know that every substructure of a model M
of T that is e.c. in M is a model of T∀∃. Conversely suppose M |= T∀∃.

Claim. T ∪ diag∀(M ) is consistent in the language L (M ), where diag∀(M ) =
{σ(ā) | σ(x̄) ∈ ∀-Fml(L ), ā ∈ |M |x̄, M |= σ(ā)}.
Proof. Otherwise there are σ(x̄) ∈ ∀-Fml(L ) and ā ∈ |M |x̄ with M |= σ(ā) such
that T |= ¬σ(ā) (in L (M )). This implies T |= ∀x̄¬σ(x̄) and so ∀x̄¬σ(x̄) ∈ T∀∃.
But then M |= ∀x̄¬σ(x̄) in contradiction to M |= σ(ā). �

The claim implies that the reduct N to L of a model N ∗ of T ∪ diag∀(M ) is
a model of T such that the map M −→ N , a 7→ cN

∗

a is an isomorphism onto a
substructure of N that is e.c. in N , as required. �

3.6.6. Corollary. An L -theory T is inductive, i.e. it is axiomatized by ∀∃-
sentences if and only if for every chain (Mi | i ∈ I) of models of T , the union
⋃i∈I Mi is again a model of T .

Proof. The easier implication here has already been shown in question 10. For the
converse we need to show that T is inductive provided that the union of every chain
of models of T is again a model of T . It suffices to show that every model M of
T∀∃ is a model of T .

By 3.6.5, M is e.c. in a model N0 of T . By 3.6.3, N0 is a substructure of an
elementary extension M1 of M . Then M1 |= T∀∃ again and we can repeat the two
constructions. We get a chain of L -structures

M = M0 ⊆ N0 ⊆M1 ⊆ N1 ⊆M2 ⊆ N2 ⊆ . . .

such that Mi ≺Mi+1 and Ni |= T . Let N be the union of this chain. By assump-
tion applied to the chain (Ni)i∈N0

we know that N |= T and by the elementary
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chain lemma 2.5.1 applied to the chain (Mi)i∈N0
we know M ≺ N , which implies

that M ≡ N . Hence M |= T as required. �

We need the following application of 2.3.4.

3.6.7. Proposition. Let M ,N be L -structures and let ā ∈ |M |n, b̄ ∈ |N |n. The
following are equivalent.
(i) tp∃(M , ā) ⊆ tp∃(N , b̄).
(ii) There is an elementary extension N ′ of N and an embedding f : M −→ N ′

with f(ā) = b̄.
(iii) There is an extension N ′ of M and an elementary embedding g : N −→ N ′

with g(b̄) = ā.

Proof. The equivalence of (ii) and (iii) follows easily from appropriate identifica-
tions. The implication (ii)⇒(i) is clear. We show (i)⇒(ii).

We work in the language L ∗ = L (c1, . . . , cn) with new constant symbols
c1, . . . , cn and consider (M , ā), (N , b̄) as structures in this language. Then (i)
says that condition (ii) of 2.3.4 is satisfied for (M , ā), (N , b̄). Hence by 2.3.4(i)
there is an elementary extension N ∗ of (N , b̄) together with an L ∗-embedding
f : (M , ā) −→ N ∗. Now N ∗ = (N ′, b̄), where N ′ is the reduct of N ∗ to L .
Then N ′ is an elementary extension of N and f is an embedding M −→ N ′ with
f(ā) = b̄. �

3.6.8. Theorem. Let T be any L -theory. The following are equivalent for every
model M of T .
(i) M is an e.c. model of T .
(ii) For every n ∈ N and all ā ∈ |M |n, the ∃-type tp∃(M , ā) is maximal for

inclusion among all ∃-types of the form tp∃(N , b̄), N |= T and b̄ ∈ |N |n.

Proof. (ii)⇒(i): Take N |= T with M ⊆ N and some ā ∈ |M |n. Then
tp∃(M , ā) ⊆ tp∃(N , ā). By (ii) we have tp∃(M , ā) = tp∃(N , ā), as required
(see 3.6.2(iii))
(i)⇒(ii). By 3.6.7, there is an elementary extension N ′ of N and an embedding
f : M −→ N ′ with f(ā) = b̄. Hence N ′ |= T and (upon identifying M with the
image of M ) the assumption in (i) implies that tp∃(M , ā) = tp∃(N

′, b̄). As N ≺
N ′ we get tp∃(N

′, b̄) = tp∃(N , b̄). Altogether we obtain tp∃(M , ā) = tp∃(N , b̄),
as required. �

3.6.9. Robinson Test for Model-Completeness The following are equivalent
for every L -theory T .
(i) T is model-complete, i.e. for every L formulas ϕ(x̄) there is an existential

L -formula δ(x̄) such that T |= ∀x̄(ϕ↔ δ).
(ii) For every existential L formulas δ(x̄) there is a universal L -formula σ(x̄)

such that T |= ∀x̄(δ ↔ σ).
(iii) Every extension A ⊆ B of models of T is elementary.
(iv) Every model of T is an e.c. model of T .

Proof. (i)⇒(iii) By (i), every formula is equivalent to an existential L -formula mod-
ulo T . Since every embedding preserves every existential formula, every embedding
between models of T preserves all formulas. This is what (iii) says.
(iii)⇒(iv) is a weakening.
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(iv)⇒(ii). There are proofs using diagrams for example see [Hodges1993, Theorem
8.3.1]; we use 3.6.8 for a topological argument in the setup of [DiScTr2019, chapter
14]. By 3.6.8, every ∃-type of T in n variables is maximal. Hence every point of the
spectral space of all ∃-types of T in n variables[3] is closed. By [DiScTr2019, Propo-
sition 1.3.20] these spaces are then Boolean. This assertion is equivalent to (ii).
(ii)⇒(i) is straightforward from the prenex normal form theorem 1.37. �

3.6.10. Corollary. Every model-complete theory T is inductive, hence is axioma-
tised by ∀∃-sentences.

Proof. By 3.6.9, every chain of models of T is an elementary chain. By the ele-
mentary chain lemma 2.5.1, for every chain (Mi | i ∈ I) of models of T , the union
⋃i∈I Mi is again a model of T . By 3.6.6 we see that T is inductive. �

3.6.11. Proposition. Suppose T is an inductive L -theory. Then every
model M of T is a substructure of an e.c. model N of T of cardinality
≤ max{card(L ), card(M )}.

Proof. Take a model M of T and enumerate the pairs (δi(x̄), āi)i<λ where δi(x̄) ∈
∃-Fml(L ) and āi ∈ |M |x̄, as follows: Take M0 = M and at limit ordinals take
unions (by 3.6.6, using that T is inductive, these unions will again be models of T ).
For the induction step: If there is a model N of T such that N |= δi(āi), then
take M ⊆ Mi+1 ≺ N with card(Mi + 1) ≤ max{card(L ), card(M ); otherwise
take Mi+1 = Mi. The union of the chain is denoted by M ∗ and is still a model of
T (by 3.6.6 again).

M ∗ then has the following property by construction: If N |= T is an extension
of M ∗, and δi(x̄) ∈ ∃-Fml(L ) and āi ∈ |M |x̄ such that N |= δi(āi), then also
M ∗ |= δi(āi). Thus if we iterate this construction we get a chain M ⊆ M ∗ ⊆
M ∗∗ ⊆M ∗∗∗ . . . and its union N is an e.c. model of T . The cardinality estimate
is left as an exercise. �

3.6.12. Remark. Without the assumption that T is inductive, the conclusion of
3.6.11 fails badly, see 3.6.14.

We obtain first examples of model-complete theories:

3.6.13. Lindström’s test If T is an inductive L -theory without finite models
and T is λ-categorical for some λ ≥ card(L ), then T is model-complete.

Proof. Otherwise, by 3.6.9 there is an extension M ⊆ N of models of T such that
M is not e.c. in N . Using that M is infinite and λ ≥ card(L ), an application
of the compactness theorem to the theory of the pair (N ,M ) shows that we may
assume that card(M ) = card(N ) = λ (we only need that card(M ) = λ). Since
M is not e.c. in N , the T -model M is not an e.c. model of T . However, since T
is inductive, 3.6.11 says that there is an e.c. model N ′ of T of cardinality λ. By
assumption N ′ ∼= M , showing that M is an e.c. model of T , a contradiction. �

3.6.14. Remark. The assumption that T is inductive in 3.6.13 is necessary. There
is an ℵ1-categorical theory T in a countable language that is not model-complete:
See [Hodges1993, exercise 10 for section 8.3, p. 381].

[3]This space consist of the ∃-types tp∃(M , ā), where M |= T and ā ∈ |M |n and a basis is
given by all the sets {p | p 6∈ δ} with δ(x1, . . . , xn) ∈ ∃-Fml(L ).
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This also shows that T does not have any uncountable e.c. models: Suppose
N ′ would be such a model and let λ be its cardinality. By Morley’s theorem, T is
also λ-categorical. Take M ,N |= T such that M ⊆ N but M is not e.c. in N .
As in the proof of 3.6.13 we may then produce such a situation where in addition
card(M ) = card(N ′). Since T is λ-categorical we get M ∼= N ′, a contradiction.

Resultants

3.6.15. Definition. Let T be an L -theory and let δ(x̄) ∈ ∃-Fml(L ). The re-
sultant of δ (for T ) is the set ResTδ of all σ(x̄) ∈ ∀-Fml(L ) with the property
T |= ∀x̄(δ → σ). [Notice that the sentence ∀x̄(δ → σ) is universal and thus T |=
∀x̄(δ → σ) is the same as ∀x̄(δ → σ) ∈ T∀. In other words ResTδ only depends on T∀]

The crucial importance of the resultant of δ(x̄) ∈ ∃-Fml(L ) is the following:

3.6.16. Theorem. [Hodges1985, Theorem 3.1.1], [Hodges1993, Theorem 8.2.4.]
If A is an L -structure (not necessarily a model of T ) and ā ∈ A x̄, then the
following are equivalent:
(i) There is some N |= T with A ⊆ N such that N |= δ(ā).
(ii) A |= σ(ā) for all σ from the resultant of δ for T .

Proof. We show the contrapositive, i.e. we show the equivalence of the following
conditions.
(a) For all N |= T with A ⊆ N we have N |= ¬δ(ā).

In other words: T ∪ diag(A ) ` ¬δ(ā).
(b) A |= ¬σ(ā) for some σ from the resultant of δ for T . In other words: There

is some σ(x̄) ∈ ∀-Fml(L ) with T ` δ → σ such that A |= ¬σ(ā)

Proof of (b)⇒(a): If A |= ¬σ(ā) for some σ ∈ ResTδ and N |= T with A ⊆ N ,
then N |= ¬δ(ā), otherwise N |= δ(ā) and as T ` δ → σ we have N |= σ(ā). But
σ is universal and so A |= σ(ā), a contradiction.

Proof of (a)⇒(b): Condition (a) says that for some quantifier-free L -formula
χ(x̄, ȳ) and some b̄ ∈ A disjoint from ā with A |= χ(ā, b̄) we have T ` χ(ā, b̄) →
¬δ(ā), i.e. T ` δ(ā) → ¬χ(ā, b̄). Since ā and b̄ are disjoint, this is equivalent – by
standard diagram arguments – to T ` δ(ā) → ∀ȳ¬χ(ā, ȳ) and so σ(x̄) defined as
∀ȳ¬χ(x̄, ȳ) is in the resultant of δ.

But now A |= ¬σ(ā). Otherwise A |= σ(ā), in particular A |= ¬χ(ā, b̄), in
contradiction to the choice of χ(ā, b̄). �

3.6.17. Corollary. If follows that a model M of T is e.c. if and only if for every
δ(x̄) ∈ ∃-Fml(L ) and each ā ∈M x̄, if M realizes ResTδ at ā, then M |= δ(ā). �

3.6.18. Corollary. If T is inductive, then an L -structure A is an e.c. model of
T if and only if A is e.c. in an e.c. model of T .

Proof. This is clear in one direction. So assume that A is e.c. in M and M is an
e.c. model of T . Since T is inductive we know A |= T and we use 3.6.17 to verify
that A is e.c. Take δ(x̄) ∈ ∃-Fml(L ) and ā ∈ A x̄, such that A realizes ResTδ at
ā. We need to show that A |= δ(ā).

Since ResTδ ⊆ ∀-Fml(L ) and A is e.c. in M we also know that M realizes ResTδ
at ā. As M is an e.c. model of T we get M |= δ(ā) from 3.6.17. As A is e.c. in
M we get A |= δ(ā) as required. �
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3.7. Omitting types.
The omitting types theorem can be seen as a feature of the term model of a con-
sistent theory as constructed in the Henkin proof of the completeness theorem. We
emphasize this point here and give a detailed account to this point of view. Many
proofs in the literature go down the same route, but in a more compressed form.
There are other proofs, references are given in 3.7.9.

3.7.1. Definition. Given a language L we define Fml(L )(1) as the set of all
L -formulas with at most one free variable.

A system of witnesses for L is just a map

ζ : Fml(L )(1) −→ C ,

where C is the set of constant symbols of L . For such a map we define

H(ζ) := { (∃xϕ) → ϕ(x/ζ(ϕ)) | ϕ(x) ∈ Fml(L )(1) }
3.7.2. Lemma. If M |= H(ζ), then the set A := {cM | c ∈ C } is (the universe
of) an elementary substructure of M .

If N is another model of H(ζ) with prime substructure B (i.e., B is the smallest
substructure of N ), then

A ∼= B ⇐⇒ A and B satisfy the same atomic sentences.

It follows that the isomorphism classes of prime substructures of models of H(ζ) is
in bijection with the complete L -theories containing H(ζ).

Proof. This is a direct consequence of the Tarski-Vaught test: Let ϕ(x̄, y) be an
L -formula and let ā ∈ Ax̄, say a1 = cM1 , ..., an = cMn , with M |= ∃yϕ[ā]. By
the Tarski-Vaught test we only need to find some b ∈ A with M |= ∃yϕ[ā, b].
Let ψ := ϕ(x1/c1, ..., xn/cn). Then ψ(y) ∈ Fml(L )(1) and M |= ∃yϕ[ā] reads as
M |= ∃yψ. As M |= H(ζ) we get M |= ψ(ζ(ψ)), so we may take b := ζ(ψ)M .

The equivalence is clear �

It is of course not true that H(ζ) is consistent in general.

3.7.3. Definition. Let L be any language, let T ⊆ Sen(L ) and let Σ ⊆ Fml(L ).
We say that Σ is supported by T if there is a formula ϕ such that T ∪ {ϕ} is
consistent and

T |= ϕ→ σ for all σ ∈ Σ.

Otherwise for every formula ϕ such that T ∪ {ϕ} is consistent there is some σ ∈ Σ
such that T ∪ {ϕ,¬σ} is consistent, and we say that Σ is unsupported by T .

3.7.4. Remarks. Let T ⊆ Sen(L ), Σ ⊆ Fml(L ).
(i) Notice that T is consistent if it supports some Σ, i.e. if T is inconsistent, then

every Σ is unsupported by T .
(ii) If T is consistent and does not support Σ, then Σ 6= ∅.
(iii) If X is a set of variables and the free variables of any σ ∈ Σ are in X, then

Σ is already unsupported by T if for every formula ϕ with free variables in X
such that T ∪ {ϕ} is consistent there is some σ ∈ Σ such that T ∪ {ϕ,¬σ} is
consistent.

The reason is that for a formula ϕ(x̄, ȳ) with x̄ ⊆ X and ȳ disjoint from
X, such that T ∪ {ϕ} is consistent, also T ∪ {∃ȳϕ} is consistent, hence there
is some σ ∈ Σ such that T ∪ {∃ȳϕ,¬σ} is consistent and because ȳ does not
occur freely in σ we get that T ∪ {ϕ,¬σ} is consistent.
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3.7.5. Proposition. Let L be any language and let ζ : Fml(L )(1) −→ D be a
bijection onto a set D which is disjoint from the alphabet of L . Let L ′ be the
language L (D) and let

H(ζ) := { (∃xϕ) → ϕ(x/ζ(ϕ)) | ϕ(x) ∈ Fml(L )(1) }

Let T ⊆ Sen(L ) be consistent. Then
(i) Every model of T can be expanded to a model of T ∪ H(ζ), in particular

T ∪H(ζ) is consistent.
(ii) If Σ ⊆ Fml(L ) is unsupported by T , then Σ is also unsupported by T ∪H(ζ)

(in the language L ′).

Remark: Item (i) here is straightforward as one can see from its proof below. The
crucial statement is (ii), which is the core technical argument of the omitting types
theorem 3.7.9.

Proof. (i) Let M |= T and expand M to an L ′ structure M ′ by

ζ(ϕ)M ′
=

{
a for some a ∈ |M | with M |= ϕ(a) if M |= ∃xϕ,
arbitrarily if M |= ¬∃xϕ.

for every ϕ(x) ∈ Fml(L )(1). Obviously M ′ |= T ∪H(ζ).
(ii) Let ρ be an L ′-formula and assume T ∪ H(ζ) ∪ {ρ} is consistent. Then ρ is
of the form ϕ(x̄, ζ(ϕ1), . . . , ζ(ϕk)) for some L -formula ϕ(x̄, ȳ), ȳ = y1, . . . , yk and
some ϕ1, . . . , ϕk ∈ Fml(L )(1) with ϕi 6= ϕj for i 6= j. By assumption there is an
L -structure M and some A ⊆ |M | with (M , A) |= T ∪H(ζ) together with some
b̄ ∈ |M |x̄ such that (M , A) |= ϕ(b̄, ζ(ϕ1), . . . , ζ(ϕk)). Let v1, . . . , vk be distinct
variables not occurring in ϕ and not occurring in any ϕi and let I ⊆ {1, . . . , k} be
the set of all indices with M |= ∃viϕi(vi). Then M |= ∃x̄ϕ̂(x̄), where

ϕ̂(x̄) is ∀w
∧∧

j∈{1,...,k}\I

¬ϕj(w) ∧ ∃v1, . . . , vk
∧∧
i∈I

ϕi(vi) ∧ ϕ(x̄, v1, . . . , vk).

Since ϕ̂(x̄) is an L -formula, the assumption in (ii) says that there is some σ(x̄, z̄) ∈
Σ such that T ∪ {ϕ̂(x̄) ∧ ¬σ(x̄, z̄)} is consistent. Take a model N of T and some
(β̄, γ̄) ∈ |N |x̄×|N |z̄ with N |= ϕ̂(β̄)∧¬σ(β̄, γ̄). In particular there are ε1, . . . , εk ∈
|N | with

N |=
∧∧
i∈I

ϕi(εi) ∧ ϕ(β̄, ε1, . . . , εk).

We expand N to an L ′-structure N ′ as follows. If ψ ∈ Fml(L )(1), then define

ζ(ψ)N ′
=


εi if ψ = ϕi for some i ∈ {1, . . . , k},
τ if ψ 6= ϕi for all i ∈ {1, . . . , k}, N |= ∃wψ(w) and

τ ∈ |N | is some realization of ψ,
arbitrarily otherwise.

As N |= ϕ̂(β̄) it follows that N ′ |= T ∪ H(ζ) and from ζ(ψ)N ′
= εi for i ∈

{1, . . . , k} we see that N ′ |= ϕ(β̄, ζ(ϕ1), . . . , ζ(ϕk))∧¬σ(β̄, γ̄). Hence N ′ witnesses
the consistency of T∪H(ζ)∪{ϕ(x̄, ζ(ϕ1), . . . , ζ(ϕk))∧¬σ(x̄, z̄)} = T∪H(ζ)∪{ρ,¬σ},
as required. �
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3.7.6. Theorem. Let L = (λ : R −→ N, µ : F −→ N,C ) be a language. Then
there is an extension by constants L ∗ of L by card(Fml(L )) many constants and
a subset H∗ of L ∗-sentences such that
(i) H∗ possess a system of witnesses (in L ∗).
(ii) For every consistent T ⊆ Sen(L ) the set T ∪H∗ is consistent (note that any

system of witnesses for H∗ is also a system of witnesses for T ∪H∗).
(iii) If Σ ⊆ Fml(L ) is unsupported by T , then Σ is also unsupported by T ∪ H∗

(in the language L ∗).

Proof. We iterate 3.7.5 on the syntactic side only and get L and H∗ as the union
of L ,L ′,L ′′, . . . and H(ζ) ∪H(ζ)(ζ) ∪ . . . respectively. In the first step we know
that T ∪H(ζ) is consistent and for all ψ ∈ Fml(L ′) with T ∪H(ζ)∪{ψ} consistent,
there is some σ ∈ Σ such that T ∪ H(ζ) ∪ {ψ,¬σ} is consistent. Now replace L
by L ′ and T by T ∪H(ζ) and apply 3.7.5 again to the new data. Continue in this
way to obtain L ∗ and H∗ with the required properties. �

3.7.7. Corollary. Let L be a language. Then for each infinite cardinal κ ≥
card(L ) there is an extension by constants L ∗ of L and an L ∗-theory H∗ that
has the following properties (where we write C for the set of constants of L ∗).
(i) For every consistent set T of L -sentences, the set T ∪ H∗ is consistent in

L ∗.
(ii) Every model M ∗ of H∗ induces an L ∗-elementary substructure on CM∗

(the
set of interpretations in M ∗ of the constants from C) of size κ.

(iii) If Σ ⊆ Fml(L ) is unsupported by T , then Σ is also unsupported by T ∪ H∗
(in the language L ∗).

Proof. Let D be a set of new constants for L of size κ and let L ∗, H∗ be the
language and theory assigned to L (D) by 3.7.6. We then know that H∗ has a
system of witnesses and that (i) holds.
(ii) holds by 3.7.2.
(iii) holds by 3.7.6. �

3.7.8. Lemma. Let T ⊆ Sen(L ), Σ ⊆ Fml(L ). If Σ is unsupported by T and
ρ ∈ Sen(L ), then Σ is unsupported by T ∪ {ρ}.

Proof. Suppose Σ is supported by T ∪ {ρ}, i.e. there is a formula ϕ such that
T ∪ {ρ} ∪ {ϕ} is consistent and

T ∪ {ρ} |= ϕ→ σ for all σ ∈ Σ.

But then T ∪ {ρ ∧ ϕ} is consistent and
T |= (ρ ∧ ϕ)→ σ for all σ ∈ Σ,

proving that Σ is supported by T . �
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3.7.9. Omitting Types Theorem [Hodges1993, Theorem 7.2.1],[TenZie2012,
Theorem 4.1.2]. There is also a proof using model theoretic forcing in [Hodges1985,
section 5.1]. A generalization may be found in [Marker2016, Theorem 4.2.1]. A
variant for ∀-types may be found in [Hodges1993, Theorem 8.2.6].

Let L be a countable language, let T be a consistent L -theory and for each
n ∈ N let Σn(v1, . . . , vn) be a set of L -formulas in at most n free variables. Suppose
every Σn is unsupported by T , i.e. for each n ∈ N and every L -formula ϕ that is
consistent with T there is some σ ∈ Σn such that T ∪ {ϕ,¬σ} is consistent. Then
there is a model M of T that omits all Σn, i.e., for every n ∈ N, the set Σ is not
realized in M .

Proof. Using 3.7.7 we can assume that we work with a theory T in a countable
language L that has a system of witnesses.

Let (c̄i)i<ω be an enumeration all of tuples of arbitrary but finite length of
constant symbols of L . We write |c̄i| for the length of the tuple c̄i.

By induction on i we define formulas σi ∈ Σ|c̄i| such that Ti := T ∪{¬σj(c̄j) | j <
i} is consistent and does not support any Σn:

We take T0 = T , which is consistent and does not support any Σn by assumption.
For the induction step assume Ti has already been defined, Ti is consistent and
does not support any Σn. Let k = |c̄i|. Then Ti ∪ {v̄ = c̄i} is consistent, where
v̄ = (v1, . . . , vk). As Ti does not support Σk there is some σi ∈ Σk such that
Ti ∪ {v̄ = c̄i,¬σi} is consistent. But this means Ti+1 = Ti ∪ {¬σi(c̄i)} is consistent
and by 3.7.8, each Σn is again unsupported by Ti+1.

This finishes the definition of the σi. Now we see that the set ⋃i<ω Ti = T ∪
{¬σj(c̄j) | j < ω} is consistent and thus has a model M . As T has a system of
witnesses we know from 3.7.2 that we may choose M such that all of its elements
are interpretations of constant symbols of L . We show that this model omits every
Σn: Take n ∈ N and let ā ∈ |M |n. Then ā is the interpretation of some n-tuple c̄i
of constants. By construction σi ∈ Σn and M |= ¬σi(c̄i). Hence M omits Σn. �

3.7.10. Warning. The sets Σn in the omitting types theorem 3.7.9 are all countable,
because a countable language has only countably many formulas. One might wonder
whether every consistent theory T in an arbitrary language L that does not support
a given countable set Σ(v) in a single variable, has a model that omits Σ. However
this is not the case.

A prominent application of the Omitting Types Theorem is the following.

3.7.11. Ryll-Nardzewski Theorem A theory T without finite models in a count-
able language is ℵ0-categorical if and only if T is complete and Sn(T ) is finite for
all n ∈ N.

Proof. First suppose T is ℵ0-categorical. The Skolem-Löwenheim downwards theo-
rem then implies that T is complete. In order to show that Sn(T ) is finite it suffices
to show that each p ∈ Sn(T ) is isolated (because Sn(T ) is compact). Suppose p
is not isolated. This is equivalent to saying that p is unsupported by T . By the
Omitting Types Theorem, using crucially that the language is countable, there is a
model M of T omitting p. By Skolem-Löwenheim downwards we may then assume
that M is countable. On the other hand, p is realized in some model N of T and
by Skolem-Löwenheim downwards again we may also assume that N is countable.
However T is ℵ0-categorical, hence M ∼= N , a contradiction.
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Conversely suppose T is complete and Sn(T ) is finite for all n ∈ N. Then for
every finite subset A = {a1, . . . , an} of a model M of T one verifies that S1(M , A)
is finite by mapping S1(M , A) injectively into Sn+1(T ), where p = tpM (β/A) is
mapped to tpM (β, a1, . . . , an). Since S1(M , A) is finite and a Hausdorff space, we
may use 3.3.7 to obtain

(†) for each p ∈ S1(M , A) there is some ϕ ∈ p such that 〈ϕ〉 = {p}.
Now take countable models M and N of T . Consider the set of bijective maps
p : {a1, . . . , an} −→ {b1, . . . , bn}, p(ai) = bi, where n ∈ N0, ai ∈ |M | and bi ∈ |N |
such that tpM (a1, . . . , an) = tpN (b1, . . . , bn). Using (†) one then checks that these
maps form a back and forth system between M and N . Note that the empty map
occurs here since T is a complete theory.

Since M and N are countable we may then use this back and forth system to
construct an isomorphism M −→ N just in the same way we did in 2.4.3. �
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4. Quantifier elimination

4.0.1. Definition. An L -theory T is said to have quantifier elimination (QE
for short) if for each L -formula ϕ there is a quantifier-free L -formula χ such that

T |= ϕ↔ χ

If we find a theory with quantifier elimination in a “natural” language, then we
know a lot about the models of T and can extract a lot of information on T . Care
has to be taken when applying this philosophy, because one can artificially introduce
symbols in a language so that the given theory has quantifier elimination. So it is
immanently important to specify the language when talking about this concept.

In order to demonstrate the strength of this notion for analysability of structures
and theories let us prove the following

4.0.2. Proposition. If T has quantifier elimination, then every embedding between
L -structures is an elementary embedding.

Proof. Exercise. �

It must be mentioned that the criterion in 4.0.2 is necessary, but not sufficient
for quantifier elimination. For example the theory of the real field in the language
L = {+,−, ·, 0, 1} of rings also has the property that all embedding between L -
structures is an elementary embedding. But this theory does not have quantifier
elimination in this language. We will see both statements later on. The property
of an L -theory T discussed here is called model-completeness, cf. 3.6.9 and plays
a central role in model theory. Also this will come up later.

In the next section we will introduce the main model theoretic techniques to test
quantifier elimination. However, in some cases, the quantifiers have actually been
removed by “hand”. After that we shall demonstrate the usefulness of these tests.
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4.1. The main tests for quantifier elimination.

The first test is of theoretical interest. It will be used to prove the applicable test
4.1.2.

4.1.1. Proposition. Let T be an L -theory. The following are equivalent.
(i) T has quantifier elimination.
(ii) IfM0 is a finitely generated substructure of a model of T , then T∪diag(M0) ax-

iomatises a complete L (M0)-theory (i.e. the deductive closure of T∪diag(M0)
in Sen L (M0) is complete).

(iii) If M0 is a substructure of a model of T , then T ∪ diag(M0) axiomatises a
complete L (M0)-theory.

Proof. (i)⇒(iii). We show that all models of T∪diag(M0) are elementary equivalent
to (M,M0). Let N+ be an L (M0)-structure and a model of T ∪ diag(M0). By
2.2.3, N+ is of the form (N, f) for some L -structure N and some map M0 −→ N .
As (N, f) |= diag(M0), f is indeed an embedding of M0 onto a substructure of N .
By replacing the image of f in N by M0 and modifying N accordingly, we may
therefore also assume that M0 is a substructure of N and so N+ = (N,M0).

Thus we have two L -structuresM and N which are models of T and which have
a common substructure M0:

M N

M0

aa ==

We need to show that (M,M0) ≡ (N,M0). Take a sentence ϕ in the language
L (M0). We must show (M,M0) |= ϕ ⇐⇒ (N,M0) |= ϕ. Recall that ϕ is of the
form ψ(x1/a1, ..., xn/an) (not showing the underlines) for some L -formula ψ and
some a1, ..., an ∈ M0, n ∈ N0. Without loss of generality we may assume that the
free variable x1 actually occurs in ψ (otherwise replace ψ by ψ ∧ x1

.
= x1).

By assumption, T has quantifier elimination. Hence there is a quantifier-free
L -formula χ(x̄) such that T |= ψ ↔ χ. Now

(M,M0) |= ϕ
by 1.47⇐⇒ M |= ψ[ā]

as M |=T⇐⇒ M |= χ[ā]

as M0 is a substructure of M and χ is quantifier-free⇐⇒ M0 |= χ[ā]

as M0 is a substructure of N and χ is quantifier-free⇐⇒ N |= χ[ā]

as N |=T⇐⇒ N |= ψ[ā]
by 1.47⇐⇒ (N,M0) |= ϕ,

as required
(iii)⇒(ii) is a weakening.
(ii)⇒(i). This is the crucial statement of the proposition.
Let ϕ(x̄) be an L -formula, where x̄ = (x1, . . . , xn). We may assume that at least
one free variable occurs in ϕ, otherwise we replace ϕ by ϕ ∧ x .

= x. Hence n ≥ 1.
We need to find a quantifier-free L -formula χ(x̄) with T |= ϕ ↔ χ. We follow
a commonly used strategy here: We place ourselves into the context of the type
space Sn(T ) and rephrase the problem there: We are given the clopen subset 〈ϕ〉
of Sn(T ) and we are looking for a quantifier-free formula χ ∈ Fml Ln which defines
the same set, i.e. 〈ϕ〉 = 〈χ〉. Suppose we can show the following
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Claim. For each p ∈ Sn(T ) there is some quantifier-free formula χp ∈ Fml Ln with
the property

(∗) p ∈ 〈χp〉 ⊆ 〈ϕ〉.
Then we get χ as follows: By (∗) we have

〈ϕ〉 = ⋃
p∈〈ϕ〉

〈χp〉.

Since 〈ϕ〉 is compact and all 〈χp〉 are open, there are p1, ..., pk ∈ 〈ϕ〉 with
〈ϕ〉 = 〈χp1〉 ∪ ... ∪ 〈χpk〉.

Now 〈χp1〉 ∪ ... ∪ 〈χpk〉 = 〈χp1 ∨ ... ∨ χpk〉 and we can choose χ = χp1 ∨ ... ∨ χpk .
Hence we only need to show the claim and this is where the assumption (ii) is used:
Pick p ∈ 〈ϕ〉 and take a realization ā ∈Mn of p in some model M of T . Let M0 be
the substructure generated by a1, ..., an in M0. Then M0 is finitely generated and
by assumption T ∪diag(M0) axiomatises a complete L (M0)-theory. SinceM0 is an
L -substructure of M , the L (M0)-structure (M,M0) is a model of T ∪ diag(M0).
Therefore

(†) T ∪ diag(M0) |= Th(M,M0).

Since p ∈ 〈ϕ〉 and p = tpM (ā) we have ϕ(ā) ∈ Th(M,M0) (note that ϕ(ā) is an
L (M0)-sentence). Hence from (†) (and the compactness theorem) we obtain a
finite subset Γ of diag(M0) with T ∪ Γ |= ϕ(ā).

We now have to make Γ explicit. By definition, each γ ∈ Γ is of the form
ψ(y1/b1, ..., yl/bl) (we drop the underlining of the bi) for some quantifier-free L -
formula ψ(y1, ..., yl) and some b1, ..., bl ∈ M0 with M0 |= ψ[b̄]. By replacing the
variables in these ψ’s and re-ordering all the bi we may therefore assume that Γ is
of the form

{ψ1(y1/b1, ..., yl/bl), ..., ψm(y1/b1, ..., yl/bl)}.
But then we may actually replace Γ by ψ(y1/b1, ..., yl/bl), where ψ = ψ1 ∧ ... ∧ ψm
and M0 |= ψ[b̄]. We simplify the situation further by looking at the bi ∈ M0. By
definition, M0 is the L -substructure of M generated by a1, ..., an. From 2.6.3 we
then know that each bj (1 ≤ j ≤ l) is of the form

bj = tj(ā)

for some L -term tj(x̄). Now we define χp as

χp(x̄) = ψ(t1(x̄), ..., tl(x̄)).

Then M0 |= ψ[b̄] says M0 |= χp[ā].
Moreover from T ∪ ψ(b̄) |= ϕ(ā) we obtain

T ∪ χp(ā) |= ϕ(ā).

(Exercise!). However, this means T |= χp(ā)→ ϕ(ā) and by 1.47 we get

T |= χp(x̄)→ ϕ(x̄).

Thus we have 〈χp〉 ⊆ 〈ϕ〉 (in Sn(T )). Since M0 |= χp[ā] and χp is quantifier-free
we have M |= χp[ā], in other words p ∈ 〈χp〉, as required for the claim. �
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4.1.2. Shoenfield-Blum test for quantifier elimination
The following are equivalent for every L -theory T without finite models.
(I) T has quantifier elimination.

(II) Given modelsM,N of T , a finitely generated common substructure U ofM,N ,
a quantifier-free L -formula χ(y1, ..., yn, x) and some ā ∈ Un, the following
implication holds:

M |= ∃xχ(ā, x) ⇒ N |= ∃xχ(ā, x).

(III) If M,N are models of T such that N is ℵ0-saturated and U is a finitely
generated common substructure of M,N , then for all α ∈ M , there is an
embedding f : U〈α〉M −→ N over U (i.e. f � U = idU ). Here U〈α〉M denotes
the substructure generated by U ∪ {α} in M . In a diagram:

M N

U〈α〉M

U

f

(IV) If M,N are models of T and U is a common substructure of M,N , with
U 6= M , then there are some α ∈ M \ U , an elementary extension N ′ of N
and an embedding f : U〈α〉M −→ N ′ over U (i.e. f |U = idU ). Here U〈α〉M
denotes the substructure generated by U ∪ {α} in M . In a diagram:

N ′

M N

U〈α〉M

U

f

6=

(If N is (card(M) + |L |)+-saturated then we may choose N ′ = N .)

(V) Let M,N be models of T . Then the following two conditions hold:
(|=) If U is a common substructure of M,N , then there are a substructure P

of M containing U with P |= T , an elementary extension N ′ of N and
an embedding P −→ N ′ over U .

(†) If P |= T is a common substructure of M,N with P 6= M , then there are
some α ∈ M \ P , an elementary extension N ′ of N and an embedding
f : P 〈α〉M −→ N ′ over P .

(If N is (card(M) + |L |)+-saturated then we may choose N ′ = N in both
conditions.)

Proof. (I)⇒(II) follows from 4.1.1(i)⇒(ii) (Exercise).
(II)⇒(III) Note that condition (III) is not true without the assumption that N is
ℵ0-saturated.
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Take M,N,U and α as in (III). Let

Σ = {ϕ ∈ tpM (α/U) | ϕ(x) is equal to χ(a1, ..., an, x) for some a1, ..., an ∈ U,
some quantifier-free L -formula χ(y1, ..., yn, x)

and some n ∈ N}
We claim that Th(N,U) ∪ Σ is finitely satisfiable. To see this, take ϕ1, ..., ϕk ∈ Σ
and quantifier-free L -formulas χi(y1, ..., yn, x) with

ϕi(x) = χ(a1, ..., an, x) (1 ≤ i ≤ k).

Observe that we can choose n, the variables occurring in the χi and the elements
ai ∈ U so that all free variables occurring in any χi is among the yi with i ∈
{1, ..., n}. Since ϕi ∈ tpM (α/U) we have

(M,U) |= ∃x (χ1(ā, x) ∧ ... ∧ χk(ā, x)).

By (II) we then also have

(N,U) |= ∃x (χ1(ā, x) ∧ ... ∧ χk(ā, x)).

As (N,U) |= Th(N,U) this shows that that Th(N,U) ∪ Σ is finitely satisfiable.
Hence Σ is contained in a 1-type q of N . Since N is ℵ0-saturated and U is finitely
generated, there is some element β ∈ N that realises q. We will map α to β and
obtain f :

Every element in U〈α〉M is of the form tM (α, ā) for some L -term t(x, ȳ) and
some ā ∈ Un. We define

f(tM (α, ā)) = tN (β, ā).

This is well defined, since tM1 (α, ā1) = tM2 (α, ā2) is witnessed in tpM (α/U): we have

t1(x, ā1)
.
= t2(x, ā2) ∈ tpM (α/U), thus

t1(x, ā1)
.
= t2(x, ā2) ∈ Σ ⊆ q,

and so tN1 (β, ā1) = tN2 (β, ā2). Similarly, f is seen to be an embedding and f(a) = a
for all a ∈ U .

(III)⇒(I) We use 4.1.1 and show that for every substructure U of a model of T ,
the theory T ∪ diag(U) is complete. Let M+, N+ be models of T ∪ diag(U). Thus
M+ = (M, g) and N+ = (N,h) for some modelsM,N of T and maps g : U −→M ,
h : U −→ N . The condition M+, N+ |= diag(U) says that g, h are embeddings
defined on U and after replacing the images of g, h in M,N with U , respectively
and altering M,N accordingly, we may assume that U is a common substructure
of M and N (and so M+ = (M,U), N+ = (N,U)).

In order to show that (M,U) ≡ (N,U) we may replace M,N by elementary
extensions which are ℵ0-saturated (use 3.5.3; here we need that M and N are
infinite, because T does not have finite models by assumption; also observe that
(M,U) ≡ (M ′, U) for every elementary extension M ′ of M and similarly for N).
Thus, we may assume right away that M and N are ℵ0-saturated.

We prove (M,U) ≡ (N,U) by setting up a Back and Forth system and then use
2.7.6: We define

S = {(p,A,B) | A is a finitely generated substructure of M containing U,
B is a finitely generated substructure of N containing U,
and p : A −→ B is an L -isomorphism over U}
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Claim. S is a Back and Forth system (M,U) −→ (N,U).
To see this, note first that for each (p,A,B) ∈ S, the map p is an L (U)-

isomorphism, because p is the identity on U and an L -isomorphism. Furthermore,
S is not empty, since (idU , U, U) ∈ S. So we need to check the Forth and the Back
condition for this system. As the situation is symmetric in M and N , we just need
to show the Forth condition:

Take (p,A,B) ∈ S and an element α ∈M . We have to find some (p′, A′, B′) ∈ S
such that α ∈ A′ and p′ extends p. We will now use condition (III) of our theorem,
applied for A instead of U : We take A′ = A〈α〉M and we are looking for an
embedding p′ : A′ −→ N extending p. We are in the following situation:

M N

A〈α〉M
� ?

OO
p′

66

A
� ?

OO

p // B
� ?

OO

U
1 Q

cc

/ �

>>

If we manage to find such a p′, then we can take B′ = p′(A′) which again is a finitely
generated substructure of N (generated by B and p′(α)) and so (p′, A′, B′) ∈ S
as desired. However, such a p′ exists by (III): Just identify A with B and apply
condition (III) directly. For those who want to have this written in details: Let N ′
be an L -structure containing A as a substructure together with an isomorphism
i : N ′ −→ N extending p : A −→ B:

M N ′
i // N

A〈α〉M
� ?

OO
f

66

A
� ?

OO

idA // A
� ?

OO

p // B
� ?

OO

U
1 Q

cc

. �

>>

	)

66

Then by (III) (observe that N ′ is ℵ0-saturated) applied to M,N ′, A and α, there
is an embedding f : A′ = A〈α〉M −→ N ′ over A. Now take p′ = i ◦ f .

Hence we know that (I), (II) and (III) are equivalent.

(I)⇒(V) follows from 4.1.1(i)⇒(iii) and 2.8.1.
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(V)⇒(IV): Take M,N,U as in (IV). If U is a model of T , then we may deploy
assumption (†) in (V). If U is not a model of T , then choose P as in condition (|=)
of (V). Then P 6= U and the assertion follows.
(IV)⇒(II) Let M,N |= T , take a finitely generated common substructure U of
M,N . Let κ = card(L ) + card(M) and let N∗ be a κ+-saturated elementary
extension of N . We claim that there is an embedding M −→ N∗ over U . Since
N ≺ N∗, this readily implies (II). To find the embedding consider the set

S = {(f,A) | A is a substructure of M containing U and
f : A −→ N∗ is an embedding over U},

partially ordered by (f,A) ≤ (g,B) ⇐⇒ A ⊆ B and g|A = f . This defines
a partial order, which obviously is inductive. Hence by Zorn’s lemma there is
a maximal element (f,A) in S and it suffices to show that A = M . Suppose
this is not the case. We may assume that f is the inclusion map, hence A is a
common substructure of M and N∗. By Skolem-Löwenheim downwards, there is
an elementary restriction N0 of N∗ of size ≤ κ containing A. Since A 6= M we
may deploy (IV), hence there are b ∈ M \ A and an embedding of A〈b〉M over A
into some elementary extension of N0. As N∗ is κ+-saturated there is also such an
embedding into N∗ (use Skolem-Löwenheim downwards again and then 2.8.1). By
maximality of (f,A) in S this is impossible. �

In applications the following consequence is frequently used.

4.1.3. Corollary. Suppose T is an L -theory without finite models that has prime
models over substructures, i.e., for all T -models M and every substructure A of M
there is a substructure P ⊆M containing A with P |= T such that for every N |= T
containing A as a substructure, there is an embedding of P into N over A. (This
for example is trivially the case when T is a universal theory.)

Then T has quantifier elimination if and only if T is model-complete if and only
if condition (†) of 4.1.2(V) holds.

Proof. The existence of prime models obviously implies condition (|=) of 4.1.2(V).
Consequently, under our assumption about the existence of prime models, the equiv-
alence (V) ⇐⇒ (I) of 4.1.2 says that condition (†) in 4.1.2(V) is equivalent to
quantifier elimination. Now the corollary follows because the implications

T has quantifier elimination ⇒ T is model-complete ⇒ T satisfies (†) of 4.1.2(V)

hold true already without any assumption on T . �

4.1.4. Remark. A theory with quantifier elimination does not necessarily have
prime models over substructures. In order to compare 4.1.3 with the equivalence
(V) ⇐⇒ (I) of 4.1.2, consider the following statements about a theory T without
finite models:
(a) T has prime models over substructures.
(b) If U is a common substructure of M,N |= T , then there is a substructure

P ⊆M containing U with P |= T and an embedding P −→ N over U .
Then
(i) Obviously (a) =⇒ (b) =⇒ condition (|=) in 4.1.2(V).
(ii) If the language is countable, then (a) is actually equivalent to (b). The proof

involves the omitting types theorem 3.7.9.
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4.2. Some theories with quantifier elimination.
We return to the theories from section 2.4 and we show that they all have quantifier
elimination.

4.2.1. Example. The theory T of infinite sets in the empty language has quantifier
elimination.[4]

Proof. This we can prove directly from 4.1.1: Take a nonempty subset M0 of an
infinite setM (thenM0 is already a substructure). We must show that T∪diag(M0)
is complete. This can be shown as in 2.4.1: If N1 and N2 are infinite sets, containing
M0, then a minor amendment of the proof given for 2.4.1 shows that (N1,M0) and
(N2,M0) are elementary equivalent.

Alternatively, one can run the Shoenfield-Blum test (III) . �

4.2.2. Example. Given a field F , the theory T of infinite F -vector spaces in the
language LF−vec.sp. has quantifier elimination. See 2.4.2 for the definition of this
language.

Proof. We apply the Shoenfield-Blum test (III).
Let M,N be infinite F -vector spaces such that N is ℵ0-saturated and let U be

a finitely generated common substructure of M,N . Take α ∈M . We must find an
embedding f : U〈α〉M −→ N over U :

M N

U〈α〉M
2 R

cc
f

44

U
1 Q

cc

0�

AA

Of course we may assume that α 6∈ U . Firstly, the substructure generated by
U ∪{α} in M is the F -vector space U +α·F generated by U and α in M , as can be
seen readily. (Observe that U might not be a model of T !) Since N is ℵ0-saturated
and U is finitely generated, N is different from U (convince yourself that this is
true; note that U itself might be infinite). Take any element β ∈ N \U . Then both
U〈α〉M and U〈β〉N are 1-dimensional F -vector spaces over U (i.e. their quotient
by U is of dimension 1). But then we know from linear algebra, that U〈α〉M and
U〈β〉N are isomorphic over U . Explicitly, define

f : U〈α〉M −→ U〈β〉N
u+ α·x 7−→ u+ β·x

and check directly, that f is an embedding as requested. �

4.2.3. Example. Let L = (≤) be the language of po-sets and let T be the L -
theory of densely, totally ordered sets without endpoints. Then T has quantifier
elimination.[5] Recall the precise definition of this theory from 2.4.3.

Proof. We apply the Shoenfield-Blum test (III) (obviously, T does not have finite
models).

[4]Notice that there are no quantifier-free sentences in this language.
[5]As in 4.2.1, there are no quantifier-free sentences in this language.
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Let M,N be densely, totally ordered sets without endpoints such that N is ℵ0-
saturated and let U be a finitely generated common substructure of M,N . Take
α ∈ M . We must find an embedding f : U〈α〉M −→ N over U . Of course we
may assume that α 6∈ U . Firstly, since L is a language without function symbols
and without constant symbols, every nonempty subset of any L -structure is (the
universe of) a substructure of that structure. Hence in our situation, U〈α〉M =
U ∪ {α}. Also, the set U is finite, since it is finitely generated.

Moreover, an L -embedding is a map f satisfying a ≤ b ⇐⇒ f(a) ≤ f(b) for
all a, b in the domain of f .

We list the elements of U , say U consist of n elements

u1 <
M ... <M un with n ∈ N.

Since U is also a substructure of N , this means

u1 <
N ... <N un.

Now for the element α ∈ M , there is exactly one k ∈ {0, 1, ..., n} such that for all
i ∈ {1, ..., n} we have α < ui ⇐⇒ i < k.

Using that fact that N is densely, totally ordered sets without endpoints we
can now find some β ∈ N , which is positioned w.r.t. U exactly as α is positioned
w.r.t. U . Hence there is some β ∈ N such that for all i ∈ {1, ..., n} we have
β < ui ⇐⇒ i < k.

Hence if we extend the identity U −→ U to f : U ∪ {α} −→ N by f(α) = β we
get an embedding as required. �

4.2.4. Example. Let L = (+,−, ·, 0, 1) be the language of rings. Let ACF be the
L -theory of algebraically closed fields as defined in 2.4.5. Then ACF has quantifier
elimination.

Proof. Again we apply the Shoenfield-Blum test (III). Recall from algebra that
ACF does not have finite models, i.e. every algebraically closed field is infinite.

Let M,N be algebraically closed fields such that N is ℵ0-saturated and let U be
a finitely generated common substructure of M,N . Take α ∈M . We must find an
embedding f : U〈α〉M −→ N over U . Again, we may assume that α 6∈ U . Now we
first notice:
• a substructure of a (algebraically closed) field in our language is a subring of

that field containing the multiplicative unit of that field. In particular, U is
a common subring of M,N and U〈α〉M is the subring of M generated by U
and α. We denote it by U [α] as usual.

• an embedding is just an injective ring homomorphism.
So we are looking for an embedding U [α] −→ N over U . In order to do this, we
first reduce to the case, where U is a common subfield of M,N . Let K,L be the
subfields generated by U in M,N respectively. The both K and L are isomorphic
over U to the so-called field of fractions of U . If you are not acquainted with this
construction, we can do the following: We have K = {ab ∈M | a, b ∈ U, b 6= 0} and
L = {ab ∈ N | a, b ∈ U, b 6= 0}. Note that K and L “look” equal, but the operation
of inverting elements is a priori performed in different fields. However, the map

g : K −→ L
a

b
7−→ a

b
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is well-defined and therefore an isomorphism over U . We identify K with L (simi-
larly to the identification process at the end of the proof of 4.1.2) and then continue
to work with U .

Hence we may assume that U is a common subfield of M,N . We use a ring ho-
momorphism, called evaluation map, defined as follows: Let U [T ] be the polynomial
ring over U in one indeterminate T . Then there is a unique ringhomomorphism

evα : U [T ] −→ U [α]

P (T ) 7−→ P (α),

called “evaluation at α”, which fixes U pointwise and maps T to α (all this can be
verified readily). We do two cases.
Case 1. α is transcendental over U (i.e. α is not the zero of any polynomial
P (T ) ∈ U [T ], unless P is the zero polynomial).

So in this case evaluation at α is injective, and therefore evα an isomorphism.
If we manage to find an element β ∈ N which is transcendental over U , then the
same argument shows that also evaluation at β is an isomorphism. Hence we get a
commutative diagram

M N

U [α]
0 P

aa f --

U [T ]
evβ

∼=
//evα

∼=
oo U [β]

. �

==

U
1 Q

bb

- 

<<

and f := evβ ◦ ev−1
α has the required properties.

We can find such β using our assumption that N is ℵ0-saturated (and without
it, the argument would break down here, because N might simply be equal to U).
The idea is to list all polynomials P (T ) ∈ U [T ], except the null polynomial and to
check that for all finite sub-lists there is an element γ ∈ N which is not a zero of
any of the polynomials from that finite list (use that N is infinite as is implied by
ℵ0-saturation). Then we use saturation (and the assumption that U is the fraction
field of a finitely generated ring) to obtain β ∈ N , transcendental over U . Explicitly,
we find β ∈ N realising the following set of L (N,U)-formulas in at most one free
variable x:

Th(N,U) ∪ {P (x)
.
= 0 | P (T ) ∈ U [T ] \ {0}}.

The details are left as an exercise. Note that we have not yet used that N is
algebraically closed!

Case 2. α is algebraic over U (i.e. α is the zero of some polynomial P (T ) ∈
U [T ] \ {0}).

In this case, the evaluation map evα : U [T ] −→ U [α] is not injective and so has
non-trivial kernel: Let I : {P (T ) ∈ K[T ] | P (α) = 0} be the preimage of 0 under
evα.

We now use some basic information from algebra (and here we also need that
U is a field), namely: the ring U [T ] is a principal ideal domain, i.e. every ideal of
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U [T ] is generated by a single element. The set I is an ideal of U [T ] and the minimal
polynomial µα(T ) ∈ U [T ] is defined as the unique monic (i.e. leading coefficient
is 1) polynomial that generates I. Alternatively one can say: µα(T ) is the monic
polynomial of least degree that annihilates α.

Here (and only here) we use the assumption that N is algebraically closed. There
is a zero β of µα(T ) in N . Let µβ(T ) ∈ U [T ] be the minimal polynomial of β over U .
It is then clear that the degree of µβ is at most the degree of µα. Since µα(β) = 0
we also know that µβ divides µα in U [T ], i.e. µα(T ) = µβ(T )·Q(T ) for some
Q(T ) ∈ U [T ]. Since µβ has degree at least 1, the degree of Q(T ) is strictly less
than the degree of µα. Since µα(α) = 0, the minimality assumption on µα implies
that also µβ(α) = 0. Thus the degree of µα is at most the degree of µβ . This proves
that µα = µβ . From the isomorphism theorem for rings we obtain commutative
diagrams

U [T ]

π

����

evα

||
U [α] U [T ]/I∼=

evαoo

and U [T ]

π

����

evβ

##
U [T ]/I ∼=

evβ // U [β],

where π is the residue class map U [T ] � U [T ]/I. Inserting the bottom isomor-
phisms of these two diagrams into our embedding problem gives a commutative
diagram

M N

U [α]
0 P

aa f --

U [T ]/I
evβ

∼=
//evα

∼=
oo U [β]

. �

==

U
1 Q

cc

- 

;;

and we can choose f := evβ ◦ ev−1
α to solve our embedding problem. �
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4.3. Tarski’s Theorem.

In the previous section we have seen that every subset of Cn that is definable in
the field C can be described by quantifier-free formulas in the language of rings.
Moreover we know already for a long time an explicit (and a recursive list for those
who know the term) list of axioms which imply all true statements about the field
C.

In this section we want to carry out the same fundamental model theoretic anal-
ysis for the real field. Throughout Lri denotes the language of rings {+,−, ·, 0, 1}.
One might wonder whether the quantifier elimination result for the complex field
above is still true for the real field. However: The formula ∃u x = u2 is not
quantifier-free definable in the field R. Exercise!

So in order to eliminate quantifiers we have to add at least one new relation
symbol to the language. We will add a binary relation symbol ≤ (intended to
denote the order in structures). We will mainly work with Lri and the extension
Lri(≤).

Ordered and real closed fields

An ordered field F is an Lri(≤)-structure expanding a field and satisfying the
following sentences:

OF0: ≤ is a total order on the universe of F

OF1: ∀x, y, z (x ≤ y → x+ z ≤ y + z)

OF2: ∀x, y, z (x ≤ y ∧ 0 ≤ z → x·z ≤ y·z)

The Lri(≤)-theory axiomatised by the field axioms and OF0,OF1,OF2 is called the
theory of ordered fields.

Obviously, both Q and R with the standard interpretation of the Lri(≤)-symbols
are ordered fields. However, the following “axiom” is not true in Q:

IVT: Every polynomial in one variable that changes sign in some
interval has a zero in that interval.

In fact IVT is an axiom scheme. For each d ∈ N let fd(x) := yd·xd+...+y1·x+y0

be the general polynomial of degree d. Then IVT is the set of axioms

∀y0, ..., yd, u, w

(
u ≤ w ∧ fd(u)·fd(w) ≤ 0 → ∃v (u ≤ v ≤ w ∧ fd(v)

.
= 0)

)
.

4.3.1. Definition. A real closed field is an ordered field which satisfies IVT.
The Lri(≤)-theory axiomatised by the theory of ordered fields and IVT is denoted
by RCF.

Our aim is to show

4.3.2. Theorem. (Tarski)
RCF has quantifier elimination.

4.3.3. Corollary. RCF is complete and decidable. In particular, the field R is
decidable

If you don’t know what decidable means: just ignore it for the moment. Up to
definitions this corollary is an easy consequence of Tarski’s theorem.
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Proof. To see that RCF is complete we must show that all real closed fields are
elementary equivalent. We use the following observation:

If F is an arbitrary ordered field, then the smallest substructure of F is isomor-
phic to the ring of integers expanded by the natural order. Another way of saying
this is that the map

f : Z −→ F

k 7−→ k·1F

is an isomorphism of (Z,≤,+,−, ·, 0, 1) onto the smallest substructure of F . This
is straightforward from the axioms of ordered fields and left as an exercise.

Now if M,N are real closed fields, then using this observation we see that the
smallest substructures inM and in N are isomorphic (to (Z,≤,+,−, ·, 0, 1)). After
identifying these two substructures we may therefore assume that M and N have
a common substructure U . Since RCF has quantifier elimination by 4.3.2 we may
use 4.1.1 and get (M,U) ≡ (N,U). But then in particular M ≡ N . �

Before we can prove Tarski’s theorem we have to study some algebraic tools used
in the proof.

Real algebraic tools

4.3.4. Proposition. Let R be a real closed field.
(i) If a ∈ R, then a ≥ 0 ⇐⇒ there is some b ∈ R with a = b2. Hence

RCF |= x ≤ y ↔ ∃z y − x = z2.

(ii) Every polynomial P (T ) ∈ R[T ] in one indeterminate of odd degree with coef-
ficients in R has a root in R, i.e. there is some a ∈ R with P (a) = 0.

Remark: As a matter of fact, the converse is also true, i.e. every ordered field
that has these two properties is real closed. We will not use this here, but it is too
important to be omitted.

Proof. (i). We have b ≥ 0 or −b ≥ 0 for all b ∈ R. In any case b2 = (−b)2 ≥ 0.
Conversely if a ≥ 0, then the polynomial P (T ) = T 2 − a changes sign: We have
1 + a+ a2 ≥ 0 from a ≥ 0, hence

P (0)·P (1 + a) = (−a)·(1 + a+ a2) ≤ 0.

Hence by IVT, P has a zero b as required.
(ii) Let P (T ) = a2d+1T

2d+1 + ...+ a0 with ai ∈ R and a2d+1 6= 0. We must find a
root of P (T ) in R and we may divide by a2d+1. Hence we may assume that

P (T ) = T 2d+1 + a2dT
2d + ...+ a0.

Such polynomials change sign (actually for arbitrary ordered fields). the proof goes
as in the case R: If a tends to +∞, then P (a) tends to +∞, where as if a tends to
−∞, then P (a) tends to −∞. The details for ordered fields are left as an exercise.
Hence P (T ) changes sign in R and by IVT, P (T ) has a zero as required. �

4.3.5. Corollary. Every ringhomomorphism between real closed fields is order pre-
serving

Proof. Ringhomomorphisms map squares onto squares. Now use 4.3.4 (i). �
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To apply the Shoenfield-Blum test we shall also need some purely Galois theoretic
lemma. Since this has a surprising link to type spaces we expand this a little bit:

4.3.6. Proposition. Let K ⊆ L be fields and let G be the group of K-
automorphisms of L (L does not need to be algebraic over K; however if L is a
Galois extension of K, then G is the Galois group of L over K). We work in the
language of rings Lri and expand this language by two constants for every element
of L. So we choose disjoint sets C and D which are in bijection with L and we
write C = {cb | b ∈ L}, D = {db | b ∈ L}. In the language Lri(C ·∪D) we have two
copies of the diagram of L, the first one is in Sen(L (C)), we denote it by ∆C , and
the second one is in Sen(L (D)), we denote it by ∆D. Let

Σ := ACF ∪∆C ∪∆D ∪ {ca
.
= da | a ∈ K}.

Then Σ is a set of Lri(C ·∪D)-sentences and our goal here is to show that S(Σ) is
in natural bijection with G provided L is a Galois extension of K.
(i) An Lri(C ·∪D)-structure is an Lri-structure M , together with two map f, g :

L −→M which describe the interpretation of the new constant symbols in the
structure: f(b) is the interpretation of cb and g(b) is the interpretation of db.

(ii) A model of Σ is an Lri(C ·∪D)-structure (M,f, g), such that M is an alge-
braically closed field and f and g are embeddings L −→M and f � K = g � K
(the latter because Σ contains all the sentences ca

.
= da for a ∈ K).

(iii) Let Ω be the algebraic closure of L. For every K-embedding σ : L −→ Ω, the
Lri(C ·∪D)-structure

Ω(σ) := (Ω, idL, σ)

is a model of Σ, and its theory is therefore an element of S(Σ), which we
denote by p(σ):

p(σ) = Th(Ω(σ)) = Th((Ω, idL, σ)) ∈ S(Σ).

(iv) The map

Θ : G −→ S(Σ)

σ 7−→ p(σ)

is injective.

(v) If L/K is a normal extension, then Θ is bijective. A normal extension is an
algebraic extension defined by the following property (at least we choose this
definition): Every K-embedding L −→ Ω is an automorphism of L; this in
particular is the case if L/K is Galois, for example if L = Ω.

(vi) If L/K is a normal extension, then the bijection Θ induces a topology on G
and a basis of neighborhoods of the identity is given by the sets

Stab(F ) := {σ ∈ G | σ � F = idF }, where F ⊆ L is finite

and all these sets are clopen in G. A basis of neighborhoods of σ ∈ G is given
by all the σ·Stab(F ), where F ⊆ L is finite.
G together with this topology is a so-called profinite group (which by defini-

tion is a projective limit lim
←
Gi of finite groups Gi, equipped with the profinite

topology induced from the discrete topologies on the Gi; in Galois theory, this
topology is called the Krull topology).
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Proof. (i)-(iii) are clear.
(iv). Let σ 6= τ ∈ G. Then for some b ∈ L we have σ(b) 6= τ(b). Then

Ω(σ) |= cσ(b)
.
= db

and
Ω(τ) 6|= cσ(b)

.
= db

by definition of the interpretation of the new constant symbols. Hence cσ(b)
.
= db ∈

p(σ) 6∈ p(τ), i.e. p(σ) 6= p(τ).
(v). Now assume L/K is normal. Take p ∈ S(Σ) and a model (M,f, g) of p.
Then f, g are embeddings of L into the algebraically closed field M and K0 :=
f(K) = g(K). Since L is algebraic over K, f(L) and g(L) are algebraic over K0

and so both are contained in the algebraic closure M0 of K0 in M . Now g ◦ f−1

is a K0-embedding f(L) −→ M0. Since L/K is normal, also f(L)/K0 is normal,
which implies that g ◦ f−1 is a K0-automorphism of f(L). Hence g(L) = f(L) and
we may transfer this automorphism back to L via the isomorphism f : we get an
automorphism σ ∈ G. In symbols:

σ = f−1 ◦ (g ◦ f−1) ◦ f = f−1 ◦ g.
We claim that Ω(σ) is a model of p (and therefore Θ(σ) = p as desired). Here
we make use of quantifier elimination for ACF: Since M0 is a substructure of
M and both structures are models of ACF, quantifier elimination of ACF implies
that M0 is an elementary substructure of M . It is then straightforward to see
that (M0, f, g) ≺ (M,f, g). Let F : Ω −→ M0 be an isomorphism extending
f : L −→ f(L) (such an isomorphism exists by the basic theory of algebraically
closed fields). We claim that

F : Ω(σ) = (Ω, idL, σ) −→ (M0, f, g)

is an isomorphism. For this it is enough to show that F respects the interpretation
of the new constant symbols. This mean for b ∈ L we have:
• F (b) = f(b) which holds true, as F extends f and
• F (σ(b)) = g(b) which holds true, as F extends f and σ(b) = f−1 ◦ g(b).

Thus
Ω(σ) ∼= (M0, f, g) ≺ (M,f, g) |= p

and therefore Ω(σ) |= p as claimed.
(vi). It is a straightforward matter to show that

- the topology defined on G in item (iv) is Hausdorff and
- the map Θ is continuous.

This is left as an exercise. Since very continuous bijection from a compact space
onto a Hausdorff space is a homeomorphism, we get (iv). �

4.3.7. Lemma. Let L,L′ be fields which have a common subfield K and suppose
L/K is algebraic. Suppose

for ever finite field extension E of K inside L there is an embedding
E −→ L′ over K.

Then there is an embedding L −→ L′ over K, too.
Note: ’finite’ means here that E is a finite dimensional K-vector space. In our

situation - where L/K is algebraic - this is equivalent to say that E is finitely
generated over K as a field, equivalently: as a ring.
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Proof. Since L/K is algebraic, every K-embedding from a subfield of L containing
K into L′ is algebraic over K. Therefore we may replace L′ by the algebraic closure
ofK in L′, hence we may assume that also L′/K is algebraic. Let Ω be the algebraic
closure of L. Since L′/K is algebraic, there is a K-embedding of L′ into Ω over K
and so we may assume that also L′ ⊆ Ω.

Let G be the absolute Galois group of K, i.e. G is the set of K-automorphisms
of Ω with the composition of maps as group operation.

For a subset F of L, let

X(F ) := {σ ∈ G | σ(F ) ⊆ L′}.

We now use 4.3.6 and the fact that the topology described in (iv) of 4.3.6 is compact.
Each of the sets X(F ) is closed, because X(F ) = ⋂a∈F X(a) and X(a) is closed
(observe that the set {σ(a) | σ ∈ G} is finite).

We have
(a) X(L) =⋂F⊆L finiteX(F ),

(b) X(F1) ∩X(F1) = X(F1 ∪ F2),

(c) X(F ) 6= ∅ by the assumption in our lemma.
Thus, {X(F ) | F ⊆ L finite} is a set of closed subsets of G with the finite intersec-
tion property. Since G is compact by 4.3.6 (it is homeomorphic to a type space),
X(L) 6= ∅, as required. �

4.3.8. Proposition. Let S be a real closed field and let R ⊆ S be a subfield that is
algebraically closed in S (i.e. every element of S that is algebraic over R is already
contained in R). Then
(i) R (together with the induced order from S) is again real closed.
(ii) If χ(x, ȳ) is a quantifier-free Lri(≤)-formula, ȳ = (y1, ..., yk), ā ∈ Rk and

if there is some s ∈ S with S |= χ[s, ā], then there is some r ∈ R with
R |= χ[r, ā].

Note: The converse for (i) is also true, i.e. if R (together with the induced order
from S) is real closed, then R is algebraically closed in S. We will come to this
later.

Proof. (i). We need to check the intermediate value theorem for polynomials over
R. So let P (T ) ∈ R[T ] and let a, b ∈ R with P (a)·P (b) ≤ 0. By the intermediate
value theorem for S, we then know that P (s) = 0 for some s ∈ S with a ≤ s ≤ b.
In particular s is algebraic over R. Now by assumption, s ∈ R and we are done.
(ii). Up to logical equivalence of the theory of ordered fields, χ is a finite disjunction
of formulas of the form

f(x, ȳ) = 0 ∧ g1(x, ȳ) > 0 ∧ ... ∧ gn(x, ȳ) > 0,

where f and all gi are polynomials over Z. We may therefore assume that χ itself
is of this form. Of course we may also assume that s 6∈ R and by assumption
this means s is transcendental over R. Since f(t, ā) = 0, it follows that f(T, ā)
is the null polynomial of R[T ]. But then it suffices to find some r ∈ R with
g1(r, ā) > 0∧ ...∧ gn(r, ā) > 0. Let b1 < ... < bl be the set of all roots of all gi(x, ā)
in R and fix some i ∈ {0, ..., l} with bi < s < bi+1, where we set b0 := −∞ and
bl+1 := +∞. It is now enough to show that g1(r, ā) > 0 ∧ ... ∧ gn(r, ā) > 0 for all
r ∈ R with bi < r < bi+1.
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Otherwise gj(r, ā) ≤ 0 for some r ∈ (bi, bi+1) ⊆ R and some j ∈ {1, ..., n}. Since
gj(s, ā) > 0, the intermediate value theorem for S implies that gj(x, ā) has a zero
in S between r and s. As R is algebraically closed in S, this zero must be in R.
However bi < r, s < bi+1, hence by the choice of the bi, gj(x, ā) does not have a
zero between r and s. �

Counting real zeroes of polynomials.

We now enter the heart of the proof of Tarski’s theorem on quantifier elimination
of real closed fields.

4.3.9. Proposition. Let K be an ordered field and let P (T ) be a polynomial in
one variable over K. If P (T ) has a zero in some real closed field containing K (as
an ordered subfield), then P (T ) has a zero in all real closed fields containing K.

There are various paths to prove this. We will obtain it from Sturm’s theorem,
which we postpone for now. Instead we use 4.3.9 to prove 4.3.2

What we gain from 4.3.9 (and 4.3.7) is the following

4.3.10. Corollary. Let R,S be real closed fields and let K be a common ordered
subfield of R and S. If R is algebraic over K, then there is an order preserving
embedding R −→ S over K

Proof. By 4.3.5 it suffices to find a ring homomorphism R −→ S over K. By 4.3.7,
it suffices to show that for every subfield E of R containing K and finite over K,
there is an embedding E −→ S over K. Since E is finite, E is simply generated,
because all our fields have characteristic 0: This is the so-called theorem of the
primitive element from Galois theory (true for all finite separable field extensions).

Hence we have E = K(α). Let P (T ) be the minimal polynomial of α over K.
Since P has a root in R, P also has a root β in S by 4.3.9.

But then we know that there is a (unique) K-isomorphism K(α) −→ K(β).
Thus we get the K-embedding

E = K(α) −→ K(β) ↪→ S

as desired. �

Proof of quantifier elimination for real closed fields.

We want to show that the Lri(≤)-theory RCF has quantifier elimination and
we use the Shoenfield-Blum test (II) to confirm this:
So let M,N be real closed fields and let U be a finitely generated common sub-
structure. Let χ(y1, ..., yn, x) be a quantifier-free Lri(≤)-formula and let ā ∈ Un.
We assume

M |= ∃xχ(ā, x)

and we must show
N |= ∃xχ(ā, x).

Let R be the algebraic closure of K in M . By 4.3.8(i), R itself is real closed (and
has K as an ordered subfield). By 4.3.8(ii), our assumptionM |= ∃xχ(ā, x) implies
R |= ∃xχ(ā, x). Take b ∈ R with R |= χ[ā, b]. By 4.3.10, there is an ordered
K-embedding f : R −→ N . Applying this embedding we see that N |= χ[ā, f(b)],
as desired.
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It remains to fill the gap and to prove 4.3.9. We show Sturm’s theorem which
gives a much better result than 4.3.9:

4.3.11. Definition. Let K be an ordered field and let c := (c0, ..., cn) ∈ Kn+1. We
define the variance of the tuple c to be

var(c) = card{i ∈ {0, ..., n− 1} | ∃j > i : ci·cj < 0 and ck = 0 (i < k < j)}.

Hence var(c) is the number of sign changes in (c0, ..., cn) after crossing out all ci
which are zero.

Observe that

(+) var(c) = var(c0, ..., ck)+var(ck, ..., cn) whenever k ∈ {1, ..., n−1} and ck 6= 0.

4.3.12. Definition. Let K be a field and let f(X) ∈ K[X] be a polynomial.
The Sturm sequence f of f is the following tuple f := (f0, f1, ..., fd) of polynomials
fi ∈ K[X]:
f0 := f , f1 := f ′ and for each i > 1 let fi+1 be the negative of the remainder if we
divide fi−1 by fi. Hence

f0 = f
f1 = f ′

f0 = q1·f1 − f2 with q1 ∈ K[X], deg f2 < deg f1

...
fi−1 = qi·fi − fi+1 with qi ∈ K[X], deg fi+1 < deg fi

...
fd−1 = qd·fd with qi ∈ K[X]

By induction we see that the natural number d as well as the polynomials
f0, ..., fd are well defined. The construction of f differs from the euclidean algo-
rithm applied to f and f ′ only in the choice of the sign of the remainders. The
proof that the euclidean algorithm applied for f and f ′ computes the greatest
common divisor of f and f ′ can be literally copied in order to see

fd = gcd(f, f ′).

�

4.3.13. Theorem. (Sturm, 1829)
Let R be a real closed field. Let f(X) ∈ R[X] with f 6= 0 and let (f0, ..., fd) be the
Sturm sequence of f . If a < b are elements from R such that f(a), f(b) 6= 0 then
the number of different roots (so we don’t count multiplicities) of f in (a, b) is

var(f0(a), ..., fd(a))− var(f0(b), ..., fd(b))

Proof. For i ∈ {0, ..., d} let hi := fi
fd
∈ R[X]. Observe that by the definition of the

Sturm sequence f0, ..., fd we have

fi−1 = qi·fi − fi+1 with qi ∈ R[X], deg fi+1 < deg fi

and therefore

(∗) hi−1 = qi·hi − hi+1, deg hi+1 < deg hi (1 ≤ i < d).
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Moreover for each i ∈ {1, ..., d},
(†) hi−1 and hi do not have common zeroes in R,

otherwise (∗) implies that hd has a zero; but hd = 1. For x ∈ R let

W (x) := var(h0(x), ..., hd(x)).

Claim 1. If c ∈ R with f(c) 6= 0, then W (c) = var(f0(c), ..., fd(c)).
This is so, since f(c) 6= 0 implies fd(c) 6= 0 and therefore

var(f0(c), ..., fd(c)) = var(fd(c)h0(c), ..., fd(c)hd(c)) = W (x).

Claim 2. h0 and f have the same zero set in R.
To see claim 2 it is enough to prove h0(c) = 0 for each zero c of f . Let k > 0

and g(X) ∈ R[X], g(X) 6= 0 with f(X) = (X − c)k·g(X). Since k > 0 we have

f ′(X) = (X − c)k−1·(kg(X) + (X − c)g′(X)).

As g(c) 6= 0 the multiplicity of X− c is k− 1 in f ′. Since fd = gcd(f, f ′) this shows
that X − c divides h0 = f/fd, in other words h0(c) = 0.

Since f(a), f(b) 6= 0, claim 1 and claim 2 reduce the problem to show that the
number of different zeroes of h0 in (a, b) is equal to W (a)−W (b). Let

h := h0·...·hd.
Claim 3. If c < d are elements from R and h does not vanish in the interval [c, d],
then W (X) is constant on [c, d].

Claim 3 holds by the intermediate value property for polynomials.

Claim 4. If i ∈ {1, ..., d − 1} and c ∈ R is a zero of hi, then there is some ε > 0
such that var(hi−1(x), hi(x), hi+1(x)) = 1 for x ∈ (c− ε, c+ ε).

As hi(c) = 0, we get hi−1(c) = −hi+1(c) from (∗). Since not both, hi and
hi+1 are zero in c, it follows hi−1(c) = −hi+1(c) 6= 0 and we may choose ε so
that signhi−1(x) = − signhi(x) 6= 0 for all x ∈ (c − ε, c + ε). Then, no matter
what hi(x) is in (c − ε, c + ε), we always have var(hi−1(x), hi(x), hi+1(x)) = 1 for
x ∈ (c− ε, c+ ε).

For i ∈ {0, ..., d− 1} let
Wi(x) := var(hi(x), ..., hd(x)).

Claim 5. If c ∈ R and i ∈ {0, ..., d − 1} with hi(c) 6= 0, then there is some ε > 0
such that Wi(X) is constant on (c− ε, c+ ε).

Let j1 < ... < jl be an enumeration of those indices j ∈ {i, ..., d} such that
hj(c) 6= 0. Take ε so that
(a) signhjα(x) = signhjα(c) 6= 0 for all x ∈ (c− ε, c+ ε) and all α ∈ {1, ..., l}.
By claim 4 we may shrink ε such that

(b) for each j ∈ {i+ 1, ..., d− 1} with hj(c) = 0, var(hj−1(x), hj(x), hj+1(x)) = 1
for x ∈ (c− ε, c+ ε).

As hi(c) 6= 0 by assumption and hd(c) 6= 0 we have j1 = i and jl = d. Thus by
(+) (before 4.3.12) and (a),

Wi(X) = w1(x) + ...+ wl−1(x), with

wα(x) := var(hjα(x), ..., hjα+1
(x)) (x ∈ (c− ε, c+ ε)).
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By (†), jα+1 ≤ jα + 2. Hence, either wα(x) = var(hjα(x), hjα+1(x)) (x ∈ (c −
ε, c+ ε), α ∈ {1, ..., l − 1}), which is constant on (c− ε, c+ ε) by (a), or,

wα(x) = var(hjα(x), hjα+1(x), hjα+2(x)) (x ∈ (c− ε, c+ ε), α ∈ {1, ..., l − 1}),
which is constant on (c− ε, c+ ε) by (b).

SinceWi(X) = w1(x)+ ...+wl−1(x), with wα(x) for x ∈ (c−ε, c+ε), this shows
claim 5.

Claim 6. If c ∈ R is a zero of h0, then there is some ε > 0 such that

W (x) = W (y) + 1 for all x, y with c− ε < x < c < y < c+ ε.

Since h0(c) = 0 we have h1(c) 6= 0 by (†). Choose ε > 0 such that
(i) W1(X) is constant on (c− ε, c+ ε) (this is possible by claim 5),
(ii) signh1(x) = signh1(c) 6= 0 (x ∈ (c−ε, c+ε)) (this is possible, since h1(c) 6= 0).
(iii) c is the unique zero of f in (c− ε, c+ ε).

Let k > 0 and g(X) ∈ R[X], g(X) 6= 0 with f(X) = (X − c)k·g(X). Since k > 0
we have

f ′(X) = (X − c)k−1·(kg(X) + (X − c)g′(X)).

For x ∈ (c, c+ε) we have sign f(x) = sign g(x) and sign f ′(x) = sign(kg(x)+(X−
c)g′(x)). By shrinking ε if necessary and since g(c) 6= 0 we see that sign f ′(x) =
sign g(x) (x ∈ (c, c + ε)). It follows that signh0(x) = signh1(x) 6= 0 for all x ∈
(c, c+ ε), in other words

(∗∗) var(h0(x), h1(x)) = 0 for all x ∈ (c, c+ ε).

As g(c) 6= 0 the multiplicity of X − c is k − 1 in f ′. Since fd = gcd(f, f ′) and
h0 = f

fd
the multiplicity of X − c in h0 is 1. Hence h0 changes sign in c. By (∗∗)

and (ii) we get

(∗ ∗ ∗) var(h0(x), h1(x)) = 1 for all x ∈ (c− ε, c).

Now for y ∈ (c, c+ ε) we have W (y)
(+),(ii)

= var(h0(y), h1(y)) +W1(y)
(∗∗)
= W1(y).

Whereas for x ∈ (c−ε, c) we haveW (x)
(+),(ii)

= var(h0(x), h1(x))+W1(x)
(∗∗)
= W1(x)+

1. Since W1(x) is constant on (c− ε, c+ ε) by (i), this shows claim 6.

Now we prove the Theorem. Let c1 < ... < cm be the enumeration of the zeroes
of h in [a, b]. Choose ε > 0 such that for each j ∈ {1, ...,m} the following conditions
are satisfied:

(1) If h0(cj) = 0, thenW (x) = W (y)+1 for all x, y with c−ε < x < c < y < c+ε.
This is possible by claim 6.

(2) If h0(cj) 6= 0, then W (X) is constant on (cj − ε, cj + ε). This is possible by
claim 5 applied to i = 0.

(3) cj + ε < cj+1 − ε (j ∈ {1, ...,m− 1}).
Choose dj ∈ (cj − ε, cj) and ej ∈ (cj , cj + ε) (1 ≤ j ≤ m), in particular

d1 < c1 < e1 < d2 < c2 < e2 < ... < dm < cm < em.

By enlarging d1 and shrinking em if necessary, we may assume that all zeros of h
in [d1, em] are among the c1, ..., cm (note that a or b might be zeros of h).

By the choice of ε in (1), W (x) decreases in the interval [dj , ej ] by 1 if and only
cj is a zero of h0, whereas in in all other intervals [dj , ej ], W (x) is constant by the
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choice of ε in (2). Finally W (x) is constant in every interval [ei, di+1] (1 ≤ i < m)
by claim 3.

Thus W (d1)−W (em) is the number of zeroes of h0 in (d1, em).
Since f(a) 6= 0, also h0(a) 6= 0 and by our choice of d1, h0 does not have

zeroes in the closed interval between a and d1. Thus W (d1) = W (a). Similarly
W (em) = W (b). Hence W (a) −W (b) is the number of zeroes of h0 in (d1, em),
which is the number of zeroes of h0 in (a, b). �

The proof of 4.3.9 from 4.3.13 is left as an exercise.
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