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Some standard sources: For lattice ordered Abelian groups (aka Abelian `-
groups) our principal reference is [Darnel1995]. A shorter text is [AndFei1988]. A
much cited book is [BiKeWo1977]. A more recent book is [KopMed1994] and a book
also addressing fields, rings and modules is [Steinb2010]. For vector lattices, see
the two volumes on Riesz spaces [LuxZaa1971, Zaanen1983]. A book on advanced
techniques is [GlaHol1989], which also contains some model theory mentioned in
the overview [Weispf1989].

1. Overview

1.1. An ad hoc definition Let X be a set and for each x ∈ X let Λx = (Λx,+,≤)
be a TOAG (Totally Ordered Abelian Group). Let

Λ =
∏
x∈X

Λx
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be the product structure, i.e. Λ = (Λ,+,≤), where (f + g)(x) = f(x) + g(x) and
f ≤ g ⇐⇒ ∀x ∈ X : f(x) ≤ g(x). Then (Λ,+) is an abelian group and (Λ,≤) is a
poset (=partially ordered set) compatible with +, i.e.

f ≤ g ⇒ f + h ≤ g + h for all f, g, h ∈ Λ.

Furthermore, for all f, g ∈ Λ the supremum f ∨ g = sup{f, g} of {f, g} in Λ exists
and is given by

(f ∨ g)(x) = max{f(x), g(x)} (x ∈ X).

Similarly, the infimum f ∧ g = inf{f, g} of {f, g} in Λ exists and is given by

(f ∧ g)(x) = min{f(x), g(x)} (x ∈ X).

An `-group in this course is (up to isomorphism) a subgroup of some such Λ that
is closed under ∧ and ∨. We usually consider G as a structure in the language
{+,−, 0,∧,∨}.
1.2. Examples - crucial for the development of the theory
(0) Products of TOAGs (or in fact of `-groups). These have to be named here

but do not really vindicate the systematic study of a new algebraic structure.
(1) Continuous functions. Let X be a topological space and let Γ be a TOAG

equipped with a topology making subtraction and max,min : Γ × Γ −→ Γ
continuous (e.g. the order topology on Γ or the discrete topology on Γ).
Let G = C(X,Γ) be the set of continuous functions X −→ Γ. Then G is a
subgroup of Λ = ΓX closed under ∧ and ∨, hence G is an `-group.
There are variations of this example:
(a) Let M be an expansion of a TOAG and let X ⊆ Mn be definable and

endowed with the product of the order topology. Then the set of (con-
tinuous) definable functions X −→M is an `-group.

(b) Let K be an ordered field. Then C(X,K) is even a ring, the ring of
continuous functions X −→ K. There are two `-groups associated to
this ring: (C(X,K),+,≤) and (C(X,K)×,>0, ·,≤) (positive units of the
ring C(X,K))

In each of the examples here we also have the `-group of bounded functions:
Those functions f for which there is some γ ∈ Γ with |f(x)| ≤ γ (x ∈ X).

(2) Value groups of Bézout domains. A Bézout domain is a commutative domain
R such that all finitely generated ideals are principal (e.g: Z, or valuation
rings of fields). Let R be a Bézout domain with fraction field K. Let G be
the group K×/R×, partially ordered by aR× ≤ bR× ⇐⇒ b/a ∈ R. Then
G is an `-group as one verifies easily - once we have the correct algebraic
definition. This group is not given in the style of example (1) or the definition
1.1 and needs justification. This example is crucial because by the Jaffard-
Kaplansky-Ohm theorem, every `-group comes from a Bézout domain in this
way.

We will talk about this in the course.
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2. Partially ordered groups and `-groups

2.1. Definition.
A po-group is a (not necessarily abelian) group G = (G,+) together with a partial
order ≤ such that for all a, b, c ∈ G we have

a ≤ b⇒ a+ c ≤ b+ c, c+ a ≤ c+ b.

If in addition (G,≤) is a lattice, then G is a lattice ordered group or an `-
group[1].

In these notes all po-groups and all `-groups will be assumed to be
abelian; hence we just write po-group/`-group to mean “abelian

po-group/abelian `-group”

Thus an `-group here is an abelian group G together with a partial order ≤ such
that (G,≤) is a lattice satisfying a ≤ b⇒ a+ c ≤ b+ c for all a, b, c ∈ G.
The main example of po-groups are subgroups of powers of a totally ordered abelian
group together with the induced order. However, in general po-group are not even
torsion free (think of the trivial poset).

2.2. Basic Distributivity laws in po-groups Let G be a po-group.
(i) By definition 2.1, every c ∈ G gives rise to a monotone map fc : G −→

G, fc(a) = a+ c. For a ∈ G we then have fc ◦ f−c(a) = fc(a− c) = a, hence
f−c is the compositional inverse of fc. It follows that fc is an automorphism
of (G,≤).

(ii) The map G −→ G, a 7→ −a is an isomorphism (G,≤) −→ (G,≥), because
a ≤ b implies −b = a+ (−a− b) ≤ b+ (−a− b) = −a.

Hence if H ⊆ G, then supH exists if and only if inf(−H) exists and in this
case inf(−H) = − supH.

(iii) If g ∈ G and H ⊆ G, then supH exists if and only if sup(g + H) exists
and in this case g + supH = sup(g + H). This follows from (i), which says
that the map G −→ G, x 7→ g + x is an automorphism of (G,≤). Similarly,
if inf H exists, then sup(−H) exists and inf H = − sup(−H) using (ii). It
follows g + inf(H) = inf(g + H) because −(g + inf H) = −g + sup(−H) =
sup(−g −H) = − inf(g +H).

Assuming finite suprema and infima exists, this means

(∨) g + (h1 ∨ h2) = (g + h1) ∨ (g + h2) and
(∧) g + (h1 ∧ h2) = (g + h1) ∧ (g + h2).

Warning: Notice that ∧, ∨ do not distribute over +, e.g. if a ≥ 0 and a 6= 0, then
a ∧ (a+ a) = a 6≥ 2a = a ∧ a+ a ∧ a and 0 ∧ (a− a) = 0 6≤ −a = 0 ∧ a+ 0 ∧ −a.
On the other hand, (iii) implies distributivity of ∧ and ∨ (if they exist) and a
modularity law, as we see now in (iv) and below in 2.3.
(iv) If g, h ∈ G and g ∨ h, g ∧ h exist in G, then

g + h = (g ∨ h) + (g ∧ h),

[1]In [BiKeWo1977, 1.2.1, p. 16] `-groups are called groupe réticulé (’reticular group’)
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since

g + h− (g ∧ h) = g + (−g ∨ −h) + h, by (ii)
= (0 ∨ (g − h)) + h, by (iii)

= h ∨ g, by (iii).

(v) The posets on an abelian group that make G into a po-group are in bijection
with the subsets P ofG that have the property P+P ⊆ P and P∩(−P ) = {0}.

(vi) Every partial order of a torsion-free abelian group G can be extended to a
total order. This is important in the proof of the Jaffard-Ohm-Kaplansky
Theorem; see 4.1 for a proof.

2.3. Proposition. Let G be an `-group. If S ⊆ G is any set such that sup(S)

exists, then for every f ∈ G also sup(f ∧ S) exists and f ∧ sup(S) = sup(f ∧ S).[2]

Similarly, if inf(S) exists, then inf(f ∧ S) exists and f ∨ inf(S) = inf(f ∨ S).
In particular G is distributive.

Proof. Let t = sup(S). Then for s ∈ S we have 0 ≤ t− s, hence f ∧ t ≤ (f + (t−
s)) ∧ t = t− s+ (f ∧ s) and therefore

(∗) 0 ≤ (f ∧ t)− (f ∧ s) ≤ t− s.

Now

0 = t− sup(S)

= t+ inf(−S) and inf(−S) exists by 2.2(ii)
= inf(t− S) and inf(t− S) exists by 2.2(iii)
= inf{(f ∧ t)− (f ∧ s) | s ∈ S} and the infimum exists by (∗)
= (f ∧ t) + inf{−(f ∧ s) | s ∈ S} and the infimum exists by 2.2(iii)
= (f ∧ t)− sup(f ∧ S) and sup(f ∧ S) exists by 2.2(ii).

Thus sup(f∧S) exists and is equal to f∧t = f∧sup(S). Applying the automorphism
G −→ G, g 7→ −g of (G,≤) and using (iii) we get the statement for the infimum:
f∨inf(S) = −(−f∧− inf(S)) = −(−f∧sup(S)) = − sup((−f)∧S) = inf(f∨S). �

2.4. Decomposition of elements
Let G be an `-group.

(i) Let f ∈ G.
(a) f = (f ∨ 0) + (f ∧ 0), by 2.2(iv) applied to f and 0. Hence f is the

difference of the two elements

f+ := f ∨ 0, the positive part of f and

f− := −(f ∧ 0) = (−f) ∨ 0, the negative part of f,

and f+, f− ≥ 0.

[2]In this property of a lattice is called Brouwerian, which is different from saying that a lattice
is Heyting.
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(b) (f ∨ 0) ∧ −(f ∧ 0) = 0, because

0 ≤ (f ∨ 0) ∧ −(f ∧ 0), as f ∧ 0 ≤ 0 ≤ f ∨ 0

= (f ∨ 0) ∧ ((f ∨ 0)− f) by (a)
= (f ∨ 0) + (0 ∧ −f) by 2.2(iii)(∧)

= (f ∨ 0)− (f ∨ 0) by 2.2(ii)
= 0.

(c) (f ∨0)− (f ∧0) = (f ∨0)∨−(f ∧0) = f ∨−f , in particular the absolute
value

|f | := f ∨ −f

satisfies |f | ≥ 0.
Proof. The identity (f ∨ 0) − (f ∧ 0) = (f ∨ 0) ∨ −(f ∧ 0) follows from
2.2(iv) and (b). For the second identity we have (f ∨ 0) ∨ −(f ∧ 0) =
(f ∨ 0) ∨ (−f) ∨ 0 and it suffices to show that f ∨ −f ≥ 0.
From f ∨−f ≥ f we get 2(f ∨−f) ≥ (f ∨−f) +f = (2f)∨0 ≥ 0. Hence
it suffices to show that for any g ∈ G with 2g ≥ 0 we have g ≥ 0.
This is because 2(g ∧ 0) = (g ∧ 0) + (g ∧ 0) = ((g ∧ 0) + g) ∧ (g ∧ 0) =
(2g) ∧ g ∧ 0 = g ∧ 0; thus 2(g ∧ 0) = g ∧ 0 and so g ∧ 0 = 0, i.e. g ≥ 0. �

(d) The triangle inequality: If g ∈ G, then |f + g| ≤ |f |+ |g|.[3]
Proof. f+g = (f∨0)+(f∧0)+(g∨0)+(g∧0) ≤ (f∨0)+(g∨0), because
(f ∧ 0) + (g ∧ 0) ≤ 0. Hence (f + g)∨ 0 ≤ (f ∨ 0) + (g ∨ 0). But then also
−((f+g)∧0) = (−f−g)∨0 ≤ ((−f)∨0)+((−g)∨0) = −(f∧0)−(g∧0).
It follows that |f + g| = ((f + g)∨ 0)− ((f + g)∧ 0) ≤ (f ∨ 0) + (g ∨ 0)−
(f ∧ 0)− (g ∧ 0) = |f |+ |g| by (c). �

(e) • f ∧ −(f ∧ 0) = f ∧ 0, because f ∧ −(f ∧ 0) = f ∧ ((−f) ∨ 0)
2.3
==

(f ∧ (−f)) ∨ (f ∧ 0) = (−|f |) ∨ (f ∧ 0) = f ∧ 0, since −|f | ≤ f ∧ 0
by (c).

• f ∨ −(f ∧ 0)
2.3
== f ∨ (−f) ∨ 0 = |f |, by (c).

(ii) For every f ∈ G there are uniquely determined g, h ∈ G with g ∧ h = 0 and
f = g − h, namely g = f ∨ 0 and h = −(f ∧ 0) = (−f) ∨ 0.
Proof. That f ∨ 0 and −(f ∧ 0) have these property has been shown in (i).

Take g, h ∈ G with f = g − h and g ∧ h = 0. We show that g = f ∨ 0 and
h = −(f ∧ 0). We have f ∧ 0 = (g − h) ∧ 0 = (g ∧ h) − h by 2.2(iii)(∧). By
assumption g ∧ h = 0, thus f ∧ 0 = −h. Since f ∨ 0 = f − (f ∧ 0) by (i)(a) we
obtain f ∨ 0 = g − h+ h = g as required. �

(iii) Every term t in the language {+,−, 0,∧,∨} is a composition of terms in
the language {+,−, 0} extended by a unary function x ∨ 0. Similarly, t is a
composition of terms in the language {+,−, 0} extended by a unary function
x ∧ 0.
Proof. Since f ∧ g = −((−f) ∨ (−g)) it suffices to show that f ∨ g is a
composition of +,− and the function x ∨ 0. This is shown in the following

[3]This property necessarily needs commutativity of G and in fact characterizes commutativity,
see [Darnel1995, Prop. 4.15, p. 20] .
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identities.

f ∨ g =

(
(f ∨ 0)− (0 ∨ −f)

)
∨
(

(g ∨ 0)− (0 ∨ −g)

)
by (i)(a)

=

(
(f ∨ 0)− (0 ∨ −f)− (g ∨ 0) + (0 ∨ −g)

)
∨ 0

+ (g ∨ 0)− (0 ∨ −g) by (iii)(∨).

�
(iv) Let g, h1, h2 ∈ G. Then

(a) (g ∧ h1) + (g ∧ h2) ≤ (2g) ∧ (h1 + h2) and

Polar inequality g, h1, h2 ≥ 0 =⇒ g ∧ (h1 + h2) ≤ (g ∧ h1) + (g ∧ h2)

Proof. Using distributivity of + over ∧ we have

(g ∧ h1) + (g ∧ h2) = ((g ∧ h1) + g) ∧ ((g ∧ h1) + h2)

= (g + g) ∧ (h1 + g) ∧ (g + h2) ∧ (h1 + h2){
≤ (2g) ∧ (h1 + h2)

≥ g ∧ (h1 + h2) if g, h1, h2 ≥ 0.

�
(b) (2g)∨ (h1 +h2) ≤ (g ∨h1) + (g ∨h2), because by distributivity of + over
∨ we have

(g ∨ h1) + (g ∨ h2) = ((g ∨ h1) + g) ∨ ((g ∨ h1) + h2)

= (g + g) ∨ (h1 + g) ∨ (g + h2) ∨ (h1 + h2)

≥ (2g) ∨ (h1 + h2).

(v) Riesz decomposition If f, g1, . . . , gn ∈ G≥0 with f ≤ g1 + . . . + gn, then
there are hi ≤ gi with hi ≥ 0 such that f = h1 + . . .+ hn.
Proof. It suffices to do the case n = 2, because then f ≤ g1 + . . .+ gn+1 gives
0 ≤ h0 ≤ g1 + . . . + gn and 0 ≤ hn+1 ≤ gn+1 with f = h0 + hn+1 and by
induction we get the assertion.

Hence assume f ≤ g1 + g2. Using the polar inequality 2.2(iv)(a) we know
f = f ∧ (g1 + g2) ≤ (f ∧ g1) + (f ∧ g2). Then 0 ≤ f − (f ∧ g1) ≤ f ∧ g2 ≤ g2.
Hence we may take h1 = f ∧ g1 and h2 = f − (f ∧ g1). �

2.5. `-group homomorphisms and `-subgroups Let G,H be `-groups. A
map ϕ : G −→ H is an `-group homomorphism if and only if ϕ is a group
homomorphism preserving ∧ and ∨. Obviously ϕ then also preserves the partial
order. If G is a subgroup of H and ϕ is the inclusion map, then G is called an
`-subgroup of H.
(i) Let ϕ : G −→ H be a group homomorphism. The following are equivalent.

(a) ϕ is an `-group homomorphism.
(b) ϕ preserves ∧.
(c) ϕ preserves ∨.
(d) For all f ∈ G we have ϕ(f ∧ 0) = ϕ(f) ∧ 0.
(e) For all f ∈ G we have ϕ(f ∨ 0) = ϕ(f) ∨ 0.
(f) ϕ is monotone and preserves disjointness, i.e. f ∧ g = 0 implies ϕ(f) ∧

ϕ(g) = 0.
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Proof. (a) ⇐⇒ (b) ⇐⇒ (c) follows from the identity x ∧ y = −(−x ∨ −y),
valid in all `-groups by 2.2(ii). For the same reason, (d) is equivalent to (e).
Item (c) trivially implies (e). Condition (e) implies (a) by 2.2(iii). Hence
(a)–(e) are equivalent. Obviously (a) implies (f).
(f)⇒(d),(e). Since f is monotone we have ϕ(f ∨ 0), ϕ(−(f ∧ 0)) ≥ 0. Since
(f ∨ 0) ∧ −(f ∧ 0) = 0 (by 2.4(i)) and f preserves disjointness we have ϕ(f ∨
0)∧ϕ(−(f ∧ 0)) = 0. Since ϕ(f) = ϕ((f ∨ 0) + (f ∧ 0)) = ϕ(f ∨ 0) +ϕ(f ∧ 0)
we see from 2.4(ii) that ϕ(f ∨ 0) = ϕ(f) ∨ 0 and ϕ(f ∧ 0) = ϕ(f) ∧ 0. �

(ii) If U is a subgroup of H, then U is an `-subgroup of H if and only if U ∧0 ⊆ U
if and only if U ∨ 0 ⊆ U . This follows again from 2.2(iii).

2.6. Corollary. (Weinberg)
Let U be a subgroup of an `-group G. The lattice ordered group GU generated by U
in G is

GU = {sup
i∈I

inf
j∈J

uij | (uij)i∈I,j∈J ⊆ U, I, J finite and nonempty}.

Proof. We only need to show thatGU is an `-subgroup ofG. ThatGU is a sublattice
of G follows from distributivity, see 2.3. Further −GU = GU follows from 2.2(ii)
and distributivity. Finally GU +GU ⊆ GU follows from 2.2(iii). �

2.7. Definition. Let K be an ordered field (we will mostly choose K = Q or
K = R). A K-vector lattice is an `-group G and a K-vector space such that for
all r ∈ K≥0 and all g ∈ G≥0 we have r·g ≥ 0; see . If K = R, then vector lattices
are also called Riesz spaces, see [LuxZaa1971, Zaanen1983].

2.8. Corollary. Let X be a set and let V be the K-vector lattice of all functions
X −→ K, for some ordered field K. If U ⊆ V is a subgroup, then the K-vector
lattice generated by U in V is

K·GU = GK·U ,

in the notation of 2.6.

Proof. It is clear that GK·U ⊆ K·GU and that K·GU is contained in the K-vector
lattice generated by U in V . Hence it is enough to show that GK·U is closed under
scalar multiplication. But this is obvious from the description of GU in 2.6, since
r·(f ∨ g) = (rf ∨ rg), when r ≥ 0, r·(f ∨ g) = (rf ∧ rg) if r ≤ 0 and because GU is
distributive. �

2.9. Proposition. For n ∈ N the map ϕ : G −→ G, ϕ(x) = n·x is an `-group
embedding, in particular G is torsion free and satisfies (ng) ∨ (nh) = n(g ∨ h),
(ng) ∧ (nh) = n(g ∧ h) and ng ≤ nh ⇐⇒ g ≤ h.[4]

Proof. Since G is abelian, ϕ is a group homomorphism. By induction on n we see
that ϕ is monotone: g ≤ h⇒ (n+ 1)g = ng + g ≤ nh+ g ≤ nh+ h = (n+ 1)h.

In order to show that ϕ is an `-group homomorphism we use 2.5(i) and we only
need to show that ϕ(g) ∨ 0 = ϕ(g ∨ 0), i.e. (ng) ∨ 0 = n(g ∨ 0).
Claim. For all f, g ∈ G with f ∧ g = 0 and each k ∈ N we have f ∧ kg = 0.

[4]By [AndFei1988, Theorem 4.1.1], a not necessarily abelian `-group is representable (in the
sense that it is isomorphic to an `-subgroup of a product of totally ordered groups) if and only if
(2g) ∧ (2h) = 2(g ∧ h) for all g, h.
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Proof. Since g ≥ 0 we have kg ≤ (k+1)g. Hence f∧kg = 0 follows from f∧2kg = 0
(and f ∧ g = 0). Thus by induction it suffices to show f ∧ 2g = 0. But this holds
by 2.2(iv)(a): Since f, g ≥ 0 we have f ∧ 2g = f ∧ (g + g) ≤ f ∧ g + f ∧ g = 0. �

Now take f ∈ G. Write g = f ∨0 and h = −(f ∧0). Then g, h ≥ 0 and by 2.4(ii)
we know that g ∧ h = 0. By the claim we get g ∧ nh = 0 and then by the claim
again also (ng) ∧ (nh) = 0. Since f = g − h by 2.4(ii), we have nf = ng − nh. But
now the uniqueness in 2.4(ii) for nf and (ng)∧ (nh) = 0 shows that ng = (nf)∨ 0,
i.e. n(f ∨ 0) = (nf) ∨ 0.
Hence ϕ is an `-group homomorphism. ϕ is injective, because ng = 0 implies
0 = (ng) ∨ 0 = ϕ(g) ∨ 0 = ϕ(g ∨ 0) = n(g ∨ 0), and from 0 ≤ g ∨ 0 ≤ n(g ∨ 0) we
obtain g ∨ 0 = 0; similarly g ∧ 0 = 0 and so g = g ∨ 0 + g ∧ 0 = 0 (using 2.4(ii)). �

2.10. Corollary. Let G be an `-group and let H be the divisible hull of G. Then
there is a unique `-group structure on H such that G is an `-subgroup of H. We
have f

k ≤
g
n ⇐⇒ nf ≤ kg, f

k ∨
g
n = nf∨kg

kn and f
k ∧

g
n = nf∧kg

kn for f, g ∈ G and
k, n ∈ N.

Proof. Straightforward using 2.9. �

2.11. `-ideals
Let G be an `-group. Convex `-subgroups of G are called `-ideals of G.[5] A set S
here is convex if x ≤ y ≤ z and x, z ∈ S implies y ∈ S.
(i) The `-ideals of G are precisely the kernels of `-group homomorphisms G −→

H to some `-group H. If I is an `-ideal of G, then G/I is ordered by
f + I ≤ g + I ⇐⇒ ∃h ∈ I : h ≤ g − f ; in particular g + I ≥ 0 in G/I just if
h ≤ g for some h ∈ I.

(ii) If S ⊆ G is nonempty, then the `-ideal generated by S in G is

`(S) = {g ∈ G | ∃s1, . . . , sn ∈ S : |g| ≤ |s1|+ . . .+ |sn|}.

(iii) If f ∈ G, then

`(f) = {g ∈ G | ∃n ∈ N : |g| ≤ n·|f |}.

(iv) A subset S of G is an `-ideal of G just if S 6= ∅, 0 ≤ s1, s2 ∈ S implies
s1 + s2 ∈ S and |g| ≤ |s| and s ∈ S implies g ∈ S.

(v) If I, J are `-ideals of G, then their sum I +J = {g+h | g ∈ I, h ∈ J} is again
an `-ideal.

(vi) If f, g ∈ G, then

`(f) + `(g) = `(|f | ∨ |g|) = `(|f |+ |g|)
`(f) ∩ `(g) = `(|f | ∧ |g|).

In particular every `-ideal that is finitely generated as an `-ideal is generated
by a single element and the finitely generated `-ideals form a lattice with +
as supremum and ∩ as infimum.

(vii) If I is an `-ideal of G and π : G −→ G/I is the residue map, then taking
preimages under π is an inclusion preserving bijection between the `-ideals of
G/I and the `-ideals of G containing I.

[5]Notice that in the non-commutative case one also requires that I is a normal subgroup of G.
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Proof. (i) It is clear that the kernel of an `-group homomorphisms G −→ H is a
convex `-subgroup. Conversely let I be a convex `-subgroup. We write f̄ = f + I ∈
G/I for f ∈ G. We define a relation ≤ on G/I by f ≤ g ⇐⇒ ∃h ∈ I : h ≤ f − g,
which is clearly well defined. Since I is convex we see that f = g ⇐⇒ f ≤ g ≤ f .
It follows easily that f ≤ ḡ ⇐⇒ ∃f ′, g′ ∈ G : f ′ ≤ g′ & f − f ′, g − g′ ∈ I and that
≤ is a partial order on G/I. If f, g ∈ G, then f ∨ g is the supremum of f and g
in G/I: Assume f̄ , ḡ ≤ h̄ and take a, b ∈ I with a ≤ h − f and b ≤ h − g. Then
f ≤ h−a ≤ h−(a∧b) and g ≤ h−b ≤ h−(a∧b) and so f∨g ≤ h−(a∧b). Since I is
an `-subgroup we know that a∧ b ∈ I, hence f ∨ g ≤ h. This implies that (G/I,≤)
is an `-group and the residue map G −→ G/I is an `-group homomorphism with
kernel I.
(ii) Now let S ⊆ G be nonempty. Recall from 2.4(i)(c) that |f | – defined as f ∨−f
– satisfies |f | = (f ∨ 0) ∨ −(f ∧ 0) = (f ∨ 0) − (f ∧ 0) ≥ 0. In particular 0 ≤
f ∨ 0,−(f ∧ 0) ≤ |f |, which implies that `(S) is contained in the `-ideal generated
by S using f = (f ∨ 0) + (f ∧ 0) (see 2.4(i)(a)). In order to see that `(S) is an
`-ideal we need to show that `(S) is convex, −`(S) ⊆ `(S) and `(S) + `(S) ⊆ `(S).
−`(S) ⊆ `(S) is clear. If g1, g2 ∈ `(S) and g1 ≤ f ≤ g2, then −|g1| ≤ −f , hence

|f | ≤ |g1| ∨ |g2| ≤ |g1|+ |g2|, which implies f ∈ `(S). Now take g1, g2 ∈ `(S). then
|g1 + g2| ≤ |g1|+ |g2| by 2.4(i)(d), which implies g1 + g2 ∈ `(S).
(iii) is an instance of (ii) and (iv) is an easy consequence of (ii).
(v) We verify (iv) for I + J . Since I + J is closed under addition we only need to
show that for f ∈ G, g ∈ I and h ∈ J with |f | ≤ |g+h|, we have f ∈ I +J . By the
triangle inequality 2.4(i)(d) we have |g+h| ≤ |g|+ |h| and as |g| ∈ I, |h| ∈ J we may
replace g, h by |g|, |h| and assume that |f | ≤ g + h. Since 0 ≤ f ∨ 0,−(f ∧ 0) ≤ |f |
and f = (f ∨ 0) + (f ∧ 0) by 2.4(i)(a), we may assume that f ≥ 0.

Hence 0 ≤ f, g, h ≤ g+h. By Riesz decomposition 2.2(v) there are g0 ≤ g, h0 ≤ h
with g0, h0 ≥ 0 and f = g0 + h0. But then g0 ∈ I, h0 ∈ J and f = g0 + h0 ∈ I + J .
(vi) Since `(f)+`(g) is an `-ideal by (v) we get `(f)+`(g) = `(|f |∨|g|) = `(|f |+|g|).
The inclusion `(f)∩`(g) ⊇ `(|f |∧|g|) follows from (iii) and for `(f)∩`(g) ⊆ `(|f |∧|g|)
take h ∈ `(f) ∩ `(g). By (iii) there are m,n ∈ N with |h| ≤ m|f |, n|g|. Then
|h| ≤ (m+ n)|f |, (m+ n)|g| and so |h| ≤ (m+ n)|f | ∧ (m+ n)|g|, which is equal to
(m+ n)(|f | ∧ |g|) by 2.9. Hence h ∈ `(|f | ∧ |g|).
(vii). Taking preimages under π is an inclusion preserving bijection between the
subgroups of G/I and the subgroups of G containing I. Hence For a subgroup J
of G/I we only need to show that J is an `-ideal of G/I if and only if π−1(J) is an
`-ideal of G. This is straightforward using the characterization in (iv). �

2.12. Example. Convex subgroups of TOAGs are obviously `-ideals. However, con-
vex subgroups of an `-group are in general not `-subgroups. For example consider
the identity function f in the `-group G of all maps Q −→ Q. Then the sub-
group Z·f generated by f in G is convex. The reason is that distinct elements
of Z·f are incomparable: If k, n ∈ Z and k·f ≤ n·f , then k·f(1) ≤ n·f(1) and
k·f(−1) ≤ n·f(−1); but f(1) = 1 and f(−1) = −1, hence k = n.

2.13. Definition of (prime) ideals and filters in posets Let P be a partially
ordered set.
(a) A subset S of P is called a down-set of P if a ≤ b ∈ S implies a ∈ S. The

down-set generated by S in P is written as S↓ = {p ∈ P | ∃s ∈ S : p ≤ s}.
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Dually, S is called an up-set of P if a ≥ b ∈ S implies a ∈ S. The up-set
generated by S in P is written as S↑ = {p ∈ P | ∃s ∈ S : p ≥ s}.

(b) An ideal of a poset P is a nonempty down-set I of P that is up-directed
(i.e. a, b ∈ I ⇒ ∃c ∈ I : a, b ≤ c). If P is a lattice, this is equivalent to saying
that I 6= ∅ and I satisfies a, b ∈ I ⇐⇒ a ∨ b ∈ I.

(c) A filter of a poset P is a nonempty up-set F of P that is down-directed
(i.e. a, b ∈ F ⇒ ∃c ∈ F : a, b ≥ c). If P is a lattice, this is equivalent to saying
that F 6= ∅ and F satisfies a, b ∈ F ⇐⇒ a ∧ b ∈ F .

(d) A prime ideal of P is an ideal of P whose complement is a filter. A prime
filter of P is a filter of P whose complement is an ideal. Notice that prime
ideals and prime filters are nonempty and proper subsets of P .

If P is a lattice, then an ideal I is prime just if it is proper and it satisfies
a∧b ∈ I ⇒ a ∈ I or b ∈ I; a filter F is prime just if it is proper and it satisfies
a ∨ b ∈ I ⇒ a ∈ I or b ∈ I.

2.14. Remark. Let I be an `-ideal of G. Then I ∩ G≥0 is an ideal of the lattice
G≥0 by 2.11(iv). However, I is an ideal of the lattice G if and only if I = G: If
g ∈ G \ I, then −|g| /∈ I, but −|g| ≤ 0 ∈ I.

2.15. Prime `-ideals
Let I be an `-ideal of an `-group G. The following are equivalent.
(i) G/I is totally ordered.
(ii) For all f, g ∈ G with f ∧ g ∈ I we have f ∈ I or g ∈ I.
(iii) I = G or I ∩G≥0 is a prime ideal of the lattice (G≥0,≤).
(iv) For all f, g ∈ G with f ∧ g = 0 we have f ∈ I or g ∈ I.
(v) The `-ideals of G containing I are totally ordered by inclusion.[6]

(vi) For all `-ideals J,K we have J ∩K ⊆ I ⇒ J ⊆ I or K ⊆ I.
(vii) For all f, g ∈ G with `(f) ∩ `(g) = (0) we have f ∈ I or g ∈ I.
If these conditions hold, then I is called a prime `-ideal. If G is a TOAG, then
obviously the prime `-ideals of G are just the convex subgroups of G.

Proof. We write f̄ for the residue of f ∈ G in G/I.
(i)⇒(ii). If f ∧ g ∈ I, then f ∧ g = 0 in G/I. Since G/I is totally ordered we must
have f = 0 or g = 0, i.e. f ∈ I or g ∈ I.
(ii)⇒(iii). Since I is convex, the set I ∩ G≥0 is a down-set in G≥0 and as I is an
`-subgroup of G, I ∩ G≥0 is an ideal of G≥0. By (ii), this ideal is prime, unless it
is equal to G≥0 and in that case I = G.
(iii)⇒(iv) is clear.
(iv)⇒(i) In order to show that the order of G/I is total it suffices to show that
for each f ∈ G the element f is comparable with 0. By 2.4(i)(b) we know that
(f ∨ 0)∧−(f ∧ 0) = 0. By (iv) we get f ∨ 0 ∈ I or f ∧ 0 ∈ I. Since the residue map
G −→ G/I is an `-group homomorphism, this is the same as saying f̄ = f̄ ∧ 0 ≤ 0
or f̄ = f̄ ∨ 0 ≥ 0.
Hence (i),(ii),(iii) and (iv) are equivalent. Before proving the remaining equivalences
we need a
Claim. If f, g ∈ G with f ∧ g = 0, then f ∧ (n·g) = 0.

[6]In view of 2.15(v) one might wonder if the prime ideals of the lattice G containing a given
prime `-ideal form a chain. This fails in general, see 10.7.
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Proof. By 2.9 we know that (nf) ∧ (ng) = n(f ∧ g). Hence (nf) ∧ (ng) = 0 and
from f ≥ 0 we get f ∧ ng ≤ (nf) ∧ (ng) = 0. �
(i)⇒(v) By 2.11(vii), the `-ideals of G containing I are in inclusion preserving
bijection with the `-ideals of G/I. Since convex and symmetric subsets of totally
ordered sets are a chain for inclusion, we see that (i) implies (v).
(v)⇒(ii). Let f, g ∈ G with f ∧g ∈ I. Using 2.11(vii) the assumption in (v) implies
that `(f̄) and `(ḡ) are comparable, say `(f̄) ⊆ `(ḡ). By 2.11(iii) there is some n ∈ N
with |f̄ | ≤ n·|ḡ|. Since f̄ , ḡ ≥ 0 this means 0 ≤ f̄ ≤ nḡ.

On the other hand f ∧ g ∈ I says f̄ ∧ ḡ = 0, hence by the claim applied to G/I
also f̄ ∧ (n·ḡ) = 0. But then f̄ = f̄ ∧ n|ḡ| = 0 and so f ∈ I.
(iii)⇒(vi). If f ∈ J \ I and g ∈ K \ I, then |f | ∈ J \ I and |g| ∈ K \ I because
I, J,K are `-ideals. Then |f | ∧ |g| ∈ J ∩K and by (iii) we have |f | ∧ |g| /∈ I.
(vi)⇒(vii) is a weakening.
(vii)⇒(iv). If f∧g = 0, then by the claim and 2.11(iii) we see that `(f)∩`(g) = (0).
Hence (vii) implies f ∈ I or g ∈ I. �

2.16. Proposition. If F ⊆ G is a filter and I ⊆ G is an `-ideal, maximal with the
property I ∩ F = ∅, then I is a proper prime `-ideal.[7]

Proof. Since F 6= ∅ we have I 6= G. Suppose I is not a prime `-ideal. By 2.15 there
are g, h ≥ 0 with g ∧ h ∈ I, g /∈ I and h /∈ I. By 2.11(v), the `-ideal generated by
I and g is I + `(g) and by maximality of I, this ideal hits F . By 2.11(iii) there are
x ∈ I and g0 ∈ G with |g0| ≤ ng for some n ∈ N such that x+ g0 ∈ F . As I is an
`-ideal we know that |x| ∈ I. Since x+g0 ≤ |x+g0| ≤ |x|+ |g0| by 2.4(i)(d), we get
|x| + |g0| ∈ F . Hence we may replace x, g0 by |x|, |g0| and assume that x, g0 ≥ 0.
We set f = x+ g0.

Similarly there are y ∈ I and h0 ∈ G with y ≥ 0 and 0 ≤ h0 ≤ mh for some
m ∈ N such that y + h0 =: f ′ ∈ F . As g, h ≥ 0 we may assume that m = n by
possibly enlarging either m or n. Since g ∧ h ∈ I, also ng ∧ nh ∈ I (see 2.9) and
consequently g0 ∧ h0 ∈ I. But then F contains

f ∧ f ′ = (x+ g0) ∧ (y + h0) ≤ x ∧ y + x ∧ h0 + g0 ∧ y + g0 ∧ h0 ∈ I
(using 2.2(iv)), a contradiction to F ∩ I = ∅. �

2.17. Abstract Nullstellensatz for `-groups If G is an `-group and S ⊆ G,
then the `-ideal generated by S is

`(S) =⋂{p | p a prime `-ideal of G with S ⊆ p}.

Proof. The inclusion ⊆ is clear. For the converse take g ∈ G \ `(S) and let F =
{h ∈ G | |g| ≤ h} be the up-set generated by |g|, hence F is a filter, too. Then
F ∩ `(S) = ∅ because |g| ≤ h ∈ `(S) implies g ∈ `(S) by definition of “`-ideal”. By
2.16 there is a prime `-ideal of G containing `(S) and disjoint from F . This proves
that g /∈⋂{p | p a proper prime `-ideal with S ⊆ p}. �

[7]Notice that F ∩ I = ∅ is equivalent to F ∩G≥0 ∩ I = ∅ for any `-ideal I.
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3. The spectrum of an `-group

3.1. Definition. Let G be an `-group. The `-spectrum of G is the following
topological space, denoted by `-Spec(G). As a set `-Spec(G) consists of the prime
`-ideals of G, hence this includes the `-ideal G. On `-Spec(G) a topology is defined,
namely the topology generated by the sets

D(f) = {p ∈ `-Spec(G) | f /∈ p}

where f ∈ G.

Notice that if G is a TOAG, then `-SpecG consists of the convex subgroups of
G. For example `-Spec(Z) = {(0),Z} and the open sets are ∅, `-Spec(Z) and the
singleton set {(0)} = D(1).

We will have a closer look at the topology soon. First we use the set `-Spec(G) as
an index set for a representation of G as `-subgroup of a product of TOAGs. This
will also give a first hint why we define the topology on `-Spec(G) as above. By 2.15,
for each p ∈ `-Spec(G) the `-group G/p is a TOAG. The idea now is to consider
an element f ∈ G as a function on `-Spec(G), where each point p ∈ `-Spec(G) has
its own co-domain, namely G/p and the value of f at p is f/p; so we are really
thinking of f/p as “f(p)”.

3.2. Representation of `-groups, I The function

ρ : G −→
∏

p∈`-Spec(G)

G/p

f 7−→ (p 7→ f(p) := f/p).

is an embedding of `-groups.[8] In particular, every `-group is isomorphic to a
subdirect product of TOAGs (i.e. for each factor the projection of G for this
factor is surjective).

Proof. Since all components of ρ are `-group homomorphism also ρ is an `-group
homomorphism. Hence we only need to show that ρ is injective. However ρ(f) = 0

means f ∈⋂p∈`-Spec(G) p and this `-ideal is {0} by the Nullstellensatz 2.17. Thus
f = 0. �

We now have a closer look at the topology of `-Spec(G). Viewing G as an
`-subgroup of functions on `-Spec(G) as in 3.2 we may associate natural sets to
elements f ∈ G. Most prominently,

V (f) := {p ∈ `-Spec(G) | f(p) = 0} = {p ∈ `-Spec(G) | f ∈ p}.

is the zero set of f in `-Spec(G). If we want to view this set as a closed set of
a topology it is natural to define the topology of `-Spec(G) as in 3.1: Notice that
D(f) is the complement of V (f) in `-Spec(G). The topology of `-Spec(G) codes a
lot of information of the `-group G, which is much tighter than in the case of rings.
This is made explicit in 3.5 below and will be applied many times later on.

[8]Obviously we can drop the element G from `-Spec(G) in the index set and still get an
embedding. In fact it suffices to take the set of minimal prime `-ideals as an index set. The reason
for including all points of `-Spec(G) is that when we consider morphisms between `-groups and
we want to compare the presentations in a natural way, then we need to consider all elements of
`-Spec(G), see 3.6.
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3.3. Observation. For all f, g ∈ G we have

V (f) ∩ V (g) = V (|f | ∨ |g|) and V (f) ∪ V (g) = V (|f | ∧ |g|),

The first equality follows immediately from the definition of `-ideal and the second
one follows from 2.15(ii). Also compare with 2.11(vi).

It follows that

(i) the nonempty and closed subset of `-Spec(G) are precisely the intersections of
sets of the form V (f).

(ii) the set K(`-Spec(G)) = {∅} ∪ {V (f) | f ∈ G} is a bounded sublattice of the
powerset of `-Spec(G) and a basis of closed sets for the topology of `-Spec(G).

(iii) the set K̊(`-Spec(G)) = {`-Spec(G)} ∪ {D(f) | f ∈ G} is a bounded sublat-
tice of the powerset of `-Spec(G) and a basis of open sets for the topology of
`-Spec(G).

(iv) If p, q ∈ `-Spec(G), then

p ⊆ q ⇐⇒ ∀f ∈ G : p ∈ V (f)⇒ q ∈ V (f)

⇐⇒ ∀f ∈ G : q ∈ D(f)⇒ p ∈ D(f)

⇐⇒ q ∈ {p}.

If this is the case we say that q is a specialization of p and also write p q.[9]

3.4. The space `-Spec∗(G) of proper prime `-ideals
In the literature, `-Spec(G) is often defined as the subspace of our space, where the
point G is removed. We write

`-Spec∗(G) = {p ⊆ G | p proper prime `-ideal}

for this subspace of `-Spec(G). Since G is a closed point of `-Spec(G), `-Spec∗(G)
is an open subspace of `-Spec(G).

One reason for including G as a point in the spectrum is that `-Spec∗(G) is in
general not quasi-compact and `-Spec(G) is the Non-Hausdorff Alexandroff exten-
sion of `-Spec∗(G). Another reason is that `-Spec∗ is not functorial, see 3.6.

Notice that intersection with `-Spec∗(G) is a poset isomorphism between the
nonempty closed subsets of `-Spec(G) and the closed subsets of `-Spec∗(G). Simi-
larly, intersection with `-Spec∗(G) is a poset isomorphism between the proper open
subsets of `-Spec(G) and the open subsets of `-Spec∗(G).

3.5. The Galois connection for `-groups We define maps

V : P(G) −→ P(`-Spec(G))

S 7−→ V (S) = {p ∈ `-Spec(G) | S ⊆ p}

and

I : P(`-Spec(G)) −→ P(G)

Z 7−→ I(Z) = ⋂
p∈I

p.

[9]Specialization is a relation in any topological space X and is defined as x y ⇐⇒ y ∈ {x}.
The space X is T0 just if  is a partial order.

https://en.wikipedia.org/wiki/Alexandroff_extension#Non-Hausdorff_one-point_compactifications
https://en.wikipedia.org/wiki/Alexandroff_extension#Non-Hausdorff_one-point_compactifications
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(i) The maps V and I form an antitone Galois connection, aka polarity, between
the posets (P(G),⊆) and (P(`-Spec(G)),⊆). Explicitly this means that V and
I are order reversing and for all S ⊆ G, Z ⊆ `-Spec(G) we have

Z ⊆ V (S) ⇐⇒ S ⊆ I(Z).

Proof. That V and I are order reversing is obvious. The equivalence follows
immediately from the definitions of V and Iand does not require any of the
theory of `-groups developed so far:
⇒. If f ∈ S and p ∈ Z ⊆ V (S), then f ∈ S ⊆ p. This shows S ⊆ I(Z).
⇐. If p ∈ Z and s ∈ S ⊆ I(Z), then s ∈ p. This shows Z ⊆ V (S). �

(ii) If Z ⊆ `-Spec(G) is nonempty, then Z = V (I(Z)), because

Z
using 3.3

== ⋂{V (f) | Z ⊆ V (f)} by (i)
== ⋂{V (f) | f ∈ I(Z)} = V (I(Z)).

(iii) If S ⊆ G, then `(S) = I(V (S)), which is precisely the statement of the
Nullstellensatz 2.17.

(iv) The image of V is the set of nonempty closed subsets of `-Spec(G) and the
image of I is the set of `-ideals of G.
Proof. This follows easily from (iii) and (iv). �

(v) V induces an antitone isomorphism between the poset of `-ideals, ordered
by ⊆ and the nonempty and closed subsets of `-Spec(G) ordered by ⊆. Its
compositional inverse is the restriction of I.

(vi) The isomorphism from (v) restricts to an inclusion reversing bijection between
`-Spec(G) and the nonempty, closed and irreducible subsets of `-Spec(G).
Explicitly, p ∈ `-Spec(G) is mapped to {p} and the compositional inverse
maps A to its generic point.
Proof. Let I be an `-ideal. Then

V (I) is irreducible
⇐⇒ ∀f, g ∈ G : V (I) ∩D(f), V (I) ∩D(g) 6= ∅ ⇒ V (I) ∩D(f) ∩D(g) 6= ∅,

by 3.3
⇐⇒ ∀f, g ∈ G : V (I) ⊆ V (f) ∪ V (g)⇒ V (I) ⊆ V (f) or V (I) ⊆ V (g)

⇐⇒ ∀f, g ∈ G : V (I) ⊆ V (|f | ∧ |g|)⇒ V (I) ⊆ V (f) or V (I) ⊆ V (g),

because V (f) ∪ V (g) = V (|f | ∧ |g|) by 3.3
⇐⇒ ∀f, g ∈ G : |f | ∧ |g| ∈ I ⇒ f ∈ I or g ∈ I,

by (iii)
⇐⇒ I is a prime `-ideal, using 2.15 (and 2.11). �

(vii) The isomorphism from (v) restricts to an inclusion reversing bijection between
the poset of finitely generated `-ideals and the zero sets V (f) of elements of G.
By taking complements, the poset of finitely generated `-ideals is isomorphic
to the proper open and quasi-compact subsets of X. Another way of saying
this is:

The poset of finitely generated `-ideals is isomorphic to the open and quasi-
compact subsets U of `-Spec∗(G).
Proof. In view of 3.3 we only need to show that for each f ∈ G the set D(f)
is a quasi-compact subset of `-Spec∗(G). Let gλ ∈ G for λ in some index
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set Λ and assume that D(f) ∪ {V (gλ) | λ ∈ Λ} has the FIP. Let I be the
`-ideal generated by {gλ | λ ∈ Λ}. We need to show that D(f) ∩λ∈Λ V (gλ) 6=
∅. Otherwise V (I) ⊆ V (f) and so f ∈ I by the Nullstellensatz 2.17. By
2.11(ii) there are λ1, . . . , λn ∈ Λ with |f | ≤ |gλ1

| + . . . + |gλ1
|. But then

D(f) ∩ V (gλ1
∩ . . . ∩ V (gλn

)) = ∅, contradicting the FIP. �
(viii) `-Spec∗(G) is quasi-compact if and only if G has a strong order unit, i.e.

an element u with G = `(u).
Proof. Notice that `-Spec∗(G) =⋃f∈GD(f). If `(u) = G, then `-Spec∗(G) =

D(u) is quasi-compact by (vii). Conversely, if `-Spec∗(G) is quasi-compact,
then `-Spec∗(G) is a finite union of D(f) and by 3.3 even `-Spec∗(G) =
D(u) for some u ∈ G. Hence V (u) = {G}, which means G = `(u) by the
Nullstellensatz 2.17. �

(ix) The space `-Spec(G) is spectral (see [DiScTr2019, 1.1.5] for a definition).
This follows from the items above and will be discussed later in more detail.
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A
R

C
U

S
T

R
E
SSL

Here is a commutative diagram summarizing what is said in 3.5.

O(`-Spec∗(G))

A(X)\{∅}

{`-ideals}


∩-irreducible
open subsets
of `-Spec∗(G)




irreducible
nonempty
closed sets

 K̊(X)\{X}

X = `-Spec(G) K(X)\{∅}


finitely

generated
`-ideals



complementation

in X

V

antitone iso

poset isomorphism
I 7→{p | I*p}

bijection

bijection

bijection

bijection

poset isomorphism

Notice that the map O(X) \ {X} −→ O(`-Spec∗(G)), U 7→ U \ {G} is a poset isomorphism.
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3.6. Functoriality of `-Spec
Let ϕ : G −→ H be an `-group homomorphism. We define a map `-Spec(ϕ) :
`-Spec(H) −→ `-Spec(G) by

(`-Spec(ϕ))(q) = ϕ−1(q).

Then
(i) `-Spec(ϕ) is a continuous map and for each f ∈ G we have

`-Spec(ϕ)−1(V (f)) = V (ϕ(f)).

(ii) If ϕ is surjective, then `-Spec(ϕ) maps `-Spec∗(H) homeomorphically onto
V (Ker(ϕ)) \ {G}.

Proof. (i) It is clear that ϕ−1(q) ∈ `-Spec(G) as one checks the characterization
2.15(ii) easily. Continuity follows from `-Spec(ϕ)−1(V (f)) = V (ϕ(f)). To see this
equation, take q ∈ `-Spec(H). Then

q ∈ V (ϕ(f)) ⇐⇒ ϕ(f) ∈ q

⇐⇒ f ∈ ϕ−1(q) = `-Spec(ϕ)(q)

⇐⇒ `-Spec(ϕ)(q) ∈ V (f)

⇐⇒ q ∈ `-Spec(ϕ)−1(V (f)).

(ii) follows from 2.11(vii) and (i). �

3.7. Remark. Observe that the restriction of `-Spec(ϕ) to `-Spec∗(H) does not
have image in `-Spec∗(G). For example when G is a proper prime `-ideal of H.
One of the two reasons why we include G in the spectrum of G is the functoriality
in 3.6. The other reason is that the inclusion of G guarantees that `-Spec(G) is a
spectral space, i.e. a well understood topological theory is available to be used.

3.8. Proposition. Let G be an `-group and let H be its divisible hull, which we
consider as an `-supergroup of G, see 2.10. Then the map `-Spec(H) −→ `-Spec(G)
induced by the inclusion G ↪→ H is a homeomorphism.

Proof. All `-ideals of H are divisible, because for f ∈ G and n ∈ N we have
| fn | ≤ |f |. Now if q1, q2 ∈ `-Spec(H) and f ∈ G,n ∈ N with f

n ∈ q1 \ q2, then f ∈
q1∩G\q2∩G. Hence the map is injective. For surjectivity, pick p ∈ `-Spec(G) and
let M be the divisible hull of the `-group G/p. Since H = Q⊗G as abelian group,
there is a unique group homomorphism ψ : H −→ M extending the residue map
G −→ G/p. Straightforward checking shows that ψ is an `-group homomorphism
whose kernel intersects G in p.

Hence `-Spec(H) −→ `-Spec(G) is bijective. It is a homeomorphism because
V ( fn ) = V (f) in `-Spec(H) for f ∈ G,n ∈ N as follows from the divisibility of
`-ideals of H. �
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3.9. `-groups of functions Often, `-groups are given in the context of functions.
For example consider the `-group of all (continuous/bounded/piecewise polynomial)
functions X ⊆ Rn −→ R that are definable in some structure expanding the TOAG
(R,+,≤), or, the `-group of all functions X −→ R that have finite image. For such
groups we are looking at their `-spectrum and how it relates to X.

Let X be a set and let T be a TOAG. Let G ⊆ TX be an `-subgroup. For
x ∈ X, let evx : Γ −→ T, evx(f) = f(x) be the evaluation map. This is obviously
an `-group homomorphism and as Γ/Ker(evx) is a totally ordered subgroup of T ,
we have an `-prime ideal x̂ := Ker(evx) = {f ∈ G | f(x) = 0} ∈ `-Spec(G). This
defines a map ι : X −→ `-Spec(G), ι(x) = x̂.[10]

Let
CozG(X) = {X} ∪ {cozero sets of f ∈ G},

where the cozero set of f ∈ G is {f 6= 0}X = {x ∈ X | f(x) 6= 0}.
Let B be any Boolean algebra of subsets of X containing CozG(X) and let Y be
the space of ultrafilters of B (the Stone dual of B). We obtain a continuous map

F : Y −→ `-Spec(G), F (u) = {f ∈ G | {f = 0}X ∈ u}
making the diagram

Y `-Spec(G)

X

F

x7→{C∈B | x∈C} ι

commutative and that has the following properties.
(i) F is injective if and only if every element of B is a Boolean combination of

cozero sets of G. This for example is the case in the following situation:
• G is the `-group of all (continuous) and definable functions X −→ M ,

whereM is an o-minimal expansion of a DOAG andX ⊆Mn is definable
in M [11],
• B is the Boolean algebra of definable subsets of X. Hence in this case
Y is the space of all n-types of M containing X.

(ii) The point G of `-Spec(G) is in the image of F if and only if there is some
ultrafilter u of B with {f = 0}X ∈ u for all f ∈ G, equivalently: every f ∈ G
has a zero in X.
`-Spec∗(G) is in the image of F if and only if for all f, g ∈ G with {f =

0}X ⊆ {g = 0}X we have g ∈ `(f). This means that a concrete Nullstellensatz
is satisfied for G. Notice that this condition implies that every function f ∈ G
without a zero in G is a strong order unit.

However, notice that even if F is bijective, it is not a homeomorphism, because Y
is Hausdorff and `-Spec(G) generally is not.

Here is an example where F is a bijection onto `-Spec∗(G). Let X = [0, 1]n ⊆ Qn,
let G be the `-group of continuous functions X −→ Q that are definable in the
TOAG Q and let B be the Boolean algebra of definable subsets of X; i.e. Y =

[10]One may think of ι as being injective, because otherwise one can think G as an `-group of
functions Y −→ T , where Y is the set of equivalence classes of X modulo the equivalence relation
x̂1 = x̂2.

[11]By cell decomposition, X is a Boolean combination of closed and definable sets and these
sets are zero sets of (continuous) definable functions



LATTICE ORDERED ABELIAN GROUPS AND THEIR MODEL THEORY 19

{p ∈ Sn(Q) | X ∈ p}[12]. Then F is injective by (i) and is surjective, because the
Nullstellensatz holds for this group by [Baker1968, 3.3]. Notice that every f ∈ G
without a zero is a strong order unit. For an illustrations of the specialization
relation of `-Spec(G) in this example, take p, q, corresponding to n-types p, q via F
we have q ∈ {p} (i.e. p ⊆ q) if and only if for every definable set C ∈ p its closure
C in Qn is in q.

If n = 1 and q is the isolated type realised by r ∈ (0, 1) then there are exactly 3
types p whose corresponding prime ideal p specializes to q. One is q and the other
ones are the types corresponding to the cuts r− and r+ of [0, 1].

Now let X = Qn and let G be the `-group of continuous functions X −→ Q that
are definable in the TOAG Q. Then F misses points of `-Spec∗(G): Let I be the
`-ideal of all bounded functions (so these functions do not need to have any zeroes).
Then V (I) = V (1) (the constant function of value 1) and the image of F is D(1):
Obviously F misses all points in V (1); if 1 /∈ p, then all f ∈ p must have a zero and
one can construct a preimage of p.

Note that there are many points in V (1): for each “unbounded” p ∈ Sn(Q)
(i.e. p does not contain a bounded set), we have q = {f ∈ G | ∃n ∈ N, S ∈
p : f |S is bounded} ∈ V (I) and q is a proper specialization of the prime `-ideal
corresponding to p. If p̃ is another unbounded type and we form q̃ for p̃ corre-
spondingly then q and q̃ are in general incomparable; to see a concrete example let
Q = {x1 > 0, . . . , xn > 0} ⊆ Qn and choose p, p̃ unbounded, Q ∈ p and −Q ∈ p̃.
Then the function

f(x1, . . . , xn) = (x1 ∨ 0) + . . .+ (xn ∨ 0)

is in q̃ \ q and f(−x1, . . . ,−xn) ∈ q \ q̃.

[12]Here Sn(Q) is the space of n-types of the TOAG Q over the parameter set Q. In other
words, Sn(Q) is the space of ultrafilters of B; see [StoneBoolAlg, section 3.1] for a definition of
the ultrafilter space
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4. The Jaffard-Ohm-Kaplansky Theorem

4.1. Proposition. [Darnel1995, Thm 3.7,p.11]
Let G = (G,+,≤) be a po-group and assume that G is torsion free. This for example
is the case when G is an abelian `-group (cf. 2.9). Then there is a total order v
of G containing ≤ such that (G,+,v) is a po-group (and thus is lattice ordered as
well).

Proof. We may assume that G 6= {0}. Let T = G≥0 \ {0}, or, if G is trivially
ordered choose g ∈ G 6= 0 and define T = N·g. In either case T is a nonempty
sub-semigroup of G containing G≥0 \ {0} with T ∩ −T = ∅. By Zorn’s lemma,
there is a maximal nonempty sub-semigroup T of G with T ∩ −T = ∅ containing
G≥0 \ {0} and it suffices to show that T ∪ −T = G \ {0}. Suppose there is some
g ∈ G \ (T ∪ −T ) with g 6= 0. Let R be the sub-semigroup of G generated by
T ∪ {g}. Then R = (T +N0·g) ∪N·g properly contains T and by maximality of T
we have R∩−R 6= ∅. Since G is torsion free, there are no k, k′ > 0 with kg = −k′g.
But then there are t, t′ ∈ T and k, k′ ≥ 0 with t+kg = −t′−k′g, or, t+kg = −k′g,
or kg = −t′ − k′g′. In either case we see that for some t ∈ T and some k ≥ 0 we
have t = −k·g. Since 0 /∈ T we get k > 0. The same argument for −g shows that
t′ = k′·g for some t′ ∈ T, k′ > 0. Then k′t+ kt′ ∈ T . However

k′t+ kt′ = −k′kg + kk′g = 0,

in contradiction to T ∩ −T = ∅. �

A Bézout domain is a commutative domain R such that all finitely generated
ideals are principal (e.g: Z, or valuation rings of fields). Let R be a Bézout domain
with fraction field K. Let G be the group K×/R×, partially ordered by aR× ≤
bR× ⇐⇒ b/a ∈ R. Then G is an `-group as one verifies easily. G is called the
value group of R.

4.2. Jaffard-Ohm-Kaplansky Theorem [AndFei1988, Thm. 11.2]
Every `-group G = (G,+,≤) is the group of divisibility of a Bézout domain

Proof. (Sketch.) Let K[G] be the group ring over some field K. Then K[G] is a
domain.
Proof. Choose a total order v containing ≤ such that (G,+,v) is a po-group as in
4.1. Using totality of v it is easy to see that K[G] is a domain. �
Let F be the fraction field of K[G]. Define a map v : K[G] \ {0} −→ G by
v(
∑
agX

g) = inf{g | ag 6= 0}, taken in the lattice (G,≤). Its image contains G≥0

hence its extension to F× is onto G.
We claim that v is a group homomorphism F× −→ G.

Proof. It suffices to show that vp := πp ◦ v is a group hom. F× −→ G/p for
all p ∈ `-Spec(G). Using totality of the order of G/p the definition of v shows
vp(
∑
agX

g) = min{gmod p | ag /∈ p}. From here one can show that vp is a homo-
morphism. �
Now define R = {x ∈ F | v(x) ≥ 0} and verify that R is a Bézout domain using
the following observation: If γ, δ ∈ Γ, then xγ + xδ = xγ∧δ·(xγ−γ∧δ + xδ−γ∧δ), and
xγ−γ∧δ+xδ−γ∧δ is a unit of R, because v(xγ−γ∧δ+xδ−γ∧δ) = (γ−γ∧δ)∧(δ−γ∧δ) =
γ ∧ δ − γ ∧ δ = 0.
Finally one shows that G is the `-group of divisibility of R by using that v is a
homomorphism. �
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5. Conrad-Harvey-Holland Representation

5.1. The Hahn group on a poset Let Γ be a poset and for each γ ∈ Γ let Gγ
be a TOAG. We define

H = H(Γ, (Gγ)γ∈Γ) = {a ∈
∏
γ∈Γ

Gγ | supp(a) has the ACC}.

Here supp(a) = {γ ∈ Γ | aγ 6= 0} denotes the support of a andACC stands for the
ascending chain condition saying that there is no infinite sequence γ1 < γ2 < γ3 . . ..
If Gγ = H is independent of γ we just write H(Γ, H).
Elements of H are written as ∑

γ∈Γ

aγx
γ .

Then H is an abelian subgroup of the product
∏
γ∈ΓGγ because supp(−a) =

supp(a) and supp(a + b) ⊆ supp(a) ∪ supp(b) and clearly the union of two sub-
sets of Γ has the ACC just if each of the two sets have the ACC.

On H we define a relation ≤ by

a ≤ b ⇐⇒ for all maximal elements γ of supp(b− a) we have aγ < bγ .

This is a partial order on H and (H,+,≤) is a po-group, called the Hahn group
on Γ (if all Gγ are equal to R).

Proof. Firstly, if a ≤ b and c ∈ H, then clearly a+c ≤ b+c. Hence in order to show
transitivity it suffices to prove that 0 ≤ a ≤ b implies 0 ≤ b. Let γ be a maximal
element in supp(b), i.e. γ↑ ∩ supp(b) = {γ}. It follows that γ↑ ∩ supp(b − a) ⊆
{γ} ∪ (γ↑ ∩ supp(a)).

If γ↑ ∩ supp(a) = ∅, then γ↑ ∩ supp(b − a) = γ↑ ∩ supp(b) = {γ} and therefore
0 = aγ < bγ as required.

Hence we may assume that γ↑ ∩ supp(a) 6= ∅. Let δ be a maximal element in
γ↑ ∩ supp(a). If δ > γ, then 0 < aδ and bδ = 0. But this contradicts a ≤ b. It
follows that γ↑ ∩ supp(a) = {γ}.

Hence if aγ 6= bγ , then γ is a maximal element in supp(b − a) and we get
0 < aγ < bγ as required. On the other hand, if aγ = bγ , then γ↑ ∩ supp(b− a) = ∅
and γ↑ ∩ supp(a) = γ↑ ∩ supp(b) = {γ}, thus bγ = aγ > 0. �

5.2. How to calculate in a Hahn group? In the setup of 5.1 the following
properties hold.
(i) Let ∆ ⊆ Γ. Then the inclusion map H(∆, (Gγ)γ∈∆) ↪→ H(Γ, (Gγ)γ∈Γ) is

obviously an embedding of po-groups.
If ∆ = ∆↑ is an up-set of Γ, then the truncation map

H(Γ, (Gγ)γ∈Γ) −� H(∆, (Gγ)γ∈∆)

a 7−→ a � ∆ :=
∑
γ∈∆

aγx
γ

is a poset homomorphism and a retraction of the inclusion map. This follows
immediately from the definition of the partial order on the groups.

(ii) For a, b ∈ H we have

a ≤ b ⇐⇒ ∀γ ∈ Γ : a � γ↑ ≤ b � γ↑,
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because obviously a ≥ 0 if and only if a � γ↑ ≥ 0 for all γ ∈ Γ and therefore
a ≤ b ⇐⇒ b− a ≥ 0 ⇐⇒ ∀γ ∈ Γ : b � γ↑ − a � γ↑ = (b− a) � γ↑ ≥ 0.

(iii) Let I be a index set and let ai ∈ H such that for all i 6= j we have supp(ai)↓∩
supp(aj)↓ = ∅. Then the element b ∈ H defined by

bγ =

{
aγ if aiγ 6= 0 form some i ∈ I,
0 otherwise,

is obviously a well defined element of H, which we denote by
∑
i∈I a

i.

Now assume that Γ is a root system.[13] A component of a ∈ H, is any element
b ∈ H of the form

∑
γ≤δ aγx

γ , where δ ∈ supp(a)max.
Now let a ∈ H. Then
(iv) For every γ ∈ Γ there is at most one component b of a such that γ ∈ supp(b)↓

(equivalently supp(b) ∩ γ↑ 6= ∅).
Consequently a is the sum of its components in the sense of (iii).

(v) Every component of a is comparable with 0 and a ≥ 0 if and only if each of
its components is ≥ 0.

(vi) If c is a component of a ∈ H and γ ∈ Γ, then

c � γ↑ =

{
a � γ↑ if γ ∈ supp(c)↓,

0 otherwise.

(vii) If b ∈ H with b ≥ 0, then a ≤ b if and only if for every component c > 0 of a
there is a component d of b with c ≤ d.
Proof. ⇒. Let c > 0 be a component of a and γ = max(supp(c)). Since 0 < c
and a ≤ b we have γ↑ ∩ supp(b) 6= ∅ and there is a component d of b with
γ ∈ supp(d) and d > 0. By (ii) it suffices to check that c � δ↑ ≤ d � δ↑ for all
δ ∈ Γ. Since d ≥ 0 we may assume that c � δ↑ 6= 0, hence by (vi) we know
δ ∈ supp(c)↓ = γ↓ and c � δ↑ = a � δ↑. But then δ ∈ supp(d)↓ and by (vi) we
get d � δ↑ = b � δ↑ ≥ a � δ↑ = c � δ↑.
⇐. By (ii) it suffices to show that a � γ↑ ≤ b � γ↑ for all γ ∈ Γ. Since b ≥ 0

we may assume that γ ∈ supp(c)↓ for some component c > 0 of a. Take a
component d of b with c ≤ d. Then

a � γ↑ = c � γ↑ by (vi)

≤ d � γ↑ since c ≤ d

= b � γ↑ by (vi) as c ≤ d implies γ ∈ supp(d)↓. �

5.3. Corollary. If Γ is a root system then H is an `-group[14] and for a ∈ H we
have

(a ∨ 0)γ =

{
aγ if there is δ ∈ γ↑ ∩ supp(a)max with aδ > 0,

0 otherwise.
In the terminology of 5.2, the element a ∨ 0 is the sum of the positive components
of a and a∨0 is also the supremum of the set of positive components of a (in H≥0).
In particular,

[13]Γ is a root system if for all γ ∈ Γ the up-set γ↑ is a chain.
[14]If all Gγ are divisible, thenH is an `-group if and only if Γ is a root system. See [Darnel1995,

Theorem 51.3, p.334].
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(i) a∧ 0 = −((−a)∨ 0) is the infimum of the set of all negative components of a.
(ii) |a| = (a ∨ 0) ∨ −(a ∧ 0) is the sum and also the supremum of the set

{c,−d | c positive component of a, d negative component of a}.

(iii) supp(a∨ 0) is an up-set of supp(a) and so supp(a∧ 0) = supp((−a)∨ 0) is an
up-set of supp(a) as well.

(iv) supp(|a|) = supp(a) by (ii) using 5.2(iv).

Proof. Let b be the sum of the positive components of a. Obviously b ≥ 0. Further,
b ≥ a, because a− b is the sum of all negative components of A and so a− b ≤ 0.
Now if c ≥ 0 and c ≥ a, then every positive component of a is less or equal to some
component of c. Hence by 5.2(vii) we see that b ≤ c. This shows that b = a ∨ 0
is the supremum of the set of positive components of a. Obviously (a ∨ 0)γ = bγ
satisfies the assertion. �

From now on Γ will always be a root system.

5.4. Corollary. Let a, b ∈ H. Then

a ∧ b = 0 ⇐⇒ a, b ≥ 0 and supp(a)↓ ∩ supp(b)↓ = ∅.

Proof. ⇒. Suppose there is some ε ∈ supp(a)↓ ∩ supp(b)↓. Then there are compo-
nents c of a and d of b with ε ∈ γ↓∩δ↓, where γ = max supp(c) and δ = max supp(d).
Since Γ is a root system we may assume that γ ≤ δ.

If γ < δ or cγ 6= dδ then c, d are comparable and from c ≤ a, d ≤ b we get
0 < c ≤ a, b or 0 < d ≤ a, b, in each case a contradiction to a ∧ b = 0. Hence γ = δ
and cγ = dδ. But then the element u = cγx

γ + (c − cγxγ) ∧ (d − cγxγ) satisfies
0 < u ≤ c, d again contradicting a ∧ b = 0.
⇐. If a∧ b > 0 then take a component c of a∧ b and set γ = max supp(c). Then

γ ∈ supp(c)↓ ∩ supp(d)↓ ⊆ supp(a)↓ ∩ supp(b)↓ = ∅, which is impossible. �

5.5. The Hahn sum In the setup of 5.1 we define the Hahn sum on Γ as

S = Σ(Γ, (Gγ)γ∈Γ) = {a ∈
∏
γ∈Γ

Gγ | supp(a) is finite}.

By 5.3, S is an `-subgroup of H (use 2.5(ii)).

One can form other `-subgroups of H. For example

G1 = {a ∈ H | supp(a) has the DCC},
G0 = {a ∈ H | C ∩ supp(a) is finite for every graph component of Γ}.

G0 and G1 are easily seen to be `-subgroups of H. We get `-subgroups

S ( G0 ( G1 ( H.

Note that elements a ∈ H with the property that all components have finite support
do not form a subgroup, because Γ could be D + {∞}, where D is discrete and
infinite, a could have support D and b could have support {∞}.

The Conrad-Harvey-Holland Representation theorem says that every `-group is an
`-subgroup of H(Γ,R) for some appropriate choice of Γ. We show how to choose
the data now but leave the proof to the literature.
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5.6. The archimedean property Let G be an Abelian `-group.
(i) G is called archimedean if for all g, h ∈ G≥0 with g 6= 0 there is some n ∈ N

with n·g � h; In other words: if 0 ≤ ng ≤ h for all n ∈ N, then g = 0. In this
sense, G does not contain infinitesimal elements. [15]

(ii) If G is a TOAG then clearly G is archimedean just if it has no proper nontrivial
convex subgroup. If G is any `-group and p ∈ `-Spec∗(G), then p is maximal
in `-Spec∗(G) if and only if G/p is archimedean. In this sense the archimedean
TOAGs play a similar role for `-groups as fields do for commutative rings.

Recall Hölder’s theorem, saying that the archimedean TOAGs are ex-
actly the `-subgroups of (R,+,≤).
Proof. This is clear in one direction. If G is an `-group, then clearly its
divisible hull is archimedean as well and we may assume thatG is archimedean.
Then G has (Q,+,≤) as an ordered subgroup and an embedding ϕ : G −→ R

can be defined as follows: Take g ∈ G \Q and let P = {q ∈ Q | q < g}. Since
G is archimedean, P is nonempty, bounded from above and its supremum r
in R is not in Q. Now define ϕ(g) = r. Straightforward checking shows that
ϕ is an embedding of TOAG’s. �

(iii) G is called hyper-archimedean if every homomorphic image is archimedean.
Claim. G is hyper-archimedean if and only if dim(`-Spec(G)) = 1 or G = 0.
Proof. Since G is the unique maximal point of `-Spec(G), the dimension
of `-Spec(G) can only be zero if G = 0. If G is hyper-archimedean and
p ∈ `-Spec(G), then G/p is archimedean. But this is a TOAG, hence it has no
nontrivial convex subgroups. Hence p has at most one specialization, showing
that dim(`-Spec(G)) ≤ 1.

Conversely assume dim(`-Spec(G)) ≤ 1, let π : G � H be surjective
`-group homomorphism. Then `-Spec(π) : `-Spec(H) −→ `-Spec(G) is a
homeomorphism ontoH(Ker(ψ)), which implies that `-Spec(H) has dimension
≤ 1. Hence it suffices to show that G is archimedean. Take g, h ∈ G with
g 6= 0. Then there is some p ∈ `-Spec(G) with g /∈ p Since dim(`-Spec(G)) ≤ 1
there is some n ∈ N such that ng � h in G/p. But then ng � h in G as well.�

5.7. Values and regular groups Let G be an `-group and let p be an `-ideal of
G. The following are equivalent.
(i) There is some f ∈ G such that p is maximal among `-ideals not containing f .
(ii) p is a locally closed point of `-Spec∗(G), i.e. p is a proper prime `-ideal and

the set {p} is a locally closed subset[16] of the space `-Spec∗(G).
If these conditions hold, then p is called a regular subgroup of G.
If f ∈ G, then p is maximal among `-ideal not containing f if and only if p is a
closed point of the space D(f). In this case p is called a value of f . If f has
exactly one value, then f is called special.

Proof. This is an easy exercise in translating (i) into topology, which is expressed
by (ii). Also see [DiScTr2019, 4.5.10]. �

[15]We work here with abelian `-groups throughout, but it should be mentioned that
Archimedean `-groups are automatically abelian, see [Darnel1995, Thm. 53.3, p. 360]

[16]A subset S of a topological space is called locally closed if it is locally a closed set, i.e. if
for each s ∈ S there is an open neighborhood U of s such that S ∩U is closed in U . This is easily
seen to be equivalent to the property that S is the intersection of an open and a closed set.
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5.8. Properties of locally closed points If G is an `-group we set

Γ(G) = {p ∈ `-Spec∗(G) | p is locally closed}.
(i) Γ(G) is a root system for specialization in `-Spec∗(G) (i.e. for inclusion) and

is a root system, because `-Spec(G) is already a root system, cf. 2.15(v).
(ii) If p ∈ Γ(G) then there is an immediate specialization p+ of p in `-Spec(G), i.e.

p ( p+ and every q ∈ `-Spec(G) with p ⊆ q ⊆ p+ satisfies p = q or q = p+. So
see this, take f ∈ G that has p as a value. Then one checks that p+ = p+`(f)
using 2.15.

Consequently, p+/p has no proper nontrivial convex subgroups and is thus
archimedean.

(iii) Γ(G) is a subspace of `-Spec(G) and one can show that it is the smallest
topological space that has `-Spec∗(G) as its sobrification. “Smallest” here
means that it embeds into every space whose sobrification is isomorphic to
`-Spec∗(G). We will not need this later on and refer to see [DiScTr2019,
4.5.21] instead; notice that `-Spec∗(G) is sober.

5.9. Locally closed points in H Let H = H(Γ, (Gγ)γ∈Γ) be the Hahn group on
the root system Γ as in 5.1. For ∆ ⊆ Γ we define

I∆ := {a ∈ H | supp(a) ∩∆ = ∅}.
Then
(i) I∆ = H(Γ \∆) is an `-subgroup of H.
(ii) If ∆ is an up-set of Γ, then I∆ is an `-ideal of H. If all Gγ are nonzero, then

I∆ is an `-ideal of H if and only if ∆ is an up-set of Γ.
Now let ∆ be an up-set of Γ.
(iii) If ∆ is a chain, then I∆ is an `-prime ideal of H. If all Gγ are nonzero, then

∆ is a chain if and only if I∆ is an `-prime ideal of H.
(iv) For γ ∈ Γ the sets

Hγ := {a ∈ H | supp(a) ∩ γ↑ = ∅}, and

Hγ+ := {a ∈ H | supp(a) ∩ γ↑ ⊆ {γ}}
are `-prime ideals of H. The `-group Hγ is an `-prime ideal of Hγ+ ,
Hγ+ = Hγ ⊕ Gγ ·xγ and the truncation map Hγ+ −→ Gγ ·xγ is an `-group
homomorphism that is induces an `-group isomorphism Hγ+/Hγ −→ Gγ .

(v) Hγ is a locally closed point of H if and only if Gγ has a smallest nontrivial
convex subgroup. This is the case in particular when Gγ is archimedean.

If Gγ is archimedean, then Hγ+ = H+
γ in the terminology of 5.8 and Hγ is

a value of g ∈ H if an only if γ is a maximal element of supp(g).

Proof. (i) holds by 5.2(i).
(ii) By (i) we know that I∆ is closed under addition. If 0 ≤ a ≤ b, then supp(a) ⊆
supp(b)↓ as follows from 5.2(vii). Furthermore supp(a) = supp(|a|) for all a ∈ H
by 5.3.

Hence if ∆ is an up-set of Γ, then the characterizations 2.11(iv) holds true and
I∆ is an `-ideal of H.

Conversely assume ∆ is not an up-set and all Gγ are nonzero. Take δ ∈ ∆ and
γ ∈ Γ\∆ with δ < γ. Choose aδ ∈ Gδ with aδ > 0 and aγ ∈ Gγ with aγ > 0. Then
0 ≤ aδxδ < aγx

γ ∈ I∆, but aδxδ /∈ I∆, hence I∆ is not convex.
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(iii) Now assume that ∆ is a chain. In order to check primality we use 5.4: If
a ∧ b = 0, then supp(a)↓ ∩ supp(b)↓ = ∅. Suppose there are δa ∈ ∆ ∩ supp(a)↓

and δb ∈ ∆ ∩ supp(b)↓. Since ∆ is a chain we may assume δa ≤ δb; but then δa ∈
supp(a)↓ ∩ supp(b)↓, a contradiction. Hence we may assume that supp(a)↓ ∩∆ = ∅
and so a ∈ I∆.

Conversely assume ∆ is not a chain and all Gγ are nonzero. Take incomparable
δ1, δ2 ∈ ∆. In the root system Γ this means δ↓1 ∩ δ

↓
2 = ∅. Take ai ∈ Gδi , ai > 0.

Then a1x
δ1 , a2x

δ2 /∈ I∆, but a1x
δ1 ∧ a2x

δ2 = 0 (by 5.4), showing that I∆ is not
prime.
(iv) Since Hγ = Iγ↑ and Hγ+ = Iγ↑\{γ} we know from (iii) that Hγ and Hγ+ are
prime `-ideals. The remaining statements follow from 5.2(i).
(v) Hγ is a locally closed point if and only if it is isolated in its closure in `-Spec(G).
This is equivalent to saying that there is a smallest nontrivial convex subgroup in
Hγ+/Hγ ∼= Gγ (by (iv)). This shows the first equivalence.

Now assume Gγ is archimedean. If g ∈ H, then γ is is a maximal element of
supp(g) if and only if g ∈ Hγ+ \Hγ and these are precisely the elements that have
Hγ as value. �

5.10. Conrad-Harvey-Holland Theorem Let G be an `-group. Then there is
an `-group embedding

ϕ : G −→ H(Γ(G), (Q⊗ (p+/p))p∈Γ(G)).

such that for each p ∈ Γ(G) and every g ∈ p+ we have ϕ(g)p = gmod p.
Since all groups p+/p are archimedean, they can be embedded into (R,+,≤)
(Hölder) and therefore there is also an `-group embedding

G −→ H(Γ(G),R).

Proof. See [AndFei1988, Theorem 3.2], or [Darnel1995, Theorem 51.7, p.338]. .
The strategy of the proof is as follows: For p ∈ Γ(G) we write πp : p+ −→ p+/p be

the residue map. Let H ⊆ G and let ϕ : H −→ H = H(Γ(G)) be a homomorphism
of groups. The we say that ϕ preserves coefficients if for all p ∈ Γ(G) and every
g ∈ p+ ∩H we have ϕ(g)p = πp(g). Then one shows:
Claim 1. If ϕ : G −→ H is a group homomorphism that preserves coefficients,
then ϕ is an `-group embedding.
Claim 2. Every group homomorphism ϕ : H −→ H that preserves coefficients,
defined on a proper subgroup H of G, can be extended to a group homomorphism
that preserves coefficients on a properly larger subgroup of G.
Starting with H = {0}, claim 2 and the lemma of Zorn then gives a group homo-
morphism ϕ : G −→ H that preserves coefficients and by claim 1 ϕ is an `-group
embedding. �
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Model theory of abelian `-groups
The model theoretic analysis of an abelian `-group G is, roughly speaking, centered
around two invariants of G. The first one is the common theory of the TOAGs
G/p, where p ∈ `-Spec(G); the second one is the topological type of `-Spec(G).
Recall that G is naturally embedded into

∏
p∈`-Spec(G)G/p. “Topological type”

here refers to the homeomorphism type of the space `-Spec(G). In order to say
something about that, one may apply Stone duality, which implies that `-Spec(G)
is completely determined by its lattice L of quasi-compact open subsets. This lattice
is a first order structure, hence we can attach model theoretic invariants to it; most
importantly the theory of this lattice.

In this course we focus on two cases.
(I) Divisible `-groups. Here the first invariant above, the common theory of the

TOAGs G/p, is the easiest such theory and we will see that the model theory
of G can essentially be reduced to the model theory of L. Caveat: L is not
always interpretable in G, however we will still obtain interesting applications.

(II) Projectable `-groups. This is kind of opposite to (I). Here a principal restriction
on `-Spec(G) is made, namely it is assumed that `-Spec(G) is stranded (the
graph components of the specialization relation are chains) and the subspace
of minimal points is Boolean.
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6. Model theory of divisible `-groups

This is in large parts from [SheWei1987b].

6.1. Standard structures If G is an `-subgroup of functions X −→M for some
TOAGM , then we say standard structure (for G ⊆MX) for the triple (G,L, P ),
where L is the lattice of zero sets of functions f ∈ G and P : G −→ L is defined
by P (f) = {f ≥ 0} = {x ∈ X | f(x) ≥ 0}. We will also use the map Z : G −→ L,
Z(f) = {f = 0} = P (f) ∩ P (−f). Notice that P (f) = Z(f ∧ 0).

Notice that every totally ordered abelian groupG will be considered as a standard
structure, by setting X a singleton set and M = G. In fact recall that abelian `-
groups are representable, i.e. each such group G is isomorphic to an `-subgroup of
a product of totally ordered abelian groups. Amalgamating these totally ordered
groups into a divisible ordered abelian group Γ shows that G is isomorphic to some
`-subgroup of ΓX for some set X. Hence every abelian `-group can be expanded to
a standard structure with M = (Γ,+,≤) and X = `-Spec(G) (or `-Spec∗(G)).

Observe that in general Γ cannot be chosen to be R, because if G ⊆ RX , then
for x ∈ X the prime `-ideal px = {f ∈ G | f(x) = 0} of G has the property that
G/px is archimedean. Now if G is a totally ordered abelian group with no proper
maximal convex subgroup, then this is only possible if G ⊆ px. But then G = 0.

6.2. Languages We will work with the following first order-languages

L gr = {+,−, 0,≤} the language of po-groups

L l−gr = L gr(∧,∨) the language of `-groups
L po = {v,>} the language of posets

L lat = L po(u,t) the language of lattices.

Consider the following two-sorted language L gr,po. In the first sort (called the
group sort) we take L gr, in the second sort (called the space sort) we take L po.
In addition there is a unary function symbol P from the group sort to the space
sort.

If (G,L, P ) is a standard structure for G ⊆ MX , then we view (G,L, P ) as
L gr,po-structure whose group sort is interpreted as G in the language L gr, whose
space sort is interpreted as the lattice of G-zero sets in the language L po and where
the function G −→ L interprets the function symbol P . We will also write Z(f)
for the formula P (f) u P (−f).
Let T be the common theory of all standard structures in the language L gr,po.

We are also considering the extensions L gr,lat, L l−gr,po, L l−gr,lat of the language
L gr,po, where the superscripts indicate the first order languages that are put on
the two sorts. It is clear how each standard structures can be definably expanded
to these languages. The common theory of all standard structures in any of the two
sorted languages is a an extension of T by definitions. The corresponding theory is
denoted by putting the appropriate superscripts to T .

For the remaining ingredients of an elimination procedure we need an assumption
on the standard structures:

6.3. Definition. [SheWei1987b, page 5]
A standard structure G = (G,L, P ) for G ⊆ XM is said to be closed under
patching if for all f, g ∈ G and all G-zero sets A,B ∈ L with A ∩ B ⊆ {f = g}
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there is some h ∈ G with A ⊆ {h = f} and B ⊆ {h = g}. Notice that this is an
elementary condition of the two sorted structure (G,L, P ), expressed by

∀f, g, f1, g1

(
Z(f1)uZ(g1) v Z(f−g)→ ∃h(Z(f1) v Z(h−f) & Z(g1) v Z(h−g))

)
,

where all variables are from the group sort.

6.4. Remark. If (G,L, P ) is a model of the theory T , then it is isomorphic to a
standard structure: P is a lattice homomorphism and we may take X to be the
image of the map PrimI(L) −→ `-Spec(G). Notice that T “knows” that G is a
subgroup of some MX : f < g means P (g− f) = > and P (f − g) 6= >, hence there
is a prime `-ideal p with g > f in G/p.

It follows that T ∪ {∀f, g(f < g ⇐⇒ P (g − f) = > & P (f − g) 6= >)}
axiomatizes standard structures. Using the sentence in 6.3 we see that standard
structures closed under patching are first order axiomatisable as well.

6.5. Examples.
(1) Many examples of standard structures that are closed under patching stem

from a context where some form of Tietze extension property holds for func-
tions from G. For example if X is a metric space and G is the `-group of
continuous functions X −→ R. The the classical Tietze extension theorem
says that for every closed subset A of X, every continuous functions A −→ R

can a continuous extension X −→ R. Hence the standard structure given by
G ⊆MX is closed under patching.

Another example comes from o-minimality. Suppose M is (an o-minimal
expansion of) a real closed field and X could be a locally closed and definable
subset of someMn. LetG be the `-group of continuous and definable functions
X −→ M . Then the Tietze extension property of M (see. [vdDrie1998,
Chapter 8, (3.10)]) implies that the standard structure given by G ⊆ MX is
closed under patching.
Proof. Take f, g ∈ G and G-zero sets A,B with A ∩ B ⊆ {f = g} Then the
map h0 : A ∪B −→M defined by

h0(p) =

{
f(p) if p ∈ A,
g(p) if p ∈ B.

is continuous (and definable if we are in the o-minimal context). By the
Tietze extension property, h0 has an extension to some h ∈ G. This h has the
required properties. �
One possible axiomatic approach to the Tietze extension property in a stan-
dard structure may be found in [Tressl2016, Definition 2.1].

(2) For any ordered field K the `-group G of semi-linear continuous functions
K2 −→ K fails to have the Tietze extension property and in fact G is also
not closed under patching. In fact, G has a lattice ordered subgroup with the
same zero sets as G, but which is not an elementary substructure of G. For
details see [Tressl2016, 4.7]

6.6. Lemma. If the image of X −→ `-Spec∗(G), x 7→ {f ∈ G | f(x) = 0} is patch
dense (meaning: for all a, b ∈ G with V (a) ∩ D(b) 6= ∅ there is some x ∈ X with
a(x) = 0 6= b(x) ), then (G,L, P ) is closed under patching.
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In particular, every `-group G can be expanded to a standard structure that is
closed under patching: Take X = `-Spec(G), L = K̊(`-Spec(G)) and P (f) = D(f ∧
0).

Proof. Take a, b, f, g ∈ G and assume {a = 0}X ∩ {b = 0}X ⊆ {f = g}X . By patch
density this implies V (a) ∩ V (b) ⊆ V (f − g). Then V (|a| ∨ |b|) = V (a) ∩ V (b) ⊆
V (f−g) and so f−g ∈ `(|a|∨|b|). Now by 2.11(vi) we have `(|a|∨|b|) = `(a)+`(b).
Take u ∈ `(a), v ∈ `(b) with f − g = u + v and define h = f − u = g + v. Then
V (a) ⊆ V (u) = V (h− f) and V (b) ⊆ V (v) = V (h− g) as required. �

6.7. Theorem. [SheWei1987b, Theorem 2.1] Let ϕ be an L l−gr,lat-formula. Then
ϕ is equivalent in every divisible standard structure (i.e. the underlying `-group is
divisible) that is closed under patching, to a formula (in the same variables as ϕ)
of the form

(∗) ∃ξ1 . . . ξk
(
γ &

k∧∧
i=1

ξi = P (ti)

)
,

where γ is an L lat-formula, the ξi are distinct variables of space sort and ti are
L gr-terms.

6.8. Corollary. In the situation of 6.7, L is stably embedded in (G,L, P ).

Proof. Let Z ⊆ Ln be parametrically definable in (G,L, P ). Then there is an
L l−gr,lat-formula ϕ(x̄, η̄, τ̄), where x̄ are variables of group sort and η̄, τ̄ are vari-
ables of space sort and f̄ ⊆ Gx̄, Ā ∈ Lτ̄ such that Z is defined in P : G −→ L by
ϕ(f̄ , η̄, Ā). Putting ϕ into the form stated in 6.7 it is clear that Z is parametrically
definable in L. �

6.9. Corollary. In the situation of 6.7, if the lattice L is decidable, then so is the
standard structure (G,L, P ) as well as the `-group G.

Proof. Every sentence of the form (∗) in 6.7 is a sentence of the lattice L. The
recursive list of sentences true in L will thus give a recursive list of all sentences
true in (G,L, P ), because standard structures closed under patching are first order
axiomatisable by 6.4. �
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Applications
There are two issues with the applicability of 6.7. Firstly, we need to check

when the standard structure is closed under patching. Secondly, the lattice L
might not be interpretable in the `-group G. Hence if we are interested in G alone,
the introduction of L might not be appropriate. Notice that the lattice L often
interprets true arithmetic, i.e it interprets (N,+, ·), see [Tressl2017].

The two issues are connected: Recall from 6.6 that every `-group G can be
expanded to a standard structure. In order to interpret the lattice K̊(`-Spec(G))
naturally, one would ideally want to define the binary relation `(a) = `(b) of G.

6.10. Defining L in G In order to interpret L in G naturally we need to check
that the binary relation {f = 0} ⊆ {g = 0} of G is definable. Assuming that there
is some g ∈ G without zeroes, this is equivalent to showing that the unary relation
{f = 0} =⊥ is definable in G:

For f, g ∈ G we have

{f 6= 0} ∩ {g 6= 0} = {|f | ∧ |g| 6= 0} and
{f 6= 0} ∪ {g 6= 0} = {|f | ∨ |g| 6= 0}.

Hence

{f = 0} ∪ {g = 0} = {|f | ∧ |g| = 0} and
{f = 0} ∩ {g = 0} = {|f | ∨ |g| = 0}.

In particular
(i) {f = 0} ⊇ {g 6= 0} ⇐⇒ {f 6= 0} ∩ {g 6= 0} = ∅ ⇐⇒ |f | ∧ |g| = 0, hence the

relation {f = 0} ⊇ {g 6= 0} is 0-definable in G, and,
(ii) {f = 0} ⊆ {g 6= 0} ⇐⇒ {f 6= 0} ∪ {g 6= 0} = Kn ⇐⇒ {|f | ∨ |g| = 0} = ∅,

hence the relation {f = 0} ⊆ {g 6= 0} is 0-definable in G, provided the set
of functions without zeroes is 0-definable in G. Notice that if we can define
{f = 0} ⊆ {g 6= 0}, then we can also define {f = 0} ⊆ {h = 0} by saying
∀g({h = 0} ⊆ {g 6= 0} → {f = 0} ⊆ {g 6= 0}): If h(x) 6= 0 then take g
with {h = 0} ⊆ {g 6= 0} and g(x) = 0; if the condition holds, we must have
f(x) 6= 0.

Notice that in the undecidability proof of FA`(n) for n ≥ 3 in
[GlMaPo2005] the main work is indeed to show that the set of all functions
with no zeroes is definable. Then as n ≥ 3 they invoke Grzegorczyk’s “Unde-
cidability of some topological theories” result on Heyting algebras.

Exercise: For an ordered field K, the `-group of all continuous semi-linear functions
K −→ K, defines L, so here L is the lattice of subsets of K that are finite unions of
intervals of the form [a, b], (−∞, b] or [a,+∞). Hint: First express, in the `-group
G the property of f ∈ G that its zero set has empty interior. Then express the
property of f that its cozero set is definably connected.

7. The positive cone

Again all `-groups here are Abelian.

7.1. Ideals of up-sets Let P be a poset and let B ⊆ P be a nonempty up-set.
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(i) The map

Θ0 : {I | I is an ideal of P with B ∩ I 6= ∅} −→ {J | J is an ideal of B}
I 7−→ I ∩B

is bijective and its compositional inverse sends J to J↓ (in P ).
(ii) Now let P be a distributive lattice and let B also be closed under meets.

Then B is itself a distributive lattice and the bijection Θ0 in (i) restricts to a
bijection

{I | I is a prime ideal of P with B ∩ I 6= ∅} −→ {J | J is a prime ideal of B}
I 7−→ I ∩B.

If B is the principal up-set generated by b ∈ P , then the left hand side is
equal to V (b) ⊆ PrimI(P ).

Proof. (i) It is clear that Θ0 is well defined and for an ideal J of B, the set J↓ is
an ideal of P with Θ0(J↓) = J . Now take an ideal I of P with I ∩ B 6= ∅, say
b ∈ B ∩ I. Then I = (I ∩ B)↓, because the inclusion ⊇ is obvious and for a ∈ I,
there is some c ∈ I with a, b ≤ c; hence c ∈ I ∩B and a ∈ (I ∩B)↓.

(ii) If I is a prime ideal of P and b, b′ ∈ B with b ∧ b′ ∈ P ∩ B, then b or b′ is in
P ∩ B, hence P ∩ B is a prime ideal of B. Conversely, let J be a prime ideal of
B. By (i) it remains to show that J↓ is a prime ideal of P . Take p, p′ ∈ P with
p∧ p′ ∈ J↓ and take b ∈ J with p∧ p′ ≤ b. Then b = b∨ (p∧ p′) = (b∨ p)∧ (b∨ p′)
and b ∨ p, b ∨ p′ ∈ B as B is an up-set of P . Since J is a prime ideal of B we get
b ∨ p ∈ J or b ∨ p′ ∈ J , say b ∨ p ∈ J . It follows p ∈ J↓, as required. �

7.2. Remark. For any distributive lattice L, we extend the poset L by a new
element ∞ and get a new poset L∞ = L ·∪{∞} by declaring a < ∞ for all a ∈ L.
It is straightforward to see that L∞ is a again a distributive lattice (just check
x∧ (y ∨ z) ≤ (x∧ y)∨ (x∧ z)) and L is a sublattice of L∞. Further, any morphism
between distributive lattices ϕ : L −→ M extends uniquely to a homomorphism
ϕ∞ : L∞ −→M∞ that respects the top elements.

Now assume L has a bottom element. Then L∞ is a bounded distributive lattice
and we define

PrimI∞(L) = {I ∩ L | I ∈ PrimI(L∞)}

together with the induced topology given by the bijection that sends I to I ∩ L
(observe that L is a prime ideal of L∞ and so L ∈ PrimI∞(L)).

7.3. Definition. Let G be an `-group. We define T (G) to be the set

T (G) = {S ⊆ G≥0 | S + S ⊆ S and S is an ideal of the lattice G≥0}.

Observe that every down-set of G≥0 that is closed under addition, is already an
ideal of G≥0, because f ∨ g ≤ f + g for f, g ∈ G≥0.

We equip T (G) with the topology that has the sets

D(f) = {S ∈ T (G) | f 6∈ S}

as an open subbasis.
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7.4. Remark. Consider the algebraic structure T = (T (G) ∪ {+∞},∧,+,+∞, 0).
Then T is a commutative semiring with addition ∧ and multiplication +. The
neutral element for addition in T is +∞ and the neutral element for multiplication
in T is 0. It is distributive because x+ (y ∧ z) = (x+ y)∧ (x+ z) holds universally
by 2.2(iii)(∧). Hence T (G) is a “Tropical semiring”, which explains the use of the
letter ’T’.

A standard argument in spectral spaces shows that T (G) is a spectral subspace
of the spectral space of all ideals of G≥0 (which is equal to the spectral space
of all proper ideals of (G≥0)∞, see 7.2 and notice that (G≥0)∞ is a closed and
constructible point in the space of ideals of (G≥0)∞).

Similarly, we know that the set

`-Id(G) := {`-ideals of G}
carries a spectral space of which the D(f) = {I ∈ `-Id(G) | f /∈ I} form a subbasis.
(As we use the same notation D(f) in `-Id(G) and in T (G) for f ≥ 0 we will
mention the ambient space if necessary.)

7.5. Proposition. Let G be an `-group.
(i) The map

Θ : `− Id(G) −→ T (G); Θ(I) = I ∩G≥0

is a homeomorphism.
(ii) The inverse of Θ maps S ∈ T (G) to S − S, which is equal to the convex hull

of S ∪ −S.
(iii) The map Θ restricts to a homeomorphism

`-Spec(G) −→ PrimI∞(G≥0) ∩ T (G).

(Notice that PrimI∞(G≥0) ∩ T (G) is a spectral subspace of PrimI∞(G≥0).)
(iv) The minimal prime ideals of the lattice G≥0 are in T (G), hence the map Θ

restricts to a homeomorphism

(`-Spec(G))min −→ PrimI∞(G≥0)min.

Proof. First we show that Θ is well defined. If I ∈ `-Spec(G) and S = I ∩ G≥0,
then obviously S + S ⊆ S. Since I is convex, S is a down-set of G≥0. Since I is a
sublattice of H, S is an ideal of the lattice G≥0.

Now let S ⊆ G≥0 be an ideal of the lattice G≥0 with S + S ⊆ S. We show
that I := S − S is an `-ideal of G and prove (ii). As S + S ⊆ S it is clear that
I − I ⊆ I, hence I is a subgroup. I is the convex hull of S ∪ −S in G: If s, t ∈ S,
then −t ≤ s− t ≤ s. On the other hand for any g ∈ G in the convex hull of S ∪−S
there are s, t ∈ S with −t ≤ g ≤ s; then 0 ≤ g ∨ 0 ≤ s,−t ≤ g ∧ 0 ≤ 0 and so
g = (g ∨ 0)− (−(g ∧ 0)) ∈ S − S = I.

It follows that I is convex in G, but it also follows that I is a sublattice of G:
If g, g′ ∈ I, the pick s, s′, t, t′ ∈ S with −t ≤ g ≤ s and −t′ ≤ g′ ≤ s′. Then
−(t∨ t′) = (−t)∧ (−t′) ≤ g ∧ g′ ≤ g ∨ g′ ≤ s∨ s′ and since S is an ideal of G≥0, we
see that I is a sublattice and thus I is an `-ideal.

As each S ∈ T (G) is a down set of G≥0 we also know Θ(S−S) = (S−S)∩G≥0 =
S. Hence the bijectivity of Θ and item (ii) are shown if we confirm that Θ(I) −
Θ(I) = I for any `-ideal of G. However, this follows from g = (g ∨ 0)− (−(g ∧ 0))
and g ∨ 0, g ∧ 0 ∈ Θ(I) for all g ∈ I.

https://en.wikipedia.org/wiki/Semiring#Definition
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It remains to show that Θ is a homeomorphism. As we already know that Θ is
bijective, it suffices to remark that the sets D(f) with f ≥ 0 form a subbasis on
both sides (for `-Id(G) observe that V (g) = V (g∨ 0)∩V (−(g∧ 0))), and obviously
Θ restricts to a bijection between these sets.

(iii) We need to show that an `-ideal I of G is prime if and only if I ∩G≥0 is prime
in the lattice G≥0. But this in fact could be taken as the definition of primality, or
it is a well known characterization of prime `-ideals (see [Darnel1995, Thm. 9.1, p.
49] ).

(iv) (This also follows from 7.6). Let p be a prime ideal of the lattice G≥0. We
just need to find an element in ⋂f∈G≥0\pD(f) ⊆ `-Spec(G≥0). By compactness,
it suffices to show that for all f1, . . . , fn ∈ G≥0 \ p, the subset D(f1) ∩ . . . ∩D(fn)
of `-Spec(G≥0) is not empty. If it were empty, then f1 ∧ . . .∧ fn = 0, which implies
f1 ∧ . . . ∧ fn = 0 ∈ p. But then fi ∈ p as p is prime, a contradiction. �

7.6. Every lattice ideal contains a largest additive ideal Let I ⊆ G≥0 be an
ideal of the lattice G≥0.

(i) The set

I• = {f ∈ G≥0 | N·f ⊆ I}

is in T (G) and is thus the largest element of T (G) contained in I.
(ii) If I is a prime ideal of the lattice G≥0, then I• is a prime ideal of the lattice

G≥0. Hence if I is a minimal prime ideal of the lattice G≥0, then I = I• ∈
T (G).

(iii) If F ⊆ G≥0 is a filter and I ∈ T (G) is an `-ideal, maximal with the property
I ∩ F = ∅, then I is a prime ideal.

Consequently – using 7.5 – if F ⊆ G≥0 is a filter and I ⊆ G is an `-ideal,
maximal with the property I ∩ F = ∅, then I is a prime `-ideal. It follows
that every `-ideal I of G is the intersection of all the prime `-ideals containing
I: For f ∈ G \ I we may assume that f ∨ 0 /∈ I and we get a prime `-ideal p
of G containing I and not containing f ∨ 0, thus f /∈ p either.

Proof. (i). I• is a down-set of G≥0 because for 0 ≤ g ≤ f ∈ I• we have N·g ⊆
(N·f)↓ ⊆ I. I• is closed under ∨ because if f, g ∈ I•, then n(f ∨ g) = nf ∨ ng ∈ I
for all n ∈ N, as I is closed under ∨.
I• is closed under addition: If N·f,N·g ⊆ I, then n·(f + g) ≤ 2n·(f ∨ g) for all

n ∈ N. Since f ∨ g ∈ I• we get f + g ∈ I•.
(ii) Take f, g ∈ G≥0 and assume that f ∧ g ∈ I•. We may assume that f /∈ I•.
Hence for some k ∈ N we have k·f /∈ I. But then n·f /∈ I for all n ≥ k. Now for
n ≥ k we have n·(f ∧ g) = (nf) ∧ (ng) ∈ I and primality of I entails ng ∈ I. This
shows that N·g ⊆ I, hence g ∈ I• as required.
(iii) By [DiScTr2019, 3.2.1] there is a prime ideal J ⊆ G≥0 of the lattice G≥0 with
I ⊆ J and J ∩F = ∅. Since I ∈ T (G) we have I ⊆ J•. By maximality of I we have
I = J• and from (ii) we know that J• is a prime ideal. �

7.7. Principal down-sets in bounded distributive lattices (this can also be
done via [DiScTr2019, Theorem 5.4.10])
Let L be a bounded distributive lattice and let a ∈ L. Let π : L −→ a↓, π(x) = x∧a.
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(i) π is a surjective homomorphism of bounded distributive lattices and a re-
traction of the poset embedding a↓ ↪→ L (which itself is obviously not an
embedding of bounded distributive lattices, unless a = >).

(ii) PrimI(π) maps PrimI(a↓) homeomorphically onto D(a).

Proof. We work via Stone duality. Let s : D(a) ↪→ X = PrimI(L) be the inclusion
map. Then K̊(s) is isomorphic to π, because K̊(s) maps D(x) to s−1(D(x)) =
D(x) ∩D(a) = D(a ∧ x). �

7.8. Intervals in `-groups We spell out 7.7 in the context of `-groups: Let G be
an `-group and let f ∈ G≥0. Let π : G≥0 ∪ {∞} −→ [0, f ], π(x) = x ∧ f .
(i) π is a surjective homomorphism of bounded distributive lattices and π is a

section of the poset embedding [0, f ] ↪→ G≥0 ∪ {∞}.
(ii) PrimI(π) maps PrimI([0, f ]) homeomorphically onto D(f) (which here has to

be understood as {p ∈ PrimI(G≥ ∪ {∞}) | f /∈ p}).
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8. Pseudo-complementation and regularization in topological form

8.1. Review of the spectrum of a bounded distributive lattice. Let L =
(L,≤,∧,∨,>,⊥) be a bounded distributive lattice. We define the (prime ideal)
spectrum PrimI(L) of L as follows.

As a set, PrimI(L) consist of all prime ideals of L (cf. 2.13). If L is a Boolean al-
gebra, then prime ideals are precisely the prime ideals of the commutative ring that
has ∧ as multiplication and (x∧¬y)∨ (y∧¬x) (’symmetric difference’) as addition;
furthermore the prime ideals of a Boolean algebras are precisely the complements
of ultrafilters and the ultrafilter space is homeomorphic to the prime spectrum of
the algebra, viewed as a commutative ring; cf. [StoneBoolAlg, 3.2]
On PrimI(L) a topology is defined, namely the topology generated by the sets

D(a) = {p ∈ PrimI(L) | a /∈ p}

where a ∈ L. We write V (a) = {p | a ∈ p} for the complement of D(a) in PrimI(L).
Warning: PrimI(L) is not Hausdorff, unless L is a Boolean algebra.
Now write X for the space PrimI(L).
(1) A subset of X is of the form D(a) for some a ∈ L if and only if it is open and

at the same time quasi-compact (i.e., it has the Heine-Borel cover property).
We write

K̊(X) = {U ⊆ X | U is open and quasi-compact} = {D(a) | a ∈ L},
K(X) = {A ⊆ X | X \A is open and quasi-compact} = {V (a) | a ∈ L}.

(2) (Stone representation) K̊(X) is a bounded sublattice of the powerset of X, in
particular X itself is quasi-compact, and the map

L −→ K̊(X), a 7→ D(a)

is an isomorphism of bounded lattices.
(3) Every nonempty, closed and irreducible subset A of X has a unique generic

point, i.e. a point p satisfying A = {p}. In particular X satisfies the T0-
separation axiom saying that distinct points can be separated by open sets.

(4) X is a spectral space and every spectral space is of this form (so one might
read the definition of PrimI(L) as a definition of spectral spaces). For a
topology-intrinsic definition of spectral spaces see [DiScTr2019, section 1].

(5) The patch topology (aka constructible topology) on X is the topology
that has the set {D(a)∩V (b) | a, b ∈ L} as a basis of open sets. Xcon denotes
the set X with the patch topology. Theorem: Xcon is compact and totally
disconnected, it is a Boolean space.

(6) The inverse topology on X is the topology that has the set {V (a) | a ∈ L}
as a basis of open sets. Xinv denotes the set X with the inverse topology and
Xinv is naturally homeomorphic to PrimI(Linv), which is (as a set) equal to
the set of prime filters of L.

8.2. Examples.
(i) If L is a chain with smallest and largest element, then X = PrimI(L) con-

sists of the proper nonempty down-sets of L, i.e. the Dedekind cuts of L. The
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topology is generated by the sets D(a) = {all cuts below a}. The space is irre-
ducible with generic point {⊥}. For more about this example see [DiScTr2019,
Example 1.6A and section 3.6]

(ii) Let G is an `-group. Recall from 3.5(vii) that K̊(`-Spec(G)) is poset iso-
morphic to the lattice M = {G} ∪ {principal `-ideals}. It follows that
`-Spec(G) ∼= PrimI(M).

8.3. The space of minimal points Let X = PrimI(L) as in 8.1. We write Xmin

for the subspace of minimal prime ideals of L, endowed with the topology induced
by X. Let Z be the closure of Xmin in the patch topology.

(i) A point x ∈ X is in Xmin if and only if ∀y ∈ X : x ∈ {y} ⇒ x = y (because
x ∈ {y} means y ⊆ x), if and only if for every V ∈ K(X) with x ∈ V we have
x ∈ int(V ).

(ii) Xmin (viewed as a subspace of X) is compact if and only if it is Boolean, if
and only if it is a patch closed subset of X, if and only if it is a spectral space
and the inclusion map Xmin ↪→ X is spectral.

(iii)

8.4. Open and closed regularizations [DiScTr2019, 4.4.21] Let X be any topo-
logical space and let S ⊆ X. Then S is called regular open if S = int(S) and
regular closed if S = int(S).

(i) For each O ∈ O(X) the set N(O) = int(O) is the open regularization of O,
the smallest regular open subset containing O, [Koppel1989, p. 25]. Similarly,
for A ∈ A(X), the set N(A) = int(A) is the closed regularization of A.
This is the largest regular closed set contained in A. For each O ∈ O(X) we
have X \N(O) = N(X \O).

(ii) The subsetRO(X) ⊆ O(X) of regular open sets is a complete Boolean algebra,
[Koppel1989, Theorem 1.37]. Similarly, RC(X) ⊆ A(X) the set of regular
closed sets, is a complete Boolean algebra. Via complementation the Boolean
algebras RO(X) and RC(X) are anti-isomorphic to each other. However, note
that they are not sublattices of O(X) and A(X), respectively. The Boolean
operations in RO(X) are described in [Koppel1989, Theorem 1.37].

(iii) The maps N : O(X)→ RO(X) and N : A(X)→ RC(X) are homomorphisms
of bounded lattices. But if they are considered as maps into O(X) and A(X)
then they are not lattice homomorphisms. For example one checks for U, V ∈
O(X) that

N(U ∩ V ) = N(U) ∩N(V ) N(U ∪ V ) = N(U) ∪N(V )

N(U ∪ V ) = int(N(U) ∪N(V ) ) N(U ∩ V ) = int(N(U) ∩N(V )).

(In particular, infima and suprema in RO(X) are given by U ∧ V = U ∩ V
and U ∨ V = int(U ∪ V ).)

Now we assume that X is a spectral space and we consider the restrictions N :
K̊(X)→ RO(X) and N : K(X)→ RC(X) of N and N , which are homomorphisms
of bounded lattices. Their images are denoted by L and L. These are bounded
sublattices of RO(X) and RC(X), but not of O(X) and A(X).

Let Z ⊆ X be the patch closure of Xmin and i : Z → X the inclusion.
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(iv) The restriction maps

ρ : L −→ K̊(Z) : O 7→ O ∩ Z
ρ : L −→ K(Z), B 7→ B ∩ Z

are poset isomorphisms.
Proof. We prove the assertion for ρ. The assertion for ρ then follows by taking
complements.

If A ∈ K(X) then A ∩ Z ∈ K(Z) , and N(A) = A ∩ Z = Spez(A ∩ Z). It
follows that N(A) ∩ Z = A ∩ Z. We claim that the restriction map ρ : L →
K(Z), B 7→ B ∩ Z is an isomorphism. It is clear that ρ is a homomorphism
of bounded lattices. For injectivity, consider B,B′ ∈ L with B ∩ Z = ρ(B) =
ρ(B′) = B′ ∩ Z. But then B = Spez(B ∩ Z) = Spez(B′ ∩ Z) = B′. For
surjective, pick C ∈ K(Z) and A ∈ K(X) with C = A ∩ Z. Then C =
N(A) ∩ Z = ρ(N(A)). �

(v) The following diagrams exhibit the various lattices and maps discussed here.
The solid arrows are lattice homomorphisms, whereas the dashed arrows are
poset homomorphisms:

A(X)
N // RC(X)

⊆ // A(X) O(X)
N // RO(X)

⊆ // O(X)

K(X)
N //

⊆

OO

K(i)
��

L

⊆

OO
⊆

::

'
ρ

zz

K̊(X)
N //

⊆

OO

K̊(i)
��

L

⊆

OO
⊆

::

'
ρ

zz
K(Z) K̊(Z).

Note that L is a Boolean algebra if and only if K̊(Z) is a Boolean algebra, if
and only if Z is Boolean (i.e., Z = Xmin and Xmin is proconstructible), if and
only if K(Z) is a Boolean algebra, if and only if L is a Boolean algebra. Then
the Boolean algebras K̊(Z) and K(Z) coincide.

(vi) In conclusion, the commutative triangles of bounded lattice homomorphisms
at the bottom of the two diagrams in (v) show that the regularization maps
N : K̊(X)→ RO(X) and N : K(X)→ RC(X) are dual to the inclusion map
i : Z −→ X.

8.5.Definition. [BalDwi1974, Chapter VIII] Let L be a bounded lattice and a ∈ L.
If there is a largest c ∈ L with a∧c =⊥, then c is called a pseudo-complement of
a and is denoted by ∼ a. If all elements of L have a pseudo-complement, then L is
called pseudo-complemented. For example topologies are pseudo-complemented:
if O is open, then ∼ O is the interior of the complement of O. Notice that ∼∼ O
is the open regularization of O, denoted by N(O) in 8.4.

A prominent class of pseudo-complemented lattices are Heyting algebras.
These are bounded distributive lattices L such that for all a, b ∈ L there is a
largest c ∈ L with a ∧ c ≤ b. Equivalently: For each b ∈ L the interval [b,>] of L
is pseudo-complemented. An example of a Heyting algebra is the lattice of open
semi-algebraic subsets of Rn.

8.6. Topological characterization of pseudo-complemented lattices
[DiScTr2019, Thm. 8.3.9] Let L be a bounded distributive lattice and let X =
PrimI(L) be its Stone dual. The following are equivalent.
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(i) L is pseudo-complemented
(ii) For every U ∈ K̊(X) the closure U of U in X is constructible (equivalently:

U ∈ K(X)).
(iii) The following two conditions hold.

(a) For U ∈ K̊(X) the open regularization N(U) = int(U) belongs to K̊(X),
and

(b) Xmin is compact.
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9. `-groups acting on `-groups

Literature: There doesn’t seem to be anything in the books [AndFei1988],
[Steinb2010], [Darnel1995] or [KopMed1994].

A reference is [Glass1981].

If G is an `-group, then the group Aut(G) of lattice automorphisms of G is again
an `-group (in general not commutative). An action of an `-group G on an `-group
H is an `-group homomorphism σ : G −→ Aut(H), g 7→ σg. If G is abelian, then
the image of this action is obviously again abelian.

We fix such an action now, where G and H are abelian and write g+h for σg(h).
More generally for C ⊆ G and D ⊆ H we write

C +D = {σg(h) | g ∈ C, h ∈ D}.
In particular G+ h is the orbit of h under the given action.

If D is an ideal of H then obviously g + D is again an ideal of H and similar for
prime ideals (as h 7→ g+h is an automorphisms of the poset H). Hence G operates
on the (prime) ideals of the lattice H.

9.1. The invariance ideal of an ideal Let D be an ideal of the lattice H. Define

I(D) = {g ∈ G | g +D = D}.
Then

(+) I(D) ∩G≥0 = {g ∈ G≥0 | g +D ⊆ D},
and I(D) is an `-ideal of G called the invariance ideal of D.

Proof. To see (+) take g ∈ G≥0. Since D is a down-set we know that D ⊆ g +D.
Hence g +D = D ⇐⇒ g +D ⊆ D, showing (+).

In order to verify that I(D) is an `-ideal we use 2.11(iv) and we need to show
that I(D) + I(D) ⊆ I(D), which is clear, and that |g0| ≤ |g| and g ∈ I(D)
implies g0 ∈ I(D). Towards this end, first note that g ∈ I(D) obviously implies
−g ∈ I(D). Now if d ∈ D, then as D is an ideal of H we know σg(d) ∨ σ−g(d) =
(g + d) ∨ (−g + d) ∈ D. Then

σ|g|(d) = σg∨−g(d) by definition of |g|
= (σg ∨ σ−g)(d), as σ is a lattice homomorphism
= σg(d) ∨ σ−g(d), by definition of the `-group Aut(H)

∈ D.
Hence |g| + D ⊆ D. Since |g| ≥ 0 and D is a down-set of H we also know
(−|g|) + D ⊆ D, hence D ⊆ |g| + D. This shows that |g| + D = D. But then
|g0| ≤ |g| easily implies g0∨0,−(g0∧0) ∈ I(D) and so g0 = (g0∨0)+(g0∧0) ∈ I(D)
as well. �

9.2. Example. If ϕ : G −→ H is an `-group homomorphism, then the map σ :
G −→ Aut(H), g 7→ (h 7→ ϕ(g) + h) defines an `-group action.

9.3. Proposition. Let D be an ideal of H.
(i) I(D) is a prime `-ideal if and only if for all g, g′ ∈ G with g∧g′ = 0 and each

d ∈ D we have g + d ∈ D or g′ + d ∈ D.
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(ii) If D is a prime ideal of the lattice H, then I(D) is a prime `-ideal.
(iii) If H = G and σg(h) = g + h (addition of G), then D is a prime ideal of the

lattice H if and only if I(D) is a prime `-ideal.

Proof. (i) If I(D) is a prime `-ideal and g ∧ g′ = 0, then g ∈ I(D) or g′ ∈ I(D)
showing that g + d ∈ D or g′ + d ∈ D for all d ∈ D.

Conversely, assume I(D) is not a prime `-ideal. By 2.15 there are g1, g2 ∈
G \ I(D) with g1 ∧ g2 = 0. Then g1, g2 ≥ 0 and by 9.1(+) there are di ∈ D with
gi + di /∈ D. Let d = d1 ∨ d2 ∈ D. By assumption we may assume that g1 + d ∈ D.
But from g1 + d1 ≤ g1 + d we get g1 + d1 ∈ D, a contradiction.

(ii) If g ∧ g′ = 0 in G and d ∈ D, then (g + d) ∧ (g′ + d) = σg(d) ∧ σg′(d) =
(σg ∧ σg′)(d) = σg∧g′(d) = σ0(d) = idH(d) = d ∈ D, thus g + d ∈ D or g′ + d ∈ D.
By (i) we see that I(D) is a prime `-ideal.

(iii) By (ii) we only need to show that D is a prime ideal of the lattice H assuming
I(D) is a prime `-ideal. We know that G/I(D) is a chain. Let π : G −→ G/I(D)
be the residue map. Then π−1(π(D)) = D because for g ∈ G and d ∈ D with
π(g) = ϕ(d) we have g − d ∈ I(D) and so g ∈ d+ I(D) ⊆ D.

As π(D) is prime as an ideal of a chain, also D is prime. �

9.4. Corollary. The set I of all ideals D of the lattice H with the property that
I(D) is a prime `-ideal is a spectral subspace of the space of all ideals of the lattice
H.

If G = H and σg(h) is addition in G, then I is a spectral subspace of PrimI(G)

Proof. By 9.3(i), we know that

I =⋂{D(h) ∪ V (g + h) ∪ V (g′ + h) | h ∈ H, g, g′ ∈ G, g ∧ g′ = 0},

where V (h) denotes the set of all ideals of the lattice H containing h and D(h)
is its complement. Hence I is a spectral subspace of the space of all ideals of the
lattice H.

The second assertion then follows from 9.3(iii) �

9.5. Observation. Here we work with H = G and the natural operation of G on
itself via translation.

Let U be an `-ideal of G and let π : G −→ G/U be the residue map. Then the
map

{Ideals of the lattice G/U} −→ {D ⊆ G | D ideal of the lattice G with U ⊆ I(D)}
J 7−→ π−1(J)

is a poset isomorphism. Its inverse sends D to π(D). Consequently this map
restricts to a poset isomorphism between the corresponding sets of prime ideals.

Proof. The map is obviously well defined and for each ideal J we have π(π−1(J)) =
J . It remains to show that π−1(π(D)) = D for each ideal D of the lattice G with
U ⊆ I(D). The inclusion ⊇ is clear. Then take g ∈ π−1(π(D)) and d ∈ D with
π(g) = π(d). This means g − d ∈ U ⊆ I(D) and so g ∈ d + I(D) ⊆ D as
required. �
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9.6. Remark. Let L be a bounded distributive lattice and let Idl(L) be the set of
ideals of L. Then Idl(L)× Idl(L) is isomorphic as a poset to Idl(L×L), an isomor-
phism is given by sending (I, J) to I × J , the inverse sends K to (π1(K), π2(K)).
This is straightforward to check.

In the context of topology this reads as follows. LetX,Y be any spaces, assuming
X ∩ Y = ∅. Then the map O(X ⊕ Y ) −→ O(X)×O(Y ), O 7→ (O ∩X,O ∩ Y ) is a
obviously poset isomorphism whose inverse sends (U, V ) to U ∪ V .

In order to connect the two assertion let X = Y be a spectral space, and L =
K̊(X). Then X ⊕ X is again spectral and K̊(X ⊕ X) ∼= L × L. Now recall that
Idl(L) as a poset is a frame that is isomorphic to O(X), given by I 7→⋃a∈LD(a)
with inverse O 7→ {a ∈ L | D(a) ⊆ O}. In conclusion

Idl(L× L) ∼= O(PrimI(L× L)) ∼= O(X ⊕X) ∼= O(X)×O(X) ∼= Idl(L)× Idl(L).
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10. Polars and projectable `-groups

10.1. Colon Ideals and Polars Let I be an `-ideal of an `-group G and let S ⊆ G.
We define the colon ideal

I : S = {f ∈ G | ∀s ∈ S : |f | ∧ |s| ∈ I}.

Then I : S is an `-ideal and

(∗) V (I : S) = {G} ∪ V (I) \ V (S), and

V (I : S) ∩ `-Spec∗(G) = V (I) \ V (S)
`-Spec∗(G)

.

If I = (0) then

S⊥ := {f ∈ G | ∀s ∈ S : |s| ∧ |f | = 0} (= (0) : S)

is called the polar of S, hence

(†) V (S⊥) = {G} ∪ `-Spec(G) \ V (S) and

V (S⊥) ∩ `-Spec∗(G) = `-Spec∗(G) \ V (S)
`-Spec∗(G)

.

If S = {f} is a singleton we just write I : f and f⊥. The `-ideals of the form f⊥⊥

are called principal polars. . Explicitly:

f⊥⊥ = {g ∈ G | ∀h ∈ G : (|h| ∧ |f | = 0⇒ |h| ∧ |g| = 0)}.

Notice that

V (I : S) = V (I) \ V (S), if V (I) * V (S), i.e. S * I,

V (S⊥) = `-Spec(G) \ V (S), if S contains a nonzero element, and

V (f⊥) = D(f), if f 6= 0.

Proof. To see that I : S is an `-ideal we use 2.11(iv) and we need to show that
I : S 6= ∅, |g| ≤ |f | and f ∈ I : S implies g ∈ I : S and that 0 ≤ f1, f2 ∈ I : S
implies f1 + f2 ∈ I : S. The first two properties are clear. If 0 ≤ f1, f2 ∈ I : S and
s ∈ S, then |f1 +f2|∧ |s| = |s|∧ (f1 +f2) ≤ |s|∧f1 + |s|∧f2 by the polar inequality
2.2(iv)(a). Hence f1 + f2 ∈ I : S.

Now for the proof of (∗). The second equation follows from the first (notice
that G ∈ V (S), hence V (I) \ V (S) ⊆ `-Spec∗(G)). If V (I) ⊆ V (S), then S ⊆ I
and I : S = G, showing (∗). Hence we may assume that V (I) * V (S). Then G ∈
V (I) \ V (S) and (∗) says that V (I : S) = V (I) \ V (S). By taking complements this
is equivalent to saying that V (S)∪ (`-Spec(G)\V (I)) has interior `-Spec(G)\V (I :
S).

Since V (I) * V (S) we have V (S) ∪ (`-Spec(G) \ V (I)) 6= `-Spec(G) and by
3.3(iii) it suffices to show that for each f ∈ G we have D(f) ∩ V (I : S) = ∅ ⇐⇒



44 MARCUS TRESSL

D(f) ⊆ V (S) ∪ (`-Spec(G) \ V (I)):

D(f) ∩ V (I : S) = ∅ ⇐⇒ V (I : S) ⊆ V (f)

⇐⇒ f ∈ I : S, since I : S is an `-ideal
⇐⇒ ∀s ∈ S : |f | ∧ |s| ∈ I
⇐⇒ ∀s ∈ S : V (I) ⊆ V (|f | ∧ |s|) = V (f) ∪ V (s)

⇐⇒ ∀s ∈ S : D(f) ∩ V (I) ⊆ V (s)

⇐⇒ D(f) ∩ V (I) ⊆ V (S), since V (S) = ⋂
s∈S

V (s)

⇐⇒ D(f) ⊆ V (S) ∪ (`-Spec(G) \ V (I)). �

10.2. Basic properties of polars Let G be an `-group.
(i) If (Si)i∈I is any collection of subsets of G, then obviously (⋃i∈I Si)

⊥ =

⋂i∈I S
⊥
i .

(ii) If S ⊆ G then

V (S⊥⊥) = {G} ∪ int(V (S)), and

V (S⊥⊥) ∩ `-Spec∗(G) = int(V (S) ∩ `-Spec∗(G))
`-Spec∗(G)

Proof.

V (S⊥⊥) = {G} ∪ `-Spec(G) \ V (S⊥), by (†) in 10.1

= {G} ∪ `-Spec(G) \ ({G} ∪ `-Spec(G) \ V (S))

=

{
{G} ∪ `-Spec(G) \ (`-Spec(G) \ V (S)) if S * {0},
{G} ∪ `-Spec(G) \ {G} if S ⊆ {0}.

=

{
{G} ∪ int(V (S)) if S * {0}, by
`-Spec(G) if S ⊆ {0} �

10.3. Cardinal Sums and Summands Let G be an `-group and let H ⊆ G be
an `-subgroup. The following are equivalent.
(i) There is an `-group H ′ and an `-group isomorphism G −→ H ×H ′ mapping

H onto H × {0}.
(ii) H is an `-ideal and the residue map π : G −→ G/H splits, i.e. there is some

`-group homomorphism ι : G/H −→ G such that π ◦ ι = idG/H .
(iii) H is an `-ideal and G = H +H⊥.
(iv) H is an `-ideal and H⊥ is the unique convex subgroup of G with the property

G = H ⊕H⊥.
(v) H is an `-ideal and V (H) \ {G} is an open subset of `-Spec∗(G) (in other

words: `-Spec(G) \ V (H) is a closed subset of `-Spec∗(G)).
(vi) H is an `-ideal and V (H) \ {G} is a clopen subset of `-Spec∗(G) and its

complement in `-Spec∗(G) is V (H⊥) \ {G}.
(vii) H is an `-ideal and for every g ∈ G≥0 there is a largest element h ∈ H with

0 ≤ h ≤ g.
If G has a strong order unit and H is an `-ideal, then these conditions are equivalent
to
(viii) There is some f ∈ G with H = `(f) and G = `(f) + f⊥.
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Proof. (i)⇒(iv). In the product H × H ′ of the two `-groups H,H ′, all terms in
the language of `-groups are evaluated component wise. This implies easily that
H × {0} and {0} ×H ′ are `-ideals and that (H × {0})⊥ = ({0} ×H ′) in H ×H ′.
The isomorphism in (i) then transfers this fact and entails (iv) .
(iv)⇒(iii) is a weakening.
(iii)⇒(ii). Since H ∩H⊥ = {0} the restriction of π to H⊥ is injective. As G = H+
H⊥, this restriction is also surjective. Hence we may take ι to be the compositional
inverse of the restriction.
(ii)⇒(i). Let ϕ : H × G/H −→ G be the map i + ι, where i : H ↪→ G is the
inclusion. Clearly ϕ is an isomorphism.
(iv)⇒(vi) If p is a prime `-ideal, then H ⊆ p or H⊥ ⊆ p because if there is some
h ∈ H \ p then |h| ∧ |h′| = 0 ∈ p implies h′ ∈ p for all h′ ∈ H⊥.

On the other hand If H,H ′ ∈ p, then (iv) implies G ⊆ p and p is not in
`-Spec∗(G). This shows that The complement of V (H) \ {G} in `-Spec∗(G) is
V (H⊥) \ {G} which proves (vi).
(vi)⇒(v) is a weakening.
(v)⇒(i) We may assume that H 6= {0}. Then by 10.1 we know that V (H⊥) =

`-Spec(G) \ V (H). By (v) we know that `-Spec(G) \ V (H) is a closed subset of
`-Spec∗(G). It follows that V (H⊥) = {G} ∪ (`-Spec(G) \ V (H)). But then G =
H + H⊥, because an element not in H + H⊥ would be avoided by a prime `-
ideal containing H and H⊥. Since we obviously have H ∩ H⊥ = {0} this shows
G = H ⊕H⊥ as a group. It follows easily that G = H ⊕H⊥ as an `-group.
(i)⇒(vii) We may assume that G = H ×H ′. By the definition of the partial order
of H ×H ′ if g = (h, h′) ∈ H ×H ′ and f ∈ H, then (0, 0) ≤ (f, 0) ≤ (h, h′) if and
only if f ≤ h. This shows (vii)
(vii)⇒(v) Let p ∈ V (H) \ {G}. We need to show that p ∈ D(f) ⊆ V (H) for some
f ∈ G. Take g ∈ G≥0 with g /∈ p. By (vii) there is a largest element h of H with
0 ≤ h ≤ g. Since h ∈ H ⊆ p we have g − h /∈ p, i.e. p ∈ D(g − h), and it remains
to show that D(g − h) ⊆ V (H). This follows if we show that (g − h) ∧ h′ = 0 for
all h′ ∈ G≥0: We have h ≤ h+ ((g− h)∧ h′) = g ∧ (h+ h′) ≤ g and so by choice of
h we get h = h+ ((g − h) ∧ h′), i.e. (g − h) ∧ h′ = 0.
This shows the first equivalences. Now assume that G has a strong order unit, i.e.
`-Spec∗(G) is quasi-compact. If (viii) holds, then clearly (i) holds. Conversely, if (v)
holds, then as `-Spec∗(G) is quasi-compact, also `-Spec(G)\V (H) is quasi-compact.
Hence there is some f ∈ G with `-Spec(G) \ V (H) = D(f), i.e. V (H) = V (f) and
H = `(f). �

10.4. Corollary. Let G be an `-group and let f ∈ G. The following are equivalent.
(i) G = f⊥ + f⊥⊥.
(ii) The closure of D(f) in `-Spec∗(G) is open (and thus clopen).
(iii) For every g ∈ G with g ≥ |f |, |f | has a pseudo-complement in the lattice [0, g],

hence there is a largest element h in [0, g] with h ∧ |f | = 0.

Proof. (i)⇔(ii). By (†) in 10.1, V (f⊥) \ {H} is the closure of D(f) = `-Spec∗(G) \
V (f) in `-Spec∗(G). By 10.3(iii)⇔(v), G = f⊥+f⊥⊥ just if V (f⊥)\{H} is open in
`-Spec∗(G). Hence G = f⊥ + f⊥⊥ if and only if the closure of D(f) in `-Spec∗(G)
is open (and thus clopen).
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(i)⇒(iii) By 10.3(iii)⇒(vii) applied to H = f⊥, there is a largest element h with
h ∧ |f | = 0 such that 0 ≤ h ≤ g.
(iii)⇒(i) We may replace f by |f | and assume that f ≥ 0. By 10.3(vii)⇒(iii) applied
to H = f⊥, it suffices to show that for each g ∈ G≥0 there is a largest h ∈ f⊥

with 0 ≤ h ≤ g; in other words that there is a largest h with h ∧ f = 0 such that
0 ≤ h ≤ g. By (iii) there is a largest h ∈ [0, g ∨ f ] with h ∧ f = 0. But this h
satisfies h = h ∧ (g ∨ f) = (h ∧ g) ∨ (h ∧ f) = h ∧ g, i.e. h ≤ g. �

10.5. Definition. An `-group G is called projectable if every principal polar is
a summand of G, i.e. for all f ∈ G we have G = f⊥+ f⊥⊥. An `-group G is called
strongly projectable if every polar is a summand of G.

10.6. Remark. Recall from [Blyth2005, section 7.2] that a Stone lattice is a
pseudo-complemented bounded distributive lattice L satisfying ∼ a ∨ ∼∼ a = >
for all a ∈ L. In other words: every pseudo-complement has a complement.[17]

Using 10.1 we see that G is strongly projectable just if the lattice of open subsets
`-Spec∗(G) is a Stone lattice.

10.7. Proposition. The following conditions are equivalent for every `-group G.
(i) `-Spec∗(G) is stranded.
(ii) For every p ∈ `-Spec(G) the prime ideals of the lattice G containing p are to-

tally ordered by inclusion. Equivalently: PrimI(G≥0
∞ ) is a spectral root system.

(iii) PrimI(G≥0) is stranded.

Proof. (i)⇒(ii) Let p ∈ `-Spec∗(G) and let a, b be prime ideals of the lattice G with
p ⊆ a, b. By 9.3(ii), the invariance ideals I(a), I(b) of a, b respectively are prime
`-ideals. Since p + I(a) ⊆ a by definition of I(a) and `-Spec∗(G) is stranded we
either have p+I(a) = G, hence a = G contains b and we are done, or, p and I(a) are
comparable. Similarly, p and I(b) are comparable. Since `-Spec∗(G) is stranded
also I(a) and I(b) are comparable, say q := I(a) ⊆ I(b). Let π : G −→ G/q
be the residue map. As q is a prime `-ideal, π(a), π(b) are comparable in G/q.
Since q ⊆ I(a), I(b) we get a = π−1(π(a)), b = π−1(π(b)). Hence also a and b are
comparable.
(ii)⇒(i) Suppose `-Spec∗(G) is not stranded. Then there are prime `-ideals p0, q0 ⊆
r 6= G such that p0, q0 are incomparable. Then take a ∈ G \ r, a ≥ 0 and define
p = a+p↓0 and q = a+q↓0, prime ideals of the lattice G (see 7.1). Now r ⊆ a+p↓0 by
9.5 applied to U = p0. Similarly r ⊆ a+q↓0. However p and q are not comparable as
one sees easily using the assumption that p0 and q0 are not comparable. If p ⊆ q,
then for all p ∈ p0 there are y ∈ G and q ∈ q0 with a + p = a + y and y ≤ q. But
then p = y ≤ q0 and p ∈ q0 - this is impossible because p0 is not contained in q0.

Hence the prime ideals of the lattice G containing r do not form a chain for
inclusion and neither form the prime ideals of G≥0 containing r ∩G≥0 a chain.
(iii)⇒(ii) is a weakening.
(i),(ii)⇒(iii). By (ii) it suffices to show that for prime ideals a, b, c of the lattice
G≥0 with a, b ⊆ c, the sets a, b are comparable for inclusion. Notice that c 6= G≥0.
Let p, q be minimal prime `-ideals with p ∩ G≥0 ⊆ a and q ∩ G≥0 ⊆ b. If p = q
then by (i) we know that a and b are comparable. So assume p 6= q. Let r be a
minimal prime `-ideal of G contained in I(c). Then either p 6= r or q 6= r, say p 6= r.

[17]A Stone algebra is a Stone lattice expanded by the pseudo-complementation map.
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By minimality p and r are incomparable and by (i) we know that G ⊆ p + r and
so also G ⊆ p + I(c). On the other hand, p ⊆ a ⊆ c implies (p + I(c)) ∩ G≥0 ⊆ c
by definition of the invariance ideal I(c). But then G≥0 ⊆ c in contradiction to the
choice of c. �

10.8. z-ideals An `-ideal I is called a z-ideal if for all f ∈ I we have f⊥⊥ ⊆ I.
As noted in the footnote of , there is no good reason for this name and in fact it
contradicts the notion of a z-ideal in rings (of continuous functions) as we see now:

Let I be an `-ideal of an `-group G. By 10.2(ii), we know that V (f⊥⊥) =

{G} ∪ int(V (f)) for every f ∈ G. Hence I is a z-ideal if and only if the following
condition holds

(∗) ∀f ∈ G :

(
V (I) ⊆ V (f) =⇒ V (I) ⊆ {G} ∪ int(V (f))

)
.

A prime `-ideal is a z-ideal if and only if p = G or p 6= G and p is in the patch
closure of (`-Spec(G))min. Hence prime ideals of rings of continuous functions that
are z-deals in the sense of rings of continuous functions are in general not z-ideals
in the sense here.
Proof. We may assume that p 6= G. First assume p is a z-ideal. By [DiScTr2019,
Prop. 4.4.10(i)] it suffices to show that every constructible subset C of `-Spec(G)
with p ∈ C has nonempty interior (for the spectral topology of `-Spec(G)). We may
assume that C = V (f) ∩ D(g) for some f, g ∈ G. Since p is a proper z-ideal and
p ∈ V (f), we know that p ∈ int(V (f)) ∩D(g). In particular, D(g) hits int(V (f))
and therefore int(V (f)) ∩D(g) 6= ∅. Thus C has nonempty interior.

Conversely assume p is in the patch closure of (`-Spec(G))min and f ∈ G with
V (p) ⊆ V (f). Suppose p /∈ {G} ∪ int(V (f)). Then p /∈ int(V (f)) and there is some
g ∈ G with p ∈ D(g) and D(g) ∩ int(V (f)) = ∅. But then p is in the constructible
set D(g) ∩ V (f) and this set has empty interior. This contradicts [DiScTr2019,
Prop. 4.4.10(i)]. �

10.9. Theorem. The following are equivalent for every `-group G.

(i) G is projectable.
(ii) `-Spec∗(G) is stranded and `-Spec(G)min ∪ {G} is a patch closed subset of

`-Spec(G).
(iii) Every proper prime `-ideal contains exactly one prime z-ideal.
(iv) Every bounded interval of G is a Stone lattice.
(v) For every f ∈ G≥0 the interval [0, f ] is a pseudo-complemented lattice.

If G has a strong order unit u, then these conditions are equivalent to each of the
following.

(vi) K̊(`-Spec∗(G)) is a Stone lattice.
(vii) [0, |u|] is a pseudo-complemented lattice.

Warning: One may ask whether the conditions above are already implied under
the assumption that K̊(`-Spec∗(G)) is pseudo-complemented (and G has a strong
order unit). However this fails badly in general. For example if G is the `-group of
continuous semi-linear functions [0, 1] ⊆ Q −→ Q. Then G has a strong order unit,
namely the constant function of value 1. Then K̊(`-Spec∗(G)) is even a Heyting
algebra, but `-Spec∗(G) is connected, so it is far away from being a Stone lattice.
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Similarly, if A is the ring of continuous semi-algebraic functions [0, 1] ⊆ R −→
R. Then G = (A,+,≤) has a strong order unit, namely the constant function of
value 1 but Spec(A) is a connected Heyting space.

Proof. (i)⇒(ii) To see that `-Spec∗(G) is stranded take distinct p, q ∈ `-Spec(G)min.
We now work in the spectral space `-Spec(G) and show that p + q = G. Suppose
p+ q 6= G. Take f ∈ G with p ∈ D(f) and q /∈ D(f). By 10.4 and (i) the closure A
of D(f) in `-Spec∗(G) is open. Since D(f) is a patch closed subset of `-Spec(G),
A is contained in the specializations of D(f). Since p + q 6= G we know p + q ∈ A.
As A is open we get q ∈ A ∩ `-Spec(G)min. However A ∩ `-Spec(G)min = D(f)
because the specializations of D(q) are the specializations of `-Spec(G)min ∩D(f).
This contradicts q /∈ D(f).

Now we show that `-Spec(G)min∪{G} is a patch closed subset of `-Spec(G). Take
p ∈ `-Spec(G) \ `-Spec(G)min with p 6= G and choose some q ∈ `-Spec(G)min with
q ( p. Take f ∈ p\q. Then p ∈ U := V (f)∩(D(f)\{G}). SinceD(f) = Spez(D(f))
we know that U ∩ (`-Spec(G)min ∪ {G}) = ∅.

By (i), using 10.4 we know that D(f) \ {G} is open. Hence U is a constructibly
open neighborhood of p that is disjoint from `-Spec(G)min ∪ {G}.
(ii)⇒(i). By 10.6 we need to show that for each f ∈ G the set D(f)∩ `-Spec∗(G) is
open. Now, D(f) = Spez(D(f)) = Spez(D(f) ∩ `-Spec(G)min). Since `-Spec∗(G)
is stranded by (ii), we see that
`-Spec(G) \D(f) = Spez(`-Spec(G)min ∩ V (f)) \ {G}, which is equal to

Spez((`-Spec(G)min ∪ {G}) ∩ V (f)) \ {G} = `-Spec∗(G) \D(f).

Since `-Spec(G)min ∪ {G} is patch closed by (ii) we see that Spez((`-Spec(G)min ∪
{G}) ∩ V (f)) is closed. But this set intersects `-Spec∗(G) in `-Spec∗(G) \ D(f),
which shows that `-Spec∗(G) \D(f) is closed in `-Spec∗(G) as required.
(ii)⇒(iii). By 10.8, the proper prime z-ideals are exactly those that are in the patch
closure of `-Spec(G)min. Since this patch closure is `-Spec(G)min ∪ {G} by (ii) and
`-Spec(G)min is stranded there is exactly one prime z-ideal contained in p, namely
the unique minimal prime `-ideal contained in p.
(iii)⇒(ii). Let Z be the patch closure of `-Spec(G)min∪{G}. Using 10.8 we see that
(iii) implies that there are no specializations in Z ∩ `-Spec∗(G). But this is only
possible if Z = `-Spec(G)min ∪ {G}. We see that (iii) then implies that `-Spec∗(G)
is stranded.
Hence we know that (i),(ii) and (iii) are equivalent. For the rest of the proof
recall from 7.8 that the spectrum of the bounded distributive lattice [0, f ] is
naturally homeomorphic to D(f) (formed in PrimI(G≥0 ∪ {∞}) and therefore
[0, f ] ∼= K̊(D(f)).
(ii)⇒(iv). Since `-Spec∗(G) is stranded, also PrimI(G≥0) is stranded by 10.7. By
7.5, `-Spec(G)min ∪ {G} and PrimI(G≥0)min ∪ {G} are homeomorphic.

These two properties are then inherited on all open and quasi-compact subspaces
S of PrimI(G≥0), i.e. S is stranded and Smin is patch closed (notice that the point G
gets removed if S is proper and S∩(`-Spec(G)min∪{G}) = Smin). Hence for all f ∈
G≥0, D(f), taken in PrimI(G≥0), is stranded with patch closed space of minimal
points. By \ref{QCOPStoneLattice} in PseudoComplemented.tex this means
that K̊(D(f)) is a Stone lattice, in particular K̊(D(f)) is pseudo complemented.
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But K̊(D(f)) is isomorphic to [0, f ]. Since all bounded intervals of G are isomorphic
as a lattice to an interval [0, f ] with f ≥ 0 we get (iv).
(iv)⇒(v) is a weakening and (v)⇒(i) holds by 10.4.
This shows the first equivalences. Now assume that G has a strong order unit u,
i.e. `-Spec∗(G) = D(u) = D(|u|) is a spectral space and G is a constructible point
of `-Spec(G).
(ii)⇔(vi) holds by \ref{QCOPStoneLattice} in PseudoComplemented.tex ap-
plied to `-Spec∗(G).
(v)⇒(vii) is a weakening.
(vii)⇒(v) For f ∈ G≥0 we have [0, f ] ∼= K̊(D(f)), where D(f) is formed in
PrimI(G≥0 ∪ {∞}). As D(f) ⊆ D(u) we see that D(f) is semi-Heyting (see
[DiScTr2019, 8.3.3(i)]). �

10.10.Corollary. Let T be a Tychonoff space and let G be the `-group of continuous
functions. Then G is projectable if and only if (SpecC(X))min is compact and
SpecC(X) is stranded.

Proof. Recall that Spec(C(X)) is a spectral subspace of ` − Spec(G) and
(SpecC(X))min = (` − Spec(G))min. Hence if G is projectable, then by 10.9 we
get that (SpecC(X))min is compact and SpecC(X) is stranded. Conversely if
these conditions hold, then by 10.9 it remains to show that `-Spec∗(G) is stranded.
Suppose this is not the case. Then there are distinct p, q ∈ (` − Spec(G))min such
that p+ q 6= G. But then p, q are prime ideals of C(X) and so also p+ q is a prime
ideal of C(X), a contradiction. �
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