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1. Revision of Banach spaces

Throughout, K denotes the field of real or complex numbers. Recall that a
normed space (V, | . |) over K is a K-vector space V together with a function
| . | : V −→ R≥0 (called the norm) satisfying |a + b| ≤ |a| + |b|, |λ·a| = |λ|·|a| and
|a| = 0 ⇐⇒ a = 0 for all a, b ∈ V, λ ∈ K. Here |λ| ∈ R also denotes the modulus
of λ ∈ K.

The norm induces a metric on V via d(a, b) = |a− b| and therefore any normed
vector space carries a topology induced by this metric, called the norm-topology.
We write B̊ρ(x) and B̄ρ(x) for the open ball and closed ball of radius ρ ∈ R around
x in a normed space.

The normed space (V, | . |) is called a Banach space if V with the induced
metric is complete, i.e. every Cauchy-sequence converges. The standard example
here is the finite dimensional Banach space Kn with the euclidean norm: |x| =√
x1x̄1 + ...+ xnx̄n (here z̄ is complex conjugation).

1.1. Example. (Continuous functions)
Let X be a topological Hausdorff space and let
• C(X,K) denote the set of K-valued continuous functions on X.
• Cb(X,K) denote the set of bounded K-valued continuous functions on X. On
Cb(X,K) we define |f | := supx∈X |f(x)|.

• Cc(X,K) denote the set of K-valued continuous functions f with compact
support (where supp(f) = {f 6= 0}).

Then
(i) C(X,K) together with pointwise addition and multiplication is a commutative

K-algebra, where a ∈ K is mapped to the constant function with value a.
(ii) Cb(X,K) and Cc(X,K) are linear subspaces of C(X,K), in fact Cb(X,K) is

a subalgebra of C(X,K) and Cc(X,K) is an ideal of both rings.
(iii) Cb(X,K) together with | . | is a Banach space (easy exercise) and Cc(X,K)

together with | . | is a normed vector space. However, Cc(X,K) is not a Banach
space in general.

1.2. Fact. Let (V, | . |) be a normed space over K.
(i) Addition V × V −→ V and scalar multiplication K× V −→ V are continuous

maps.
(ii) The completion B of the metric space V is a Banach space. Recall that B is the

set of all Cauchy-sequences of V modulo null-sequences. Addition and scalar
multiplication are defined pointwise. The norm of B is the unique continuous
extension of the norm of V . Recall that V is dense in B.

(iii) If W is a subspace (i.e. a sub vector space), then the closure W of W is
again a subspace of V . If (V, | . |) is a Banach space then W (together with
the induced norm) is again a Banach space

(iv) If W is a closed subspace of V , then the quotient space V/W is a normed
space, the norm is given by

|x+W | = inf
w∈W

|x− w|
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and the residue map π : V −→ V/W is continuous and open; in fact π maps
the open ball B̊ρ(x) onto the open ball B̊ρ(x+W ).

(v) If W is a closed subspace of V and V is a Banach space, then (V/W, | . |) is
again a Banach space.

Proof. (i)-(iii) are straightforward.
(iv). To see the triangle inequality |x + y + W | ≤ |x + W | + |y + W | pick ε > 0
and wx, wy ∈ W with |x − wx| < |x + W | + ε and |y − wy| < |y + W | + ε. Then
|x+y+W | ≤ |x−wx+y−wy| < |x+W |+ |y+W |+2ε and as ε > 0 was arbitrary
the triangle inequality follows. Since W is closed, every element of norm 0 is 0,
hence | . | on V/W is indeed a norm.

A straightforward calculation shows

π−1(B̊ρ(x+W )) = ⋃
w∈W

B̊ρ(x+ w) = B̊ρ(x) +W.

It is then clear that π is continuous and

π(B̊ρ(x)) = π(B̊ρ(x) +W ) = B̊ρ(x+W ).

(v). Let (xn + W ) be a Cauchy sequence in V/W . Let (xnk
) be a subsequence of

(xn) such that

|xnl
− xnk

+W | < 1

2k
for all l ≥ k.

We define yk := xnk+1
− xnk

and show that
∑
k(yk + W ) converges in V/W (this

simply means that (xnk
+W ) converges in V/W and we are done, as (xn) is Cauchy).

Choose wn ∈W with

|yk − wk| < |yk +W |+ 1

2k
.

We claim that with zk = yk − wk, the series
∑∞
k=1 zk converges in V : Since V is a

Banach space we only need to show that the sequence (sk) of partial sums of (zk)
is Cauchy: We have

|sl − sk|
say l>k

= |zl + ...+ zk+1| = |yl − wl + ...+ yk+1 − wk+1| ≤
≤ |yl − wl|+ ...+ |yk+1 − wk+1| <

< |yl +W |+ ...+ |yk+1 +W |+ 1

2k−1
=

= |xnl+1
− xnl

+W |+ ...+ |xnk+2
− xnk+1

+W |+ 1

2k−1
<

<
1

2l
+ ...+

1

2k+1
+

1

2k−1
→ 0 as k, l→∞.

Hence
∑∞
k=1 zk converges to some z ∈ V and it remains to show that

∑
k(yk +W )

converges in V/W to z + W . However, yk + W = zk + W and the continuity of
V � V/W gives the result. �

1.3. Example. (Continuous functions continued)
The closure of the subspace Cc(X,K) of the Banach space Cb(X,K) (together with
the supremum norm) is the subspace Cv(X,K) of all K-valued continuous functions
f on X that vanish at ∞, i.e. for all ε > 0 the set {|f | ≥ ε} is compact (exercise).

It is worth mentioning (and helps appreciating what is developed later) that our
intuition of finite dimensional Banach spaces does not catch the general situation.
Here two prominent examples:
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(1) The closed unit ball in a Banach space is not compact, unless the space is finite
dimensional. (Proof upon request). In our example: let X = R and let fn be
a continuous function with |fn| = 1 and support [n, n + 1] (a bump function).
Then no subsequence of (fn) converges.

(2) Given a closed subspace W of a Banach space V and some v ∈ V \W , there
is in general no unique distance point of v to W : This already happens in
finite dimensions, e.g. If V = K2 mit the maximum norm. More generally, the
distance of 1 ∈ Cb(X,K) to the closed subspace Cv(X,K) is attained at many
points. The distance here is

inf
f∈Cv(X,K)

|1− f |,

which is 1. However, this infimum is attained at all real valued functions g with
the property 0 ≤ g ≤ 1.

In general the situation is worse. Here is an example of a proper closed
subspace W of a Banach space V such that no point v ∈ V \ W has any
distance point to W (cf. [Alt, p.126, U2.3]):

We work with C([0, 1]) = C([0, 1],R). Let V = {f ∈ C([0, 1]) | f(0) = 0}.
V itself is a closed subspace of C([0, 1]), hence V is a Banach space. We let
W := {g ∈ V |

∫
g dt = 0}. It is clear that W is a closed subspace of V .

Take f ∈ V \W and let A =
∫
f dt. Then, for each g ∈W we have

(∗) |A|
as

∫
gdt=0
= |

∫
(f − g) dt|

as f−g 6=0 and (f-g)(0)=0
< |f − g|.

On the other hand for n ∈ N, the function hn := (1 + 1
n )·t 1

n has
∫
h dt = 1.

Hence gn := f −A·hn ∈W and

|f − gn| = |A|·|hn| = |A|·(1 +
1

n
).

This, together with (∗) shows that the distance of f to W is |A|, but this
distance is never attained in W .
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2. Definition of C∗-algebras

2.1. Definition. A normed K-algebra is a normed space (V, | . |) over K together
with an operation · : V×V −→ V such that (V,+, ·) is a ring (possibly without unit)
satisfying
• λ·(a·b) = (λ·a)·b = a·(λ·b) for all a, b ∈ V , λ ∈ K, and
• |a·b| ≤ |a|·|b| for all a, b ∈ V .
If a·b = b·a for all a, b ∈ V , then V is called commutative. If V has a (nec-

essarily unique) neutral element w.r.t. multiplication, then V is called unital and
the multiplicative neutral element is denoted by 1.

A Banach algebra over K is a normed K-algebra such that the underlying
normed space is a Banach space.

A finite dimensional example of a unital Banach algebra over K is given by the
matrix ring Mn(K), where the norm of a matrix A is defined by

|A| = max{|Ax| | x ∈ Kn, |x| ≤ 1}
and the norm on Kn is the euclidean norm. Note that in this example in general
we have |A·A| < |A|2, |A·B| 6= |B·A| and |A·B| < |A|·|B|: take n = 2 and

A =

(
0 1
0 0

)
and B =

(
1 0
0 0

)
.

Another example is Cb(X,K), which is a unital, commutative Banach alge-
bra where multiplication is given pointwise. Cc(X,K) is a normed subalgebra
of Cb(X,K) without unit. Since the norm here is the supremum norm we have
|f ·g| ≤ |f |·|g| for all f, g; however, f ·g might be zero, whereas both f and g are not
(identically) zero.

2.2. Definition. A Banach ∗-algebra is a Banach algebra A over C together with
a map ∗ : A −→ A such that
∗1: The map ∗ is conjugate linear, i.e. (a+ b)∗ = a∗ + b∗ and (λa)∗ = λ̄a∗ for

all λ ∈ C, a ∈ A.
∗2: For all a ∈ A we have a∗∗ = a.
∗3: For all a, b ∈ A we have (a·b)∗ = b∗·a∗.

Maps satisfying ∗1, ∗2 and ∗3 are called involutions (of the normed algebra A).
∗4: For all a ∈ A we have |a∗| = |a|.

If in addition A satisfies
C∗: For all a ∈ A we have |a∗a| = |a|2,
then A is called a C∗-algebra.

Note that condition C∗ supersedes condition ∗4: since |a|2 = |a∗a| ≤ |a∗|·|a|
(from the Banach algebra axioms) we get |a| ≤ |a∗|; now the idempotency of the
involution gives |a∗| ≤ |a∗∗| = |a|.

Going back to our example of continuous functions we see that Cb(X,C) is a
C∗-algebra when choosing f∗(x) := f(x) (complex conjugation).

Our first goal in the course is to show the
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2.3. Gelfand-Naimark theorem
Every unital and commutative C∗-algebra is of the form C(X,C) for a compact
space X.

It should be mentioned that there is also a characterisation of real unital com-
mutative Banach algebras of the form C(X,R), where X is compact, namely:

2.4. Theorem. A real unital commutative Banach algebra A is isometrical isomor-
phic to C(X,R) in the supremum norm, where X is compact if and only if |1| = 1
and for all elements a, b in the algebra we have

|a2 − b2| ≤ |a2 + b2|.

Proof. This follows easily from 2.3 applied to A⊕ i·A The condition on the norm,
guarantees that A⊕ i·A together with (f + ig)∗ = f − ig and |f + ig| =

√
|f2 + g2|

is a C∗-algebra (and A is the subalgebra of self-adjoint elements of A⊕ i·A, i.e. of
those h, satisfying h∗ = h).

For a direct proof see [AlbKal, Theorem 4.2.5]. �
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The goal in the non-commutative case.
Let us now look at non-commutative examples. First recall that a Hilbert-space

over K is a K-vector space H together with a positive definite, hermitian form 〈, 〉
which is complete under the norm |x| :=

√
〈x, x〉:

〈, 〉 has the following properties:

2.5.
(1) 〈, 〉 is a scalar product (or sesquilinear form) of V : i.e. 〈x, y〉 is linear in

x and anti-linear in y, so 〈x, λy〉 = λ̄〈x, y〉 for λ ∈ C. If K = R, this means
that 〈, 〉 is a bilinear form

(2) 〈, 〉 is hermitian, i.e. 〈y, x〉 = 〈x, y〉. If K = R this means 〈, 〉 is symmetric.
Hence if 〈, 〉 is hermitian, then 〈x, x〉 is a real number in any case.

(3) The hermitian form 〈, 〉 is called positive, if 〈x, x〉 ≥ 0 for all x and positive
definite, if 〈x, x〉 > 0 for all x 6= 0.

Note: In Hilbert spaces the issue with distance points is gone. One can show
that for each point x ∈ H and all closed subspaces W of H, there is a unique
distance point y ∈ H of x to W .

If H is a Hilbert space we may define a Banach-algebra B(H) as follows:
• B(H) is the set of bounded operators on H, where a bounded operator on
H is a linear map ϕ : H −→ H such that the norm

|ϕ| = sup{|ϕ(x)| | |x| ≤ 1} is finite.
With this norm, B(H) is a Banach space.

• Operators in B(H) can be composed and with this operation, B(H) is a Ba-
nach algebra.

• If ϕ ∈ B(H), then ϕ has an adjoint ϕ∗ ∈ B(H) uniquely defined via

〈ϕ(x), y〉 = 〈x, ϕ∗(y)〉 (x, y ∈ H).

(This is due to Riesz’ representation theorem)
It turns out that ϕ 7→ ϕ∗ is an involution on B(H) and B(H) together with

this involution is a C∗-algebra.
Note that if H = Kn, then B(H) simply is the matrix algebra Mn(K) and the
adjoint of A ∈ B(H) is the conjugate transpose ĀT as defined in linear algebra.

Warning. There is a clash of notations in the literature: some authors call the
adjoint of a square matrix A ∈Mn(K) the n× n matrix B = (bij) defined by

bij = (−1)i+j ·det(Cji)

where Cji is the matrix obtained from A by removing the jth row and the ith
column. This is not the adjoint of A in our sense.

The overall goal of the course is to show the following

2.6. Gelfand-Naimark-Segal theorem
Any C∗-algebra is isometrically ∗-isomorphic to a C∗-algebra of operators on a
Hilbert space.

The exact statement gives a much better description of the representation, but
also needs more terminology. In the proof of the GNS-theorem (Gelfand-Naimark-
Segal) certain Hilbert spaces are constructed and this construction is referred to as
the GNS-construction.
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The most important instance of an Hilbert space for us, which is also useful
for understanding the GNS-construction and operators on Hilbert spaces is the
following:

Let (X,A, µ) be a measure space (so µ : A −→ [0,∞]) and let L 2(µ) be the
K-vector space of all measurable functions f : X −→ K such that f ·f̄ (defined
pointwise) is integrable.

Let N (µ) be the subspace of all f ∈ L 2(µ) which are 0, µ-almost everywhere.
Then

L2(µ) := L 2(µ)/N

is a Hilbert space, where the sesquilinear form is given by

〈f, g〉 =

∫
X

f ·ḡ dµ.

(It is common to denote the equivalence class of f ∈ L 2(µ) in L2(µ) by f again.)
The most prominent example of measure spaces occurring here will be regular

Borel measures on topological spaces.

Returning to the commutative case, the GNS-construction applied to the C∗-
algebra C([0, 1]) represents C([0, 1]) as an algebra of operators on L2([0, 1]) (w.r.t.
Lebesgue measure): An element f ∈ C([0, 1]) is mapped onto the operator bf :
L2([0, 1]) −→ L2([0, 1]); bf (g) = f ·g.
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3. Bounded operators and functionals on normed spaces

Firstly, recall that two norms | |1 and | |2 on a K-vector space V are called equiv-
alent if there are c, C > 0 such that for all x ∈ V we have

c·|x|1 ≤ |x|2 ≤ C·|x|1.
Also recall that all norms on a finite dimensional K-vector space are equivalent.

3.1. Finite products of normed spaces
Let V1, ..., Vn be normed spaces over K. Then the product space V := V1 × ...× Vn
is again a normed space with either the norm

|x| = max{|x1|, ..., |xn|}, or any of the norms

|x| = p
√

max{|x1|p, ..., |xn|p}, where 1 ≤ p <∞
All these norms are equivalent and induce the product topology on V . If each Vi
is a Banach space, then also V is a Banach space.

Proof. This is clear using the inequalities proving the equivalence of these norms
on finite dimensional spaces. �

3.2. Basic facts about bounded linear maps
A liner map λ : V −→W between normed spaces over K is continuous (at 0) if and
only if λ is bounded, i.e. there is some M ∈ R, M ≥ 0 such that for all x ∈ V we
have

|λ(x)| ≤M ·|x|.
If this is the case, then the infimum of all these M ’s is attained and called the
norm of λ, denoted by |λ|. We have

|λ| = sup{|λ(x)| | |x| ≤ 1} if V 6=0
= sup{|λ(x)| | |x| = 1}.

The set of bounded linear maps V −→ W , denoted by L(V,W ) is a normed space
over K w.r.t the norm defined above and we have
(i) If Z is another normed space over K and λ ∈ L(V,W ), µ ∈ L(W,Z), then

µ ◦ λ ∈ L(V,Z) with |µ ◦ λ| ≤ |µ|·|λ|.
(ii) If W is a Banach space, then also L(V,W ) is a Banach space.

Proof. If λ is bounded then λ is clearly continuous at 0 as B̄1(0) ⊆ λ−1(B̄M (0))
and so by linearity, λ is continuous everywhere. Note that the infimum m of all the
bounds M is also a bound, since this can be verified at each x ∈ V .

Conversely, suppose λ is continuous at 0. Take ρ > 0 with B̄ρ(0) ⊆ λ−1(B̄1(0)).
Thus withM = 1

ρ we have |λ(x)| ≤M ·|x| for all x ∈ V with |x| ≤ 1, so by linearity,
λ is bounded.

If λ is bounded, then using linearity of λ it is clear that M ∈ R is a bound for
λ if and only if

|λ(x)| ≤M
for all x ∈ V with |x| = 1. This indeed proves

|λ| = sup{|λ(x)| | |x| ≤ 1} = sup{|λ(x)| | |x| = 1}.
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Next we need to show that L(V,W ) is a vector space and | | is a norm on L(V,W )
and the only thing that needs to be shown is |λ+τ | ≤ |λ|+|τ | for all λ, τ ∈ L(V,W ).
However, using the representation above, this is clear.
(i) holds since for x ∈ V we have

|µ ◦ λ(x)| ≤ |µ|·|λ(x)| ≤ |µ|·|λ|·|x|
To see (ii), take a Cauchy sequence (λn) in L(V,W ). Then for each x ∈ V , (λn(x))
is Cauchy in W and converges to some λ(x). It is straightforward to see that λ is
the limit of the λn in L(V,W ).

�

3.3. Remark. A linear map λ : V −→ W between normed spaces that is bounded
on some open ball B̊ε(v) of V by M > 0 is bounded with |λ| ≤ 2M

ε .

Proof. Take x ∈ V with |x| ≤ ε. Then
|λ(x)| ≤ |λ(v + x)|+ |λ(v)| ≤ 2M

�

3.4. Remark. Recall that a function f : V −→W between normed spaces over K is
differentiable at x0 ∈ V if there is some T ∈ L(V,W ) and some map ψ : V −→W
with limh→0 ψ(h) = 0 such that

f(x) = f(x0) + T (x− x0) + |x− x0|ψ(x− x0) for all x ∈ V.
In this case T is called the derivative of f at x0. Clearly if f is already in L(V,W ),
then f ′(x0) = f ∈ L(V,W ) is independent of x0, hence f ′ is constant, equal to f .

A functional of a vector space V is a linear map V −→ K. For a normed space
V , the normed space of bounded functionals is called the dual space of V and
written as

V ′ := L(V,K).

To see an example of a bounded functional on a normed space, let λ :

C([a, b],K) −→ K be integration w.r.t Lebesgue measure: So λ(f) =
∫ b
a
fdt. Then

|λ(f)| ≤ |f |·(b−a). Hence λ is bounded and |λ| is the measure of [a, b]. In fact this
example is typical and a version of Riesz representation theorem says that for every
locally compact space, every bounded functional of Cb(X,K) can be obtained from
integration w.r.t a (signed) Borel measure on X.

To see a (natural) example of an unbounded functional on a normed space, let
λ : Cc(R,K) −→ K be integration w.r.t Lebesgue measure: So λ(f) =

∫ +∞
−∞ fdt.

Now if M > 0, it is clear that there is a continuous function f : R −→ R with
compact support and of norm 1 such that λ(f) > M = M ·|f |. Hence λ is not
bounded.

If λ ∈ V ′, then clearly the kernel Ker(λ) := λ−1(0) is a closed subspace of V of
codimension 1. This property of λ characterises membership in V ′, i.e. if W is a
closed subspace of V of codimension 1, then the induced linear map λ : V −→ K

is continuous (cf. 1.2(iv), where we also use that all norms on K are equivalent).
Moreover by 1.2(iv), every λ ∈ V ′ is open.
A bounded operator of a normed space V is a bounded linear map V −→ V .
We define

B(V ) = L(V, V ).
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By 3.2, B(V ) is a normed K-algebra and a Banach algebra if V is a Banach space.

3.5. Hahn-Banach
Let V be an R-vector space and let p : V −→ R be sublinear, i.e.

p(αx) = αp(x) and p(x+ y) ≤ p(x) + p(y) (x, y ∈ V, α ∈ R, α ≥ 0)

Let W be a subspace of V . Then every functional λ : W −→ R with λ ≤ p can be
extended to a functional λ̄ : V −→ R with λ̄ ≤ p.

Proof. By Zorn it suffices to extend λ to a subspace of dimension 1 over W . So we
may assume that V = W + z·R with z 6∈ W . Now the extensions of λ to V are
given by choosing c ∈ R and defining

λc(x+ zα) = λ(x) + c·α.

So the only thing we need to do is to choose c such that λc ≤ p. This condition
reads as

(∗) λ(x) + c·α ≤ p(x+ z·α) (x ∈W,α ∈ R).

For α = 0 this is true for every choice of c by assumption. For α > 0, (∗) reads as

(+) c ≤ p(x
α

+ z)− λ(
x

α
).

For α < 0, (∗) reads as

(−) c ≥ λ(−x
α

)− p(−x
α
− z).

It is therefore enough to choose c ∈ R such that

sup
x∈W
{λ(x)− p(x− z)} ≤ c ≤ inf

x∈W
{p(x+ z)− λ(x)}

However, if x, x′ ∈W , then λ(x)−p(x−z) ≤ p(x′+z)−λ(x′) because λ(x)+λ(x′) =
λ(x + x′) ≤ p(x + x′) = p(x′ + z + x − z) ≤ p(x′ + z) + p(x − z). Hence we can
choose c as desired. �

As a corollary

3.6. Hahn-Banach for bounded functionals
Let W be an arbitrary subspace of a normed space V over K. Every λ ∈ W ′ can
be extended to some λ̃ ∈ V ′ with |λ̃| = |λ|.

Proof. If K = R, then define p : V −→ R by p(x) := |λ|·|x| (x ∈ V ). p is of course
sublinear and for y ∈ W we have λ(y) ≤ |λ|·|y| = p(y). By 3.5, there is a linear
functional λ̃ of V extending λ with λ̃(x) ≤ p(x) = |λ|·|x| for all x ∈ V . It follows
|λ̃| ≤ |λ|. However |λ̃| ≥ |λ| holds for any (bounded) extension of λ.

If K = C, then apply the following recipe:
(a) By scalar restriction, consider V,W as normed spaces over R
(b) Consider λr : Re ◦ λ : W −→ R. Then |λr| ≤ |λ| and from the real case we

get an extension µ : V −→ R of λr with |µ| = |λr|.
(c) Define

λ̃(x) = µ(x)− i·µ(i·x) (x ∈ V )

and verify that λ̃ is a linear functional V −→ C.
(d) Verify that |λ̃| = |λ|.
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Only the inequality |λ̃| ≤ |λ| in (d) needs a proof: Take x ∈ V and write λ̃(x) =
r·eiΘ. Then

|λ̃(x)| = r = Re(eiΘλ̃(x)) = Re(λ̃(eiΘx)) = µ(eiΘx) ≤ |µ|·|x| ≤ |λ||x|
as desired. �

In particular for every nonzero x ∈ V , there are bounded functionals λ of V
with |λ| = 1 and |λ(x)| = |x|: Apply, 3.6 with W = x·K and the bounded linear
functional x·α 7→ |x|·α.

From this we get

3.7. Corollary. If V is a normed space over K, then the evaluation map

ε : V −→ V ′′,

which sends x ∈ V to the evaluation map ε(x) : V ′ −→ K at x (so ε(x)(λ) = λ(x))
is an isometric embedding of normed spaces (so |x| = |ε(x)| for all x ∈ V ).

Proof. We have

|ε(x)| = sup{|λ(x)| | λ ∈ V ′, |λ| = 1} ≤ |x|
and the other inequality holds by the remark preceding the corollary. �

3.8. Banach-Steinhaus (aka uniform boundedness principle)
Let V,W be normed space over K and assume V is a Banach space. Let F ⊆
L(V,W ). If for every v ∈ V , the set

F (v) := {f(v) | f ∈ F} is bounded in W,

then F is bounded in L(V,W ).

Proof. We use completeness of V by utilising the Baire category theorem. Note
that this theorem is applicable in every complete metric space. Let

Vn := {v ∈ V | F (v) ⊆ B̄n(0)}.

Then by assumption, V = ⋃n Vn. Now Vn = ⋂f∈F f
−1(B̄n(0)) is closed and so

by the Baire category theorem, one of the Vn must have nonempty interior. Say

(∗) Bε(v) ⊆ Vn.
Now take f ∈ F . Then (∗) says that f is bounded on Bε(v) by n. Then by 3.3, f
is bounded by 2n

ε . �

3.9. Definition. The weak∗-topology on the dual space V ′ of a normed space
V over K is defined as the weakest topology on V ′ making all evaluation maps
V ′ −→ K continuous.

Another way of seeing the weak∗-topology is the following. Let KV be the K-
vector space of all functions V −→ K. Then KV carries the product topology which
has an open basis of neighborhoods of 0, given by

(+)
∏
x∈F

B̊ε(0)×
∏

x∈V \F

V,

where F ranges over finite subsets of V and ε > 0. Translating these sets to
µ ∈ KV gives an open neighborhood basis of µ. It is clear that addition and scalar
multiplication of KV are continuous. Now observe that V ′ is a subvector space of
KV and the weak∗-topology on V ′ is the induced relative topology:
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The weak∗-topology by definition has an open neighborhood basis of 0 ∈ V for
the weak∗-topology given by the sets

UF,ε = {λ ∈ V ′ | |λ(F )| < ε} = ⋂
x∈F

ε(x)−1(B̊ε(0)),

where F ranges over finite subsets of V and ε > 0. However, UF,ε is the intersection
of V ′ with the set displayed in (+). Translating these sets to µ ∈ V ′ gives an open
neighborhood basis of µ.

3.10. Banach-Alaoglu Let V be a normed space and let E be the unit ball in V ′.
Then E is compact in the weak∗-topology

Proof. Let
C :=

∏
x∈V

B̄|x|(0) ⊆ KV .

Then C with the product topology is a topological subspace ofKV and C is compact
by Tychonoff. Let W ⊆ KV be the (not necessarily bounded) functionals of V .
Then for λ ∈W we have

λ ∈ C ⇐⇒ ∀x ∈ V |λ(x)| ≤ |x| ⇐⇒ |λ| ≤ 1.

This means
E = C ∩W.

Hence if we show that W is closed in KV , then E is a closed subset of the compact
space C and therefore E is compact.

To see that W is closed in KV , take f ∈ KV in the closure of W . We must show
that f is linear. Take x, y ∈ V and let ε > 0. By definition of the topology of KV ,
there is some λ ∈W such that in the coordinates x, y and x+ y we have

|λ(x)− f(x)| < ε, |λ(y)− f(y)| < ε and |λ(x+ y)− f(x+ y)| < ε.

Hence

|f(x+ y)− f(x)− f(y)| < |f(x+ y)− λ(x+ y) + λ(x)− f(x) + λ(y)− f(y)| < 3ε

and so f(x+ y) = f(x) + f(y). A similar argument shows that f(αx) = αf(x) and
so f is linear as desired. �

Warning. The unit sphere S = {λ ∈ V ′ | |λ| = 1} of V ′ is weak∗-dense in the unit
ball B = {λ ∈ V ′ | |λ| ≤ 1}, unless V is finite dimensional. In particular V is finite
dimensional if and only if S is weak∗-compact.

Proof. Let λ ∈ B and consider a basic open neighborhood

U = {µ ∈ V ′ | |µ(F )| < ε}

of 0 for some finite subset F of V and ε > 0. We need to show that S∩ (λ+U) 6= ∅.
In fact we show that there is some µ ∈ V ′ with µ(x) = 0 for all x ∈ F such that
|λ+ µ| = 1:

Let W ⊆ V ′ be the intersection of the kernels of the evaluation maps ε(x) :
V ′ −→ K, where x ∈ F . Define p : W −→ R by p(µ) = |λ+ µ|. As V ′ is not finite
dimensional, K 6= {0} and therefore p attains arbitrary large real values. Since p
is continuous and p(0) = |λ| ≤ 1, there must be some µ ∈ K with |λ+µ| = 1. This
µ has the required properties. �
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For a normed space V over K and a subset X of V ′, let

(X, τ∗)

denote the topological space X in the weak∗-topology.
By 3.7, evaluation induces an isometric embedding ε : V −→ V ′′. For x ∈ V , the
evaluation map ε(x) : V ′ −→ K is by definition weak∗-continuous, hence ε(V ) ⊆
C((V ′, τ∗),K). By linearity of the ε(x) it is clear that the composition Φ given by

V
ε−−→ ε(V ) ↪→ C((V ′, τ∗),K)

restriction−−−−−−→ C((B̄1(0), τ∗),K)

is an embedding of K-vector spaces (where B̄1(0) is the closed unit ball in V ′).
By 3.10, (B̄1(0), τ∗) is compact, hence C((B̄1(0), τ∗),K) is a Banach algebra

over K with the supremum norm. The norm of ε(x) in this Banach algebra is by
definition, the norm of ε(x) in V ′′. Thus, Φ is an isometric embedding

V −→ C((B̄1(0), τ∗),K).

We have shown the following.

3.11. Corollary. Let V be a normed space over K. Then there is a compact space
X such that V is isometrical isomorphic to a subspace of C(X,K) (observe that
this subspace is necessarily closed if V is a Banach space).

The “natural" choice of X is the unit ball of V ′ in the weak∗-topology. �

3.12. Remark. If we start with a completely regular space X and let V = Cb(X,K),
then we can find X as a subspace of the unit sphere {λ ∈ V ′ | |λ| = 1}, topologised
with the weak∗-topology:

For each x ∈ X, let Λx : V −→ K be the evaluation map Λx(f) = f(x). Clearly
Λx is linear and bounded of norm

|Λx| = sup{|f(x)| | f ∈ V, |f | ≤ 1} = 1.

Since X is completely regular, V separates points of X and therefore we obtain an
injective map

Λ : X −→ V ′;x 7→ Λx

from X into the unit sphere of V ′. We claim that Λ is a homeomorphism onto its
image if we equip V ′ with the weak∗-topology: To see this, take a sub-basic open
neighborhood of 0, U = {λ ∈ V ′ | |λ(f)| < ε} of V ′ in the weak∗-topology. Then
for x ∈ X we have

x ∈ Λ−1(U) ⇐⇒ |λx(f)| < ε ⇐⇒ |f(x)| < ε.

Hence Λ−1(U) = {|f | < ε}, which is open as f is continuous.
To show that Λ is an homeomorphism it remains to show for a closed subset A

of X that the complement of Λ(A) in Λ(X) is open in Λ(X): Take y ∈ X \A. Since
X is completely regular there is some f ∈ V with f(y) = 1, which vanishes on A.
Let

U = {λ ∈ V ′ | |(λ− λy)(f)| < 1}
Then U is an open neighborhood of λx in V ′ w.r.t. the weak∗-topology. As we have
seen above,

Λ−1(U) = {x ∈ X | |f(x)− f(y)| < 1}.
Since f vanishes on A, Λ−1(U) is disjoint from A and therefore U is disjoint from
Λ(A). This shows that Λ is a homeomorphism onto its image.
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Now look at the restriction ρ : V ′ −→ W ′, where W = Cc(X,K) equipped
with the weak∗-topology. The restriction is weak∗-continuous since already the
restriction KV −→ KW in the product topologies is continuous. Then we compose
Λ with this restriction and - provided X is locally compact - the same proof as
above shows that ρ ◦ Λ is a homeomorphism onto its image; the local compactness
is used when we construct some f ∈W with f(y) = 1 that vanishes on A.
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4. The spectrum of an element in a Banach algebra

Throughout, A denotes a normed algebra over K. If A is unital, the neutral element
w.r.t. multiplication is denoted by 1. Observe that |1| = |1·1| ≤ |1|·|1| and so
1 ≤ |1| (but in general 1 < |1| because if we replace | . | by 2·| . | we obtain again a
unital Banach algebra over K). Also recall that the rule |xy| ≤ |x||y| implies that
multiplication is jointly continuous.

If A is unital, then A embeds into the operator algebra B(A) via

x 7→ Lx,

where Lx(y) = x·y. Moreover the rule |xy| ≤ |x||y| exactly says |Lx| ≤ |x| and we
have

|Lx| = sup{|xy| | |y| ≤ 1} ≥ |x· 1
|1|
| = |x|
|1|
.

Thus
|x|
|1|
≤ |Lx| ≤ |x|

for all x ∈ A. Hence the original norm on A and the norm induced by B(A) are
equivalent. Further, observe that |L1| = 1 since |L1(1)| = |1|.

It should also be mentioned that we can always adjoin a unit to A: Define
A1 = A⊕K and extend multiplication so that A is a (two-sided) ideal of A1 (this
indicates how to define multiplication: (x ⊕ α)·(y ⊕ β) = (xy + αy + βx ⊕ αβ))
and define |x ⊕ α| = |x| + |α|. Then 0 ⊕ 1 is the unit of A1 and has norm 1. It
is straightforward to check that A1 is a normed K-algebra and A is isometrical
isomorphic to the closed subspace A⊕ 0 of A1.

Now we look at quotients of A. By an ideal of A we mean a subset I of A with the
property I − I ⊆ I such that ax, xb ∈ I for all a, b ∈ A, x ∈ I. Recall that for any
ideal I, A/I is again a ring with multiplication (x+ I)·(y+ I) = xy+ I. Moreover,
the closure of I in A is again an ideal of A since multiplication is continuous.
However, I might not be proper if I is proper. An example is A = K[T ] viewed as
a normed subalgebra of C([0, 1],K) and I = (1− 1

2T ). I is proper but the closure
of I contains 1: By Stone-Weierstrass, there is a sequence of polynomials (Pn)
that converges to 1

1− 1
2T

(or choose directly Pn as the nth partial sum of
∑
k(T2 )k ).

Hence Pn·(1− 1
2T ) ∈ I converges to 1.

4.1. Proposition. Let A be a normed K-algebra and let I be a closed subspace and
an ideal of A. Then the normed space A/I over K (as defined in 1.2(iv)) is again
a normed K-algebra. If A is unital with |1| = 1 and I is proper, then also A/I is
unital with unit 1+ I and |1+ I| = 1.
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Proof. We have to show that |(x+ I)(y + I)| ≤ |x+ I|·|y + I|:

|x+ I|·|y + I| = (inf
a∈I
|x+ a|)·(inf

b∈I
|y + b|) = inf

a,b∈I
(|x+ a|·|y + b|) ≥

≥ inf
a,b∈I

(|(x+ a)·(y + b)|) = inf
a,b∈I

|xy + ay + xb+ ab︸ ︷︷ ︸
∈I

| ≥

≥ inf
c∈I
|xy + c| = |xy + I| = |(x+ I)(y + I)|.

Hence A/I is a normed K-algebra. If A is unital and I 6= A, then |1+ I| ≤ |1| = 1
by assumption. However 1 ≤ |1+ I| is true anyway. �

A unit (or invertible element) of A is an element u ∈ A that has a (necessarily
unique) two-sided multiplicative inverse in A, denoted by u−1. The set of units is
denoted by G(A). Obviously, G(A) is a subgroup of the multiplicative monoid A.
Note that 1 ≤ |1| = |u·u−1| implies |u−1| ≥ |u|−1.

For the rest of this section A is a unital Banach algebra over K

4.2. Lemma. Every x ∈ A with |1− x| < 1 is invertible with inverse

x−1 =

∞∑
n=0

xn.

Proof. We have |xn| ≤ |x|n and since A is a Banach space, z =
∑∞
n=0 x

n exists in
A. We have (1− x)·z = 1, because multiplication is continuous and so

1− xk+1 = (1− x)·
k∑

n=0

xn

converges to 1. Similarly z·(1− x) = 1. �

4.3. Proposition. G(A) is open in A and the map G(A) −→ G(A) that sends x to
x−1 is continuous.

Proof. By 4.2 we have B̊1(1) ⊆ G(A). Now if x ∈ G(A), then multiplication with
x to the left is an homeomorphism lx : A −→ A that fixes G(A) setwise. Hence
lx(B̊1(1)) is an open neighborhood of x in A, contained in G(A). Thus G(A) is
open.
To see that x 7→ x−1 is continuous we fix x0 ∈ G(A) and show that i(x) := x−1 is
continuous at x0. Since x−1 = (x−1

0 ·x)−1·x−1
0 , we see that i = r ◦ i ◦ l, where l is

multiplication to the left with x−1
0 and r is multiplication to the right with x−1

0 .
As i ◦ l(x0) = 1 it suffices to show that i is continuous at 1: We have

|x−1 − 1| ≤ |x−1|·|1− x|,

so we only need to show that |x−1| is bounded for x in some neighborhood of 1. If
|1− x| < 1

2 , then

|x−1| = |
∞∑
n=0

(1− x)n| ≤
∞∑
n=0

|(1− x)n| ≤
∞∑
n=0

|1− x|n ≤ 2

as required. �
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Remark: If A is just a normed algebra, then G(A) is in general not open in A: an
example is K[T ] viewed as a normed subalgebra of C([0, 1],K)). Clearly G(A) = K\
{0}, but 1 ∈ G(A) is not in the interior of G(A), since the polynomial p(x) = 1− 1

nT

is not in G(A) and satisfies |1− p| = | 1nT | =
1
n .

4.4. Corollary. If I is a proper ideal of A, then also the closure of I is a proper
ideal of A.

Proof. Since I is proper we have I ⊆ A \ G(A), which is closed by 4.3. Hence the
closure of I is also contained in A \ G(A). �

4.5. Definition. The spectrum of x ∈ A is defined as

σA(x) := {λ ∈ K | x− λ·1 6∈ G(A)} ⊆ K.

Note that σA(0) = {0}. For matrix algebras, σA(x) is the set of eigenvalues of A.
If A = C(X,K) for a compact space X, then for f ∈ A, λ ∈ σA(f) if and only if
f − λ is not a unit in A, i.e. f − λ has a zero in K. Thus σA(f) is the image of f

4.6. Theorem. If A is a unital Banach algebra over K and x ∈ A, then σA(x) is
a compact subset of K contained in the ball of radius |x| around 0.

If K = C, then σA(x) is non-empty. Observe that σA(x) can be empty if K = R,
e.g, if x ∈ A = Mn(R) does not have (real) Eigenvalues.

Proof. If |λ| > |x|, then |1 − (1 − x
λ )| < 1, hence 1 − x

λ ∈ G(A) and x − λ1 =
−λ·(1− x

λ ) ∈ G(A), too. Hence σA(x) is contained in the ball of radius |x| around
0.
To show that σA(x) is compact it remains to show that K\σA(x) is open: We have
λ ∈ K \ σA(x) ⇐⇒ x− λ·1 ∈ G(A) and we know from 4.2 that G(A) is open in A.
Now the function Λ : K −→ A; Λ(λ) = x− λ·1 is continuous, and so

K \ σA(x) = Λ−1(G(A))

is open.

It remains to show that σA(x) is non-empty, provided K = C: Otherwise consider
the function f : C −→ A,

f(λ) := (x− λ·1)−1.

Claim. f is differentiable with derivative

f ′(λ) = (x− λ1)−2

(to be precise, f ′(λ) is the element of L(C, A) that maps 1 to (x− λ1)−2).

Proof. For h ∈ C, h 6= 0 we have

f(λ+ h)− f(λ+ h)

h
=

(x− (λ+ h)·1)−1 − (x− λ·1)−1

h
=

(x− (λ+ h)·1)−1· (x− λ·1− (x− (λ+ h)·1)) ·(x− λ·1)−1

h
=

(x− (λ+ h)·1)−1·h·(x− λ·1)−1

h
=

(x− (λ+ h)·1)−1·(x− λ·1)−1 → (x− λ1)−2

when h→ 0. �
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From the claim we get a contradiction as follows: Pick ϕ ∈ A′. Then also g :=
ϕ ◦ f : C −→ C is differentiable, hence an entire function. Now

(∗) f(λ) = (x− λ·1)−1 = (−λ)−1(1− λ−1x)−1 = (−λ)−1·
∑

(λ−1x)n → 0

as |λ| → ∞. It follows that f is bounded and therefore also g is bounded. By
Liouville’s theorem, g is constant. But (∗) then shows that g = 0.

So we have shown that ϕ ◦ f = 0 for all ϕ ∈ A′ which implies that f(λ) =
(x− λ·1)−1 is 0, a contradiction. �

4.7. Corollary. If A is a unital Banach algebra over K, then for every nonzero
K-algebra homomorphism ϕ : A −→ K we have
(i) ϕ(1) = 1.
(ii) ϕ(x) ∈ σA(x) for all x ∈ A.
(iii) ϕ is bounded of norm ≤ 1.

Proof. (i) As ϕ is nonzero there is some x ∈ A with ϕ(x) 6= 0. Then ϕ(x) =
ϕ(x·1) = ϕ(x)·ϕ(1), thus ϕ(1) = 1.
(ii) Let y := x− ϕ(x)·1. Clearly ϕ(y) = 0. Hence if y were invertible then

1 = ϕ(1) = ϕ(y)·ϕ(y−1) = 0,

a contradiction. This shows (ii).
(iii) By 4.6, σA(x) is contained in the ball of radius |x| around 0. From (ii) we get
|ϕ| ≤ 1. �

The proof shows that actually only item (iii) of 4.7 is a consequence of 4.6. However
4.7 is true for K = C and for K = R. In both cases, 4.7 and additional assumptions
onA will allow us to construct non-zero ring homomorphismsA −→ K and therefore
also elements in σA(x) for all x ∈ A. Commutativity is one such assumption and
methods from commutative algebra can be used conveniently. Commutativity is
not enough though (in the real case), since not every unital commutative Banach
algebra A over R possesses a non-trivial ring homomorphism A −→ R: think of
A = C.

Another consequence of 4.6 is:

4.8. Gel’fand-Mazur I
If A is a complex, unital Banach algebra and every nonzero element of A is invert-
ible, then A = C.

Proof. If x ∈ A then as σA(x) 6= ∅, we know that x− λ1 is not invertible in A. By
assumption, x− λ1 = 0, i.e. x = λ·1. �
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5. The spectrum of a Banach algebra

A character of a unital Banach A (or multiplicative functional) over K
is a non-zero K-algebra homomorphism A −→ K. (Note that in the case K = R,
every (nontrivial) ringhomomorphism ϕ : A −→ R is automatically an R-algebra
homomorphism, since ϕ(1) = 1 as in the proof of 4.7(i) and from this one sees
that ϕ is the identity on Q·1. Now it just remains to show that ϕ is continuous on
R·1. This follows essentially from the fact that ϕ maps positive elements of R·1 to
positive elements of R)

5.1. Definition. The spectrum of a unital Banach algebra A is defined as

Sp(A) = {all characters of A}.

Recall from 4.7, that Sp(A) ⊆ A′.

5.2. Proposition. Sp(A) is a weak∗-compact subset of A′.

Proof. By 4.7 we know that, that Sp(A) is contained in the (norm-)unit Ball of V ′
and by Banach-Alaoglu, this ball is weak∗-compact. Hence it is enough to show
that Sp(A) is weak∗-closed. This goes exactly as in the proof of 3.10, where we
showed that the set W of linear maps A −→ K is closed in KA; Take f ∈ KA in
the closure of Sp(A). By Banach-Alaoglu we already know that f ∈ V ′ is of norm
≤ 1. We must show that f is multiplicative (we know already that f 6= 0, since
ϕ(1) = 1 for all ϕ ∈ Sp(A)). Take x, y ∈ A and let ε > 0. By definition of the
topology of KV , there is some ϕ ∈ A such that in the coordinates x, y and x + y
we have

|ϕ(x)− f(x)| < ε, |ϕ(y)− f(y)| < ε and |ϕ(x·y)− f(x·y)| < ε.

Hence

|f(xy)− f(x)f(y)| = |f(xy)− ϕ(xy) + ϕ(x)ϕ(y)− f(x)f(y)| =
= |f(xy)− ϕ(xy) + ϕ(x)ϕ(y)− ϕ(x)f(y) + ϕ(x)f(y)− f(x)f(y)| ≤
≤ |f(xy)− ϕ(xy)|+ |ϕ(x)|·|ϕ(y)− f(y)|+ |f(y)|·|ϕ(x)− f(x)| <
as |ϕ|,|f |≤1

< ε+ |x|·ε+ |y|·ε→ 0 as ε→ 0.

Thus f(xy) = f(x)f(y) as desired. �

We now define the Gel’fand transform for unital Banach algebras as the compo-
sition of the maps

A
ε−−→ ε(A) ↪→ C((A′, τ∗),K)

restriction−−−−−−→ C((Sp(A), τ∗),K)

which is explicitly written as x 7→ x̂, where x̂ : Sp(A) −→ K is defined as

x̂(ϕ) = ϕ(x)

for any character of ϕ of A. Observe that

x̂·y = x̂·ŷ for all x, y ∈ A
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and
|x̂| ≤ |x| for all x ∈ A.

(Recall the discussion before 3.11). Hence ˆ : A −→ C(SpA,C) is a continuous
algebra homomorphism.

Recall that amaximal ideal of a ring A is a proper ideal of A which is not properly
contained in any other proper ideal of A. If A is unital, then every proper ideal I
of A is contained in a maximal ideal of A: By Zorn, there are maximal elements m
in the set of all ideals J of A with I ⊆ J 63 1.

5.3. Observation. If A is a unital Banach-algebra over K and ϕ : A −→ K is
a character, then Kerϕ is a maximal ideal of A and ϕ can be reconstructed from
Kerϕ via the commutative diagram

A
ϕ //

!!

K

K

OO

// A/m

OO

because ϕ is the unique K-algebra homomorphism which makes this diagram com-
mutative.

5.4. Example. For n ≥ 2, the only proper two-sided ideal ofMn(K) is the zero ideal.
(Recall that Mn(C) is a C∗-algebra). In particular, Sp(Mn(K)) = ∅.

Proof. This of course works over all fields. Let P ∈ Mn(K) and suppose the ij-th
entry of P is nonzero, call it α. For all k ∈ {1, ..., n} we can swap rows and columns
of P and find Ek, Fk ∈ Mn(K) such that EkPFk has the element α in its k-th
diagonal position. Then let Tk ∈Mn(K) be the matrix which has exactly one non
zero entry namely 1

α in the k-th diagonal position. Then

1 =

n∑
k=1

EkPFkTk

is in the (two-sided) ideal generated by P . �

This is the point were commutativity comes into the place:
If A is a commutative ring and 0 is the only non-trivial ideal of A, then every

non-zero element of A is invertible (so A is a field).
Let MaxA denote the set of maximal ideals of an arbitrary ring A.

5.5. Gel’fand-Mazur II
If A is a complex unital commutative Banach-algebra, then the map

Ker : Sp(A) −→ Max(A)

ϕ 7−→ Ker(ϕ)

is bijective. Since MaxA 6= ∅, it follows that Sp(A) 6= ∅.

Proof. We construct the inverse: Let m be a maximal ideal of A. Then m is a
proper ideal and so also the closure of m in A is is a proper ideal by 4.4. By
4.1, A/m is again a unital Banach-algebra, which clearly inherits commutativity.
Moreover, the only ideal of A/m is the zero ideal (it is straightforward to see that
the preimage of any ideal of A/m under A � A/m is again an ideal). Now by
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commutativity, A/m is a field. However, we want that A/m is isomorphic to C:
By Gel’fand-Mazur I (see 4.8, this is not available in the real case), we know this,
or better: the map C −→ A/m;λ 7→ λ·1 is an isomorphism. Hence we obtain a
character ϕ : A −→ A/m −→ C.

This character is the unique (by the isomorphism theorem from commutative
algebra) preimage of m under our map Ker. �

If K = R, then 5.5 fails: For example if A = C: Then Sp(A) = ∅, but MaxA =
{(0)}.

5.6. Corollary. If A is a complex unital commutative Banach-algebra, then the
Gel’fand transform of x ∈ A is a continuous and surjective map

x̂ : SpA� σA(x).

It follows that

|x̂| = sup{|x̂(ϕ)| | ϕ ∈ Sp(A)} = sup{|λ| | λ ∈ σA(x)}.
The number on the right hand side is called the spectral radius of x and we will see
shortly that we have to compute this number.

Proof. We already know that x̂ is continuous. Let λ ∈ σA(x), i.e. x − λ·1 is not
invertible. Since A is commutative, x − λ·1 is contained in a maximal ideal of A.
The corresponding character ϕ ∈ Sp(A) then annihilates x − λ·1, in other words
x̂(ϕ) = ϕ(x) = λ. �

We turn to C∗-algebras (see 2.2) and show that the Gel’fand transform in the
commutative case is a C∗-algebra isomorphism ˆ : A −→ C(SpA,C).

5.7. Definition. An element x of a C∗-algebra A is called self-adjoint (or her-
mitian), if x∗ = x.

For example x∗·x is self-adjoint for all x ∈ A. The importance of self-adjoint
elements comes from the observation that every x ∈ A can be uniquely written in
the form a + i·b, where a, b ∈ A are self-adjoint (a, b are called the real and the
imaginary part of x). Explicitly, take

a =
1

2
(x+ x∗) and b =

1

2i
(x− x∗).

Now if x = h+ ik with self adjoint h, k ∈ A then x∗ = h− ik so that h = 1
2 (x+x∗)

and k = 1
2i (x− x

∗).

5.8. Proposition. If A is a C∗-algebra and h ∈ A is self-adjoint, then

σA(x) ⊆ R.
This generalises the linear algebra statement “hermitian matrices have real Eigen-
values"

Proof. Since h is self-adjoint, the C-subalgebra C[h] generated by h in A is a ∗-
closed subalgebra and it is clear that C[h] is commutative.

Let B be the closure of C[h] in A. Since multiplication and the involution
are continuous, B is a commutative C∗-subalgebra of A (and so B is also a C∗-
algebra). By definition we have σA(x) ⊆ σB(x) and therefore it suffices to prove that
σB(x) ⊆ R. We may therefore replace A by B and assume that A is commutative.
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Remark: This reduction to the commutative case would also work if h were only
normal, i.e. h∗h = hh∗. The self-adjointness property of h will be used in a crucial
way below.
Since A is commutative we know from 5.6 that ĥ : SpA � σA(x) is surjective and
therefore it suffices to show that ϕ(h) ∈ R for every character ϕ of A. We do this
by showing

| exp(i·t·ϕ(h))| ≤ 1 for all t ∈ R.
Fix t ∈ R and write u = ei·t·h defined as

u =

∞∑
n=0

(it)n

n!
hn.

Since ϕ is continuous and a C-algebra homomorphism we have

ϕ(u) =

∞∑
n=0

(it)n

n!
ϕ(h)n = exp(i·t·ϕ(h)).

Since ϕ ∈ SpA has norm ≤ 1 it suffices to show that

|u| ≤ 1.

Here we will use that h is self-adjoint and that A satisfies |x∗x| = |x|2 for all x:
Firstly we have

u∗ = (

∞∑
n=0

(it)n

n!
hn)∗

as ∗ is continuous
=

∞∑
n=0

(−it)n

n!
(h∗)n

as h is self-adjoint
=

=

∞∑
n=0

(−it)n

n!
hn.

This shows u∗·u = 1 (exercise!). Now by the C∗-rule in C∗-algebras we get
|1| = |u∗·u| = |u|2 and therefore |u| = 1 as required. �

5.9. Corollary. Every character of a C∗-algebra respects the involution.

Proof. Let ϕ : A −→ C be our character. Write x = a+ib with self-adjoint elements
a, b ∈ A. Then

ϕ(x∗) = ϕ(a− ib) = ϕ(a)− iϕ(b) = ϕ(x)

since ϕ(a), ϕ(b) ∈ R by 5.8 (and 4.7). �



Gel’fand-Naimark: Representation of commutative C∗-algebras 25

6. Gel’fand-Naimark: Representation of commutative C∗-algebras

Here is another application of the commutative case to arbitrary complex, unital
Banach algebras:

6.0.Observation. Let A be a unital Banach algebra over K and let C be a (normed)
K-subalgebra of A.
(i) If G(A) ∩ C ⊆ G(C), then σC(x) = σA(x) for all x ∈ C.

For u ∈ G(A) ∩ C we have the following.
(ii) If C is commutative then C[u−1] is again commutative.
(iii) If ∗ : A −→ A is an involution (so here K = C) and C is commutative

and closed under this involution, then also C[u−1, (u−1)∗] is commutative and
closed under the involution.

Proof. (i). It is trivial that σA(x) ⊆ σC(x). Conversely, if λ ∈ K \ σA(x), then
u := x − λ·1 ∈ C is invertible in A. So by assumption, u is invertible in C and
therefore λ 6∈ σC(x).
(ii). As u ∈ C commutes with all elements y of C, also u−1 commutes with every
element y of C:

uy = yu⇒ yu−1 = u−1uyu−1 = u−1yuu−1 = u−1y.

Consequently, C[u−1] is commutative.
(iii) Since (u−1)∗ = (u∗)−1 and u∗ ∈ C we can apply (i) for C[u−1]. Hence
C[u−1, (u−1)∗] is commutative and it is clear that this ring is closed under the
involution. �

6.1.Corollary. Let A be a unital Banach algebra over K and let C be a commutative
(normed) K-subalgebra of A. Then
(i) C is contained in a maximal commutative (normed) K-subalgebra B of A and

each such algebra B is a unital Banach algebra with G(A) ∩B = G(B).
(ii) If A is a unital C∗-algebra and C is closed under ∗, then C is contained in

a maximal commutative C-subalgebra B of A closed under ∗ and each such
algebra B is a unital C∗-subalgebra with G(A) ∩B = G(B).

In both situations we have σB(x) = σA(x) for all x ∈ B.

Proof. (i) By Zorn, it is clear that B exists. Since B is commutative, also the
closure of B in A is commutative, hence by maximality, B is already closed.

By 6.0(i), the maximality of B implies G(A) ∩B ⊆ G(B).

(ii) As in (i) it is again clear that B is a commutative C∗-subalgebra of A. This
time, the maximality of B and 6.0(ii) imply that G(A) ∩B ⊆ G(B).
So in both cases we have G(A) ∩ B = G(B). Hence by 6.0(iii), we have σB(x) =
σA(x) for all x ∈ B. �

6.2. Corollary. Let A be a complex, unital Banach algebra and let x ∈ A.
(i) If x is invertible, then σA(x−1) = σA(x)−1.
(ii) For every polynomial P ∈ C[T ] we have

P (σA(x)) = σA(P (x)).
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Proof. (i) If x is invertible, then for λ ∈ C we have

λ ∈ σA(x−1) ⇐⇒ x−1 − λ·1 6∈ G(A) ⇐⇒ −λ−1·1+ x 6∈ G(A) ⇐⇒ λ−1 ∈ σA(x)

as required.
(ii). By 6.1 applied to the commutative C-algebra C[x] we may assume that A is

commutative. In this case, we know from 5.6, that σA(y) = ŷ(Sp(A)) for all y ∈ A.
Hence

P (σA(x)) = P (x̂(Sp(A))) = P (x̂)(Sp(A))
as ˆ is a C-algebra hom.

=

= P̂ (x)(Sp(A)) = σA(P (x)).

�

Let A be a unital, complex Banach algebra and let x ∈ A. The spectral radius
r(x) of x is the supremum (maximum) of all “eigenvalues" of x:

rA(x) = sup{|λ| | λ ∈ σA(x)}.
We have seen in 5.6, that for commutative A, we actually have rA(x) = |x̂|, hence
r(x) is the norm of the Gel’fand transform of x. In general, the spectral radius can
be computed as follows:

6.3. Spectral radius formula Let A be a unital, complex Banach algebra and let
x ∈ A. Then

rA(x) = lim
n→∞

|xn| 1n = inf
n∈N
|xn| 1n

Observe that the right hand side here does not depend on A, in the sense that it
does not change if we replace A by a larger Banach algebra. Whereas the σA(x) will
change in general under this replacement. The formula implies that the spectral
radius does not change.

Proof. Write
γ = inf

n∈N
|xn| 1n .

We first show that
lim
n→∞

|xn| 1n = γ.

Take ε > 0 and fix k ∈ N with |xk| 1k < γ + ε. For n ∈ N, write

n = qn·k + rn

with qn ∈ N0 and 0 ≤ rn < k. Then

|xn| 1n = |(xk)qn ·xrn | 1n ≤ |xk|
qn
n ·|x|

rn
n .

Now qn
n = qn

qnk+rn
→ 1

k as n → ∞ and so |xk|
qn
n ·|x|

rn
n → |xk| 1k as n → ∞. It

follows that |xn| 1n < γ + ε for all but finitely many n.
This shows limn→∞ |xn|

1
n = γ.

Now we show that rA(x) ≤ γ. By 6.2, we know that rA(x)n = rA(xn) and by 4.6
we know that rA(xn) ≤ |xn|. Thus

rA(x) ≤ |xn| 1n for all n ∈ N
and so rA(x) ≤ γ.
Finally we show rA(x) ≥ γ.
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Claim. For every ϕ ∈ A′ and all λ ∈ C with |λ| > rA(x), the sequence

(ϕ(
xn

λn+1
))n∈N ⊆ C is bounded.

To see this, define

g : C \ σA(x) −→ C

λ 7−→ ϕ((x− λ·1)−1).

g is differentiable and so holomorphic (the proof is identical to the one given in
4.6).

On the other hand for all λ > |x|, we know that

(∗) g(λ) =

∞∑
n=0

ϕ(xn)

λn+1

From function theory (see [Knopp, §24, Satz 1] or [Werner2, Theorem II 3.3]) we
then know that the series in (∗) is also convergent for all λ ∈ C with |λ| > rA(x).
This proves the claim.

Now fix λ ∈ R with λ > rA(x) and let F ⊆ A′′ be the set of all evaluation maps
given by xn

λn+1 , n ∈ N. The claim says that F (ϕ) is a bounded subset of C for
every ϕ ∈ A′. By Banach-Steinhaus (see 3.8) we then know that F ⊆ L(A′,C) =
A′′ is bounded. Since evaluation is an isometric embedding, it follows that also
( xn

λn+1 )n∈N, is bounded. Pick M > 0 with

| x
n

λn+1
| ≤M for all n ∈ N.

It follows |xn| ≤M ·λ·λn and so

|xn| 1n ≤ (M ·λ)
1
n ·λ for all n.

Hence
γ = lim

n→∞
|xn| 1n ≤ λ

for all λ ∈ R with λ > rA(x) as desired. �

6.4. Gel’fand-Naimark
Let A be a unital commutative C∗-algebra. Then the Gel’fand transform

ˆ : A −→ C(SpA,C)

is an isometric ∗-isomorphism.

Proof. We first show that x̂∗ = (x̂)∗ for every x ∈ A. Take ϕ ∈ Sp(A). Then

x̂∗(ϕ) = ϕ(x∗)
by 5.9

= ϕ(x) = x̂(ϕ) = (x̂)∗(ϕ).

Suppose we know already that ˆ is isometrical. Then it is of course injective and
an isomorphism onto a closed C∗ subalgebra of C(Sp(A)). Since the image sepa-
rates points of Sp(A) by definition, we can use the complex version of the Stone-
Weierstrass theorem (see [Lang, III,§2, Theorem 1.4]; observe that we need that the
image of ˆ is closed under conjugation, which is assured by what we have shown
above) to see that the image is indeed all of C(Sp(A)).

Hence it remains to show that |x̂| = |x| for all x ∈ A. Suppose we knew this for
self-adjoint elements. Then



28 Gel’fand-Naimark: Representation of commutative C∗-algebras

|x̂|2 = by definition = |x̂x̂| = as ˆ preserves the involution

= |x̂∗x̂| = as ˆ preserves multiplication

= |x̂∗x| = as x∗x is self-adjoint and we are assuming this

= |x∗x| = |x|2 by the C∗-algebra rule

and therefore |x̂| = |x|.

So the only thing that remains to show is

|ĥ| = |h| for every self-adjoint h ∈ A.

By 5.6 we know rA(h) = |r̂|. By the C∗-property we know |h2| = |h|2 and so by
induction |h2n | = |h|2n

for all n ∈ N. But now the formula for the spectral radius
tells us

rA(h) = lim
n→∞

|hn| 1n ,

and so indeed rA(h) = |h|. �

6.5. Corollary. The norm of a unital (not necessarily commutative) C∗-algebra A
is uniquely determined by the C-algebra and the ∗-algebra structure of A. For x ∈ A
we have

|x| =
√

sup{|λ| | x∗x− λ·1 is not invertible in A}

Proof. Since |x|2 = |x∗x| it suffices to show that

|x∗x| = sup{|λ| | x∗x− λ·1 is not invertible in A}

Let B be a maximal commutative C∗-subalgebra of A containing x∗x (not that
C[x∗x] is closed under ∗, since x∗x is self-adjoint). By 6.1, B is a (commutative)
C∗-subalgebra of A and so by 6.4,

|x∗x| = |x̂∗x|Sp(B)
5.6
= sup{|λ| | λ ∈ σB(x∗x)}.

By 6.1, σB(x∗x) = σA(x∗x), and so the result follows. �

Later we will see that also the involution of a C∗-algebra is uniquely determined.

6.6. Observation. Let A be a C∗-algebra generated by a single element x of A
(hence A is the closure of the ∗-subalgebra C[x, x∗] generated by x and x∗). Then
the Gel’fand transform x̂ : Sp(A) −→ σA(x) is injective.

If x is normal (i.e. x∗x = xx∗), then x̂ : Sp(A) −→ σA(x) is an homeomorphism.

Proof. This follows from 5.9, which says that every character of A respects the
involution. Hence if ϕ,ψ ∈ Sp(A) with x̂(ϕ) = x̂(ψ), then ϕ(x) = ψ(x), so ϕ(x∗) =
ψ(x∗), which means that ϕ and ψ agree on C[x, x∗]. Since C[x, x∗] is dense in A,
ϕ must be equal to ψ.

If x is normal, then C[x, x∗] is commutative, and therefore also A is commutative.
By 5.6 we then know that x̂ is bijective. Since Sp(A) is compact (by 5.2) and
σA(x) ⊆ C is Hausdorff we get the assertion. �
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6.7. Corollary. Let A be a C∗-algebra generated by a single normal element x of
A Then the map

Φ : A −→ C(σA(x),C)

a 7−→ â ◦ x̂−1

is an isometric ∗-isomorphism which maps x to the inclusion σA(x) ↪→ C.

Proof. Since x is normal, A is commutative and our map is the composition of the
Gel’fand transform

ˆ : A −→ C(SpA,C)

with the isometric ∗-isomorphism

C(SpA,C) −→ C(σA(x),C)

f 7−→ f ◦ x̂−1

induced by the homeomorphism x̂−1 : σA(x) −→ SpA (see 6.6). �

6.8. Proposition. Let A be a C∗-algebra and let B be a C∗-subalgebra of A. Then
G(A) ∩B = G(B). In particular σB(x) = σA(x) for all x ∈ B (see 6.0(i)).

Proof. It suffices to show for u ∈ G(A) that

u−1 ∈ C[u, u∗].

We first assume that u = u∗ is self-adjoint. Then C := C[u] and B := C[u, u−1] are
commutative C∗-subalgebras of A. We obtain a commutative diagram of isometric
C∗-embeddings

B
∼= // C(Sp(B))

C

OO

∼= // C(Sp(C))

e

OO

and in order to confirm C = B is suffices to see that C(Sp(C)) separates points
of C(Sp(B)) (then use the complex Stone-Weierstrass): Note that e is given by
e(f)(ϕ) = f(ϕ � C) for ϕ ∈ Sp(B), f ∈ C(Sp(C)). Then, if ϕ 6= ψ are form Sp(B)
we must have ϕ(u) 6= ψ(u) (otherwise ϕ(u−1) = ψ(u−1) and then ϕ = ψ). Thus
e(û)(ϕ) = û(ϕ � C) = ϕ(u) 6= ψ(u) = e(û)(ψ). Thus e(û) separates ϕ from ψ.

This shows the proposition in the case when u is self-adjoint. In general, we then
know that (u∗u)−1 ∈ C[u∗u] ⊆ C[u, u∗] and so

u−1 = (u∗u)−1·u∗ ∈ C[u, u∗].

�
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7. Positivity in C∗-algebras

7.1. Definition. An element x of a C∗-algebra A is called positive if x = h2 for
some self-adjoint h ∈ A. We write x ≤ y if y − x is positive.

In the case A = C(X) we see that f ∈ A is positive if and only if f is real valued
(i.e. f is self-adjoint) and f ≥ 0 everywhere.
Example. If A = M2(C), then it is clear that the self-adjoint elements of A are
precisely the matrices of the form

x =

(
r z
z̄ s

)
with r, s ∈ R and z ∈ C.

Hence the positive elements of A are precisely the matrices of the form

(†) x2 =

(
r2 + |z|2 (r + s)z
(r + s)z̄ s2 + |z|2

)
with r, s ∈ R and z ∈ C.

For example (
1 i
−i 0

)
and

(
−1 1
1 0

)
are self-adjoint, and their squares(

2 i
−i 1

)
and

(
2 −1
−1 1

)
are positive. On the other hand the matrix(

0 1
1 0

)
is self-adjoint but not positive in this sense (as can be seen by looking at (†))

Positivity in this sense should not be confused with the notion of a ’positive
matrix’, see [Schaefer, Chapter I, §2].

7.2. Proposition. We have x ≥ 0 ⇐⇒ x is self-adjoint and σA(x) ⊆ [0,∞).
If this is the case, then x has a positive square root in A.

Proof. If x ≥ 0, then clearly x = h2 with h = h∗ is self-adjoint. Now we may switch
to the commutative A = C[h] (by 6.8) and see that σA(x) = x̂(SpA) = ĥ2(SpA) ⊆
[0,∞).

Conversely suppose x = x∗ and σA(x) ⊆ [0,∞). We may again switch to A =

C[x]. By 6.7 we know that

Φ : A −→ C(σA(x),C)

a 7−→ â ◦ x̂−1

is an isometric ∗-isomorphism and x is mapped to the inclusion ε : σA(x) ↪→ C.
Since σA(x) ⊆ [0,∞) we can take the (pointwise positive) square root f of this
inclusion, which is a positive element of C(σA(x),C) satisfying ε = f2. Hence
ε ≥ 0 in C(σA(x),C) is the square of a positive element and therefore x ≥ 0 is the
square of a positive element in A. �
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7.3. Proposition. (Real algebraic properties of C∗-algebras I)
Let A be a unital C∗-algebra.
(i) If x ∈ A with 0 ≤ x and x ≤ 0, then x = 0
(ii) If x ∈ A is positive, then there is a unique positive s ∈ A with s2 = x. We

write x
1
2 or

√
x for s. If x is invertible and positive, then also s is invertible.

(iii) If x, y ∈ A are positive, then also x+ y is positive.
(iv) If x, y, z ∈ A with x ≤ y ≤ z then x ≤ z.
(v) If a, b ∈ A are self-adjoint with −b ≤ a ≤ b, then |a| ≤ |b|.
(vi) If x, y ∈ A with 0 ≤ x ≤ y and x is invertible, then also y is invertible (and

0 ≤ |y−1| ≤ |x−1|)

Proof. (i) By 7.2 we have σA(x) ⊆ [0,∞) and σA(−x) ⊆ [0,∞), which implies
σA(x) = {0}. By 6.7 this means x = 0.

(ii). By 7.2 we know that x = s2 for some s ≥ 0 from C[x]. Now if t ∈ A is
positive with t2 = x, then s, x ∈ C[t]. However C[t] is commutative and for rings
of continuous functions the statement is certainly true. Thus s = t.

If x is positive and invertible, then again working in the context of continuous
functions, it is obvious that s is invertible.
(iii). We first observe that

(†) For all h ∈ A with h = h∗ and |h| ≤ 1 we have h ≥ 0 ⇐⇒ |1− h| ≤ 1,

as can be seen by switching to continuous functions on σA(h). It is therefore
enough to show that ∣∣∣∣1− x+ y

|x|+ |y|

∣∣∣∣ ≤ 1.

We have∣∣∣∣1− x+ y

|x|+ |y|

∣∣∣∣ =

∣∣∣∣ |x| − x+ |y| − y
|x|+ |y|

∣∣∣∣ ≤
≤
∣∣∣∣ ||x| − x|+ ||y| − y||x|+ |y|

∣∣∣∣ =

=

∣∣∣∣∣ |x|·|1−
x
|x| |+ |y|·|1−

y
|y| |

|x|+ |y|

∣∣∣∣∣ = using (†) and x, y ≥ 0

≤
∣∣∣∣ |x|·1 + |y|·1
|x|+ |y|

∣∣∣∣ = 1

(iv) is obvious from (iii).
(v) By taking Gel’fand transforms we see that −|b|·1 ≤ −b ≤ b ≤ |b|·1. It follows
−|b|·1 ≤ a ≤ |b|·1 and by taking Gel’fand transforms again we see that |a| ≤ |b|.
(vi) By taking Gel’fand transforms (and taking into account that x−1 ∈ C[x]) we
see that x̂ is real valued and attains a minimum λ > 0. Then |x̂−1| = λ−1 and
λ·1 ≤ x. It follows λ·1 ≤ y and therefore λ ≤ ŷ pointwise. Thus

|x−1| = |x̂−1| = λ−1 ≥ |ŷ−1| = |y−1|.

�
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In fact, in the situation of 7.3(vi) it is true that y−1 ≤ x−1. However we can
not prove this in a single commutative subalgebra, or at least not in an equally
simple manner as in 7.3(vi). Also, 7.3 does not say a lot about the compatibility of
positivity with respect to multiplication. The crucial property, needed to address
both issues is that all so-called hermitian squares x∗x of a C∗-algebra are positive.

7.4. Lemma. Let A be a ring with 1. If x, y ∈ A, then 1 − xy is invertible if and
only if 1− yx is invertible: If a = (1−xy)−1, then 1 + yax is the inverse of 1− yx.
Proof. This is a straightforward calculation:

(1 + yax)·(1− yx) = 1− xy + yax− yaxyx = 1− xy + y (a− axy)︸ ︷︷ ︸
=1

x = 1

(1− yx)·(1 + yax) = 1− yx+ yax− yxyax = 1− yx+ y
︷ ︸︸ ︷
(a− xya)x = 1.

�

7.5. Corollary. Let A be a unital Banach algebra over K. Then for all x, y ∈ A
we have

σ(xy) ∪ {0} = σ(yx) ∪ {0}
Proof. For each λ ∈ C with λ 6= 0 we need to show that

xy − λ·1 is invertible ⇐⇒ yx− λ·1 is invertible.

However, this is the same as to show that

1− λxy is invertible ⇐⇒ 1− λyx is invertible,

which holds true by 7.4. �

7.6. Theorem. The positive elements of a unital C∗-algebra A are precisely those
of the form x∗·x, with x ∈ A.
Proof. Obviously every positive element is of this form. We need to show that
indeed x∗·x ≥ 0. Suppose this is not the case.
Claim. There is some y ∈ A with 0 6= y∗y ≤ 0.

Proof of the claim. Write h = x∗x. Then h is self-adjoint and not positive by
assumption. We work in C[h] and see that ĥ : σA(h) −→ C is real valued and not
positive. Thus ĥ(ϕ) < 0 for some ϕ ∈ σA(h). Let U be the set of all points where
ĥ is strictly negative. Take a continuous function f : U −→ R with f ≥ 0 and
f(ϕ) > 0. Since the C∗-algebra C[h] is isomorphic to C(σA(h),C) (by 6.7), there
is an element b ∈ C[h] which is mapped onto f . Since f∗ = f we have b∗ = b and
we choose y = xb. Then

y∗y = bx∗xb ∈ C[h]

has Gel’fand transform f ·ĥ·f . By choice of f we have f ·ĥ·f ≤ 0 and f ·ĥ·f 6= 0.
Hence y∗y also satisfies y∗y ≤ 0 and y∗y 6= 0. �

Pick y as in the claim and write y = a + ib with self-adjoint elements a, b ∈ A.
Then

y∗y = (a− ib)(a+ ib) = a2 + b2 + iba− iab and
yy∗ = (a+ ib)(a− ib) = a2 + b2 − iba+ iab.
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It follows y∗y + yy∗ = 2(a2 + b2) ≥ 0 (by 7.3(iii)) and as −y∗y ≥ 0 then yy∗ ≥ 0
(again by 7.3(iii)). From 7.2 we get

σA(yy∗) ⊆ [0,∞) and σA(y∗y) ⊆ (−∞, 0].

But now, 7.5 says σ(y∗y) = {0}. Since y∗y is self-adjoint, this means y∗y = 0 (look
at the Gel’fand transform). This contradicts the choice of y. �

7.7. Corollary. If x is a positive element of a unital C∗-algebra and y ∈ A, then
y∗xy is again positive.

Proof. Write x = z∗z, so y∗xy = y∗z∗zy = (zy)∗(zy) ≥ 0. �

7.8. Proposition. (Real algebraic properties of C∗-algebras II)
Let A be a unital C∗-algebra.
(i) If x, y ∈ A with 0 ≤ x ≤ y and x is invertible, then also y is invertible and

0 ≤ y−1 ≤ x−1.
(ii) If x, y ∈ A with 0 ≤ x ≤ y then

x(1+ x)−1 ≤ y(1+ y)−1

Proof. (i) From 0 ≤ x ≤ y we get, using 7.7,

0 ≤ z := y−
1
2xy−

1
2 ≤ 1

Then z = z∗ is invertible with 0 < ẑ ≤ 1 pointwise. So ẑ−1 ≥ 1, thus

y
1
2x−1y

1
2 = z−1 ≥ 1

and so y−1 ≤ x−1.
(ii) From (i) we get (1+ y)−1 ≤ (1+ x)−1, hence −(1+ x)−1 ≤ −(1+ y)−1 and so

x(1+ x)−1 = 1− (1+ x)−1 ≤ 1− (1+ y)−1 = y(1+ y)−1.

�

7.9. Proposition. Let A be a unital C∗-algebra and let x ∈ A be self-adjoint. Then
there are uniquely determined positive elements x+, x− ∈ A, called the positive and
the negative part of x, with the property x = x+ − x− and x+·x− = 0. We have

x+ =
1

2
(
√
x2 + x)

x− =
1

2
(
√
x2 − x)

Proof. First note that x2 ≥ 0, hence by 7.3, x2 has a unique positive square root√
x2 in A.
Existence and the representation of x+, x− follow by looking at Gel’fand trans-

forms. Note that for continuous functions, x+ is the supremum of x and 0, whereas
x− is the negative of the infimum of x and 0.

To see uniqueness, suppose y+, y− ∈ A are positive with the property x = y+−y−
and y+·y− = 0. Then also y−·y+ = (y+·y−)∗ = 0 and so

x2 = (y+ − y−)2 = (y+)2 + (y−)2 = (y+ + y−)2.

Since y+ + y− ≥ 0, the uniqueness of positive square roots in A gives
√
x2 = y+ + y−.
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Adding this to x = y+ − y− gives
√
x2 + x = 2y+. Hence y+ = x+ and similarly

y− = x−. �

Further characterisations of positive elements and properties of those can be
found in [Conway, Chapter VIII, §3].

7.10. Definition. A homomorphism ϕ : A −→ B between unital C∗-algebras is
a C-algebra homomorphism that respects the involution and maps 1A to 1B .

For example, in 5.9 we have seen that each character of A is a C∗-algebra ho-
momorphism A −→ C.

7.11. Lemma.
Every C∗-algebra homomorphism ϕ : A −→ B is order-preserving, i.e. x ≥ 0
implies ϕ(x) ≥ 0 (hence also x ≤ y ⇒ ϕ(x) ≤ ϕ(y)) and norm-decreasing, i.e.
|ϕ(x)| ≤ |x|. In other words, ϕ is continuous of norm ≤ 1.

Proof. Since ϕ respects multiplication and involution, all elements of the form x∗x
are mapped onto elements of the form y∗y. Hence by 7.6, ϕ is order-preserving.

In order to show |ϕ(x)| ≤ |x| we first assume that x is self-adjoint. In this case
−|x|·1A ≤ x ≤ |x|·1A, since this is true for continuous functions (and self-adjoint
elements). Since ϕ is order preserving, also

−|x|·1B ≤ ϕ(x) ≤ |x|·1B .
Since x is self-adjoint we also know that ϕ(x) = ϕ(x∗) = ϕ(x)∗ is self-adjoint. Thus
|ϕ(x)| ≤ |x| by 7.3(v), for all self-adjoint elements x ∈ A. In general we then have

|ϕ(x)|2 = |ϕ(x)∗ϕ(x)| = |ϕ(x∗x)|
as x∗x is self-adjoint

≤ |x∗x| = |x|2

as required. �

7.12. Proposition. Every injective C∗-algebra homomorphism ϕ : A −→ B is
norm preserving and therefore ϕ(A) is a C∗-subalgebra of B.

Proof. We first show that the compositional inverse ψ : ϕ(A) −→ A is order
preserving: Take x ∈ A and assume that y := ϕ(x) ≥ 0. We must show
x ≥ 0. Firstly, x is self-adjoint, because y is self-adjoint, ϕ is injective and
ϕ(x∗) = ϕ(x)∗ = y∗ = y = ϕ(x).

In order to prove x ≥ 0 we show x− = 0 (see 7.9). We have y = ϕ(x) =
ϕ(x+ − x−) = ϕ(x+) − ϕ(x−) and since ϕ is order preserving, ϕ(x+), ϕ(x−) ≥ 0.
Moreover ϕ(x+)·ϕ(x−) = ϕ(x+·x−) = 0. Hence by the uniqueness in 7.9, we see
that ϕ(x−) = y−. However, y ≥ 0 and therefore y− = 0.

Now we show that |ϕ(x)| = |x| for all x ∈ A By 7.11 we already know |ϕ(x)| ≤ |x|.
We note that it suffices to prove |ϕ(x)| = |x| for self-adjoint elements, because in
general

|ϕ(x)|2 = |ϕ(x)∗ϕ(x)| = |ϕ(x∗x)| as x
∗x is self-adjoint

= |x∗x| = |x|2.
So we may assume that x is self-adjoint and therefore also y = ϕ(x) = ϕ(x∗) =
ϕ(x)∗ = y∗ is self-adjoint. Then −|y|·1B ≤ y ≤ |y|·1B , since this is true for
continuous functions (and self-adjoint elements). Since ψ is order preserving we get

−|y|·1A ≤ ψ(y) ≤ |y|·1A.
By 7.3(v) again we get |ψ(y)| ≤ |y|, which means |x| ≤ |ϕ(x)|. �
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In connection with 7.12 it should be mentioned that also the following is true
(we don’t need this later on and omit a full proof):

7.13. Fact. For every homomorphism ϕ : A −→ B between C∗-algebras, the image
of ϕ is a C∗-subalgebra of B.

Proof. This follows from 7.12, once we know that for every closed and two-sided
∗-ideal I of A, the C∗-algebra structure of A can be pushed down to A/I. This
means:

The ring A/I, together with the assignment

(†) (x+ I)∗ = x∗ + I

is a (well-defined) involution, the Banach space A/I together with the ring structure
of A/I and the involution given by (†) is a C∗-algebra, and the residue map A −→
A/I is a C∗-algebra homomorphism. �
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8. States

Let A be a unital C∗-algebra and let ω : A −→ C be a C-linear (not necessarily
continuous) map. Recall that the operation

〈x, y〉ω := ω(y∗·x)

is a sesquilinear form on A (see page 8).

8.1. Lemma. Let A be a unital C∗-algebra and let ω : A −→ C be a C-linear map.
The following are equivalent:
(i) ω is positive, i.e. x ≥ 0⇒ ω(x) ≥ 0.
(ii) 〈x, y〉ω is a positive hermitian form on A (see page 8)
If this is the case, then
(a) ω respects the involution,
(b) for all x, y, a ∈ A we have 〈ax, y〉ω = 〈x, a∗y〉ω and
(c) ω satisfies Schwarz’ inequality

|ω(y∗x)|2 ≤ ω(x∗x)·ω(y∗y).

Proof. (ii)⇒(i) follows from ω(x∗x) = 〈x, x〉ω.
(i)⇒(ii). We have 〈x, x〉 = ω(x∗x) ≥ 0 since ω is positive and x∗x is positive by 7.6.
In order to show that 〈x, y〉ω is hermitian we must show that 〈y, x〉ω = 〈x, y〉ω, in
other words ω(x∗·y) = ω(y∗·x). We show that ω preserves the involution (this will
also show (a) and (b)): Take x ∈ A and write x = a+ i·b with self-adjoint a, b ∈ A.
Then

ω(x∗) = ω(a− i·b) = ω(a+ − a− − i·(b+ − bi)) =

= ω(a+)− ω(a−)− i·(ω(b+)− ω(bi)).

Since ω is positive, ω(a+), ω(a−), ω(b+) and ω(bi) are all positive. Hence ω(a+)−
ω(a−) is the real part of ω(x∗) and −(ω(b+)−ω(bi)) is the imaginary part of ω(x∗).
A similar computation of ω(x) proves ω(x∗) = ω(x).

Finally, the Schwarz inequality holds, since it holds for all positive hermitian
forms. �

Observe that all characters of a unital C∗-algebra are positive (by 7.6). Another
example of a positive linear map on the commutative C∗-algebra C([0, 1],C) is given
by integration:

f 7→
∫
f dt.

8.2. Theorem. Let A be a unital C∗-algebra and let ω : A −→ C be a linear map.
The following are equivalent:
(i) ω is positive
(ii) ω is bounded and |ω| = ω(1).
If this is the case, then ω(x) ∈ R for all self-adjoint x ∈ A.
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Proof. (i)⇒(ii). As |1| = 1, it suffices to show |ω(x)| ≤ ω(1)·|x| for all x ∈ A.
If x = x∗, then −|x|·1 ≤ x ≤ |x|·1 and using the positivity of ω, gives −|x|·ω(1) ≤
ω(x) ≤ |x|·ω(1), thus |ω(x)| ≤ ω(1)·|x| by 7.3(v)
For general x ∈ A we then get

|ω(x)|2 = |ω(1∗x)|2
by 8.1

≤ ω(1∗·1)·ω(x∗·x) ≤ ω(1)·ω(1)·|x∗·x|,

since x∗x is self-adjoint. Thus |ω(x)|2 ≤ ω(1)2·|x∗·x| = ω(1)2·|x|2 as required.

(ii)⇒(i). We first show
Claim. If x = x∗ ∈ A, then ω(x) ∈ R.

Proof of the claim: Write ω(x) = r + i·s with r, s ∈ R. Then

ω(x+ i·t·1) = r + i·(s+ t·ω(1)) for all t ∈ R.

As ω(1) = |ω| ∈ R it follows

|ω(x+ i·t·1)| ≥ |s+ t·ω(1)| for all t ∈ R.

Using the Gel’fand transform of x we also have

|ω(x+ i·t·1)| ≤ |ω|·|x+ i·t·1| = ω(1)·
√
|x|2 + t2 for all t ∈ R.

Thus

ω(1)2·(|x|2 + t2) ≥ |s+ t·ω(1)|2 = ω(1)2·t2 + 2stω(1) + s2 for all t ∈ R.

However, this is only possible if s = 0. �

From the claim we obtain the positivity of ω as follows: Pick x ≥ 0, say |x| ≤ 1.
Then also |1− x| ≤ 1 (look at the Gel’fand transform of x) and therefore

|ω(1)− ω(x)| = |ω(1− x)| ≤ |ω|·|1− x| = ω(1)·|1− x| ≤ ω(1).

Since ω(x) ∈ R by the claim, this is only possible if ω(x) ≥ 0. �

8.3. Corollary. Let A be a unital C∗-subalgebra of a unital C∗-algebra B. Then
every positive linear map ω : A −→ C can be extended to a positive linear map
ω̃ : B −→ C and all these extensions have norm |ω|.

Proof. By 8.2(i)⇒(ii), ω is a bounded linear functional with norm |ω| = ω(1A).
By the Hahn-Banach extension theorem for bounded functionals 3.6, there is a
bounded functional ω̃ : B −→ C with |ω̃| = |ω|. It follows that

|ω̃| = |ω| = ω(1A) = ω̃(1B).

By 8.2(ii)⇒(i), ω̃ is positive.
Now if ω̃ is any positive extension of ω, then

|ω̃| = ω̃(1B)| = ω(1A) = |ω|

By 8.2(i)⇒(ii). �

8.4. Corollary. If ω is a positive linear functional on a unital C∗-algebra A, then
for all a, x ∈ A we have

|〈ax, x〉ω| ≤ |a|·〈x, x〉ω
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Proof. Fix x ∈ A and define ρ : A −→ C by ρ(a) = 〈ax, x〉 = ω(x∗ax). Using 7.7
and the positivity of ω, we know that ρ is again a positive linear functional of A.
Hence by 8.2, ρ is bounded and |ρ| = ρ(1). Thus

|〈ax, x〉ω| = |ρ(a)| ≤ ρ(1)·|a| = |a|·〈x, x〉ω.
�

8.5. Definition. A state on a unital C∗-algebra A, is a positive linear map ω :
A −→ C with ω(1A) = 1.

For example, if A = C(X,C) for a compact space X, then evaluation at a given
point of X, is a state of A.

8.6. Theorem. Let A be a unital C∗-algebra and let x, y ∈ A with x 6= y. Then
there is a state ω of A with ω(x) 6= ω(y).

Proof. It suffices to find a state that does not annihilate z = x−y. Write z = a+ ib
with self-adjoint elements a, b ∈ A. Since all states of A evaluate in R at self-adjoint
elements, it is therefore enough to show that for every nonzero, self-adjoint x ∈ A,
there is a state ω of A with ω(x) 6= 0. By 8.3 we may replace A by C[x]. Since
x 6= 0 and A is commutative, there is a character ω of A with ω(x) 6= 0. Now recall
that all characters are states (by 7.6). �



The Gel’fand-Naimark-Segal construction 39

9. The Gel’fand-Naimark-Segal construction

Recall that for every Hilbert space H, the set of bounded operators B(H) is
a C∗-algebra, where multiplication is given by composition and the involution is
given by the transpose L∗ of L ∈ B(H): By the Riesz representation theorem (see
[Alt, 4.1]) we know that the map H −→ H ′; a 7→ (x 7→ 〈x, a〉) is an isometric
isomorphism. Hence for each y ∈ H, there is a unique element a ∈ H such that the
bounded functional

x 7→ 〈L(x), y〉
is equal to the functional x 7→ 〈x, a〉. We define L∗(y) = a and obtain

〈L(x), y〉 = 〈x, L∗(y)〉 (x ∈ H).

It is straightforward to see that L∗ ∈ B(H) and that L 7→ L∗ is an involution,
satisfying |L∗L| = |L|2.
For every unit vector ξ ∈ H (i.e. |ξ| = 1), the map

B(H) −→ C, x 7→ 〈xξ, ξ〉

obviously defines a state on B(H). These states are called vector states.

Let A be a unital C∗-algebra and let ω : A −→ C be a state. We shall attach a
Hilbert space to ω as follows: By 8.1, the operation

〈x, y〉ω := ω(y∗·x)

defines a positive hermitian form on the Banach space A. We divide by the Null
space of this form. So let

Nω := {x ∈ A | 〈x, x〉ω = 0}

Claim 1. Nω is a left ideal of A (i.e. Nω is closed under addition and for all a ∈ A
and x ∈ Nω we have ax ∈ Nω).

Proof of claim 1. By 8.1 we have

〈ax, ax〉ω = 〈x, a∗ax〉ω.

and by the Schwarz’-inequality (cf. 8.1), we have

|〈x, a∗ax〉ω| ≤ 〈x, x〉ω·〈a∗ax, a∗ax〉ω = 0.

Hence |〈ax, ax〉ω| = 0 and ax ∈ N .
�

We define
Kω := A/Nω as a C-vector space

and for x, y ∈ A,
〈〈x+Nω, y +Nω〉〉ω := 〈x, y〉ω.

Claim 2. 〈〈 , 〉〉ω is a well-defined positive definite, hermitian form on Kω.
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Proof of claim 2. This is straightforward, since N is a C-vector space: Suppose
x′, y′ ∈ A with x− x′, y − y′ ∈ Nω, then

〈x, y〉ω = 〈x− x′, y〉ω + 〈x′, y〉ω = 〈x′, y〉ω,
as 〈x−x′, y〉ω = 0 from x−x′ ∈ Nω and the Schwarz inequality for 〈 , 〉ω. Similarly,
〈x′, y〉ω = 〈x′, y′〉ω and so 〈〈 , 〉〉ω is indeed well-defined. Linearity of 〈〈 , 〉〉ω in
x, anti-linearity of 〈〈 , 〉〉ω in y, positivity of 〈〈 , 〉〉ω and 〈〈y + Nω, x + Nω〉〉ω =

〈〈x+Nω, y +Nω〉〉 readily transfer from 〈 , 〉ω. If 〈〈x + Nω, x + Nω〉〉ω = 0, then
x ∈ Nω by definition, which shows claim 2. �

Let ||x+N ||ω := 〈〈x, x〉〉ω (x ∈ A) be the norm induced by 〈〈 , 〉〉ω on Kω and
let

Hω be the completion of the normed space (Kω, || . ||ω).

The natural extensions of 〈〈 , 〉〉ω and || . || to Hω, again denoted by 〈〈 , 〉〉ω and
|| . ||, equip Hω with a complex Hilbert space structure and we consider Hω as this
Hilbert space from now on.

We shall now construct a homomorphism of C∗-algebras A −→ B(Hω).

For a ∈ A, let La : Kω −→ Kω be defined by

La(x+Nω) = ax+Nω.

Claim 3. La is a well-defined bounded linear map Kω −→ Kω with

(i) |La| ≤ |a| for all a ∈ A and
(ii) 〈〈La∗(ξ), η〉〉ω = 〈〈ξ, La(η)〉〉ω for all a ∈ A, ξ, η ∈ Kω.

Proof of claim 3. La is well defined, because Nω is a left ideal of A: If x−x′ ∈ Nω,
then also ax− ax′ ∈ Nω, and so ax+Nω = ax′ +Nω.
La is linear, because for α ∈ C and x ∈ A we have

La(α(x+Nω)) = a·(α·x) +Nω = α·La(x+Nω).

(i) For x ∈ A we have

||La(x+Nω)||2 = ||ax+Nω||2 = 〈ax, ax〉ω = by 8.1(b)

= 〈a∗ax, x〉ω ≤ by 8.4

≤ |a∗a|·〈x, x〉ω = |a|2·||x+Nω||2,

which shows that La is bounded with |La| ≤ |a|.
(ii) Take x, y ∈ A with x+Nω = ξ and y +Nω = η. Then

〈〈La∗(ξ), η〉〉ω = 〈〈a∗x+Nω, y +Nω〉〉ω = 〈a∗x, y〉ω = 〈x, ay〉ω = 〈〈ξ, La(η)〉〉ω.
�

For each a ∈ A, the bounded linear map La : Kω −→ Kω extends uniquely to a
continuous map Hω −→ Hω and we define

Φω(a) = the unique extension of La to Hω

Obviously, Φω(a) ∈ B(Hω) and so we have constructed a map

Φω : A −→ B(Hω) uniquely determined by Φω(a)(x+Nω) = ax+Nω.
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This finishes the GNS-construction

9.1. Theorem. Φω is a C∗-algebra homomorphism.

Proof. It follows directly from the definition that a 7→ La is a C-linear ringhomo-
morphism A −→ B(Kω) which maps 1A to 1B(Kω) (= idKω

). Since Hω is the
completion of Kω, also Φω has these properties. Moreover, property (ii) of claim 3
remains true when we replace La by Φω(a). Now this property says that Φω(a∗) is
the transpose of the operator Φω(a). In other words, Φω respects the involution. �

Let’s work out how the state ω can be expressed through Φω: We define

Ωω := 1A +Nω ∈ Kω

For a ∈ A we have

ω(a) = 〈〈La(1A +Nω),1A +Nω〉〉ω = 〈〈Φω(a)(1A +Nω),1A +Nω〉〉ω =

= 〈〈Φω(a)Ωω,Ωω〉〉ω.
In other words, ω is the composition of Φω : A −→ B(Hω) with the vector state
B(Hω) −→ C given by Ωω.

The triple (Hω,Φω,Ωω) is called the GNS-representation of A with respect
to ω.

We observe that Ωω is a so-called cyclic vector of this representation, i.e. the set

{Φω(a)Ωω | a ∈ A}
is dense inHω (Observe that this set is justKω andKω is dense inHω by definition).

9.2. Theorem. Up to unitary equivalence, the GNS-representation of A w.r.t. ω is
unique. This means: If Φ : A −→ B(H) is a C∗-algebra homomorphism for some
Hilbert space H and ξ ∈ H is of norm 1 such that
(a) ω(a) = 〈Φ(a)ξ, ξ〉 for all a ∈ A and
(b) the set

{Φ(a)ξ | a ∈ A}
is dense in H,

then there is a unitary (i.e. scalar product preserving) isomorphism u : H −→ Hω

mapping ξ to Ωω, such that

Φ(a) = u−1 ◦ Φω(a) ◦ u (a ∈ A).

Proof. We first define u on Φ(A)ξ (which is dense in H) by

u(Φ(a)ξ) := Φω(a)Ωω.

Note that this is well-defined because property (a) holds for Φ (and Φω): If Φ(a)ξ =
Φ(b)ξ, then Φ(a − b)ξ = 0, so ω(a − b) = 0 by (a), which implies a − b ∈ Nω, i.e.
Φω(a)Ωω = Φω(b)Ωω.

Because

||u(Φ(a)ξ)||2Hω
= ||Φω(a)Ωω||2 = ω(a∗a) = 〈Φ(a∗a)ξ, ξ〉 = |Φ(a)ξ|H′ ,

u is a norm preserving linear map between dense subsets of H and Hω. So u
extends uniquely to a norm preserving linear map between H and Hω. Since the
scalar product on a Hilbert space is given by

〈x, y〉 =
1

4
(|x+ y|2 − |x− y|2) (see [AlbKal, Prop. 4.2.5]),
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u is unitary. The equation Φ(a) = u−1 ◦ Φω(a) ◦ u is readily verified. �

Finally we can state and prove the universal representation of any unital
C∗-algebra:

9.3. Gel’fand Naimark Segal
Let A be a unital C∗-algebra and let S(A) be the set of all states of A. Let H be
the Hilbert space

H =
⊕

ω∈S(A)

Hω.

Then the map
Φ =

⊕
ω∈S(A)

Φω : A −→ B(H),

which sends a to
⊕

ω∈S(A) Φω(a) : H −→ H is an isometric isomorphism of A onto
a C∗-subalgebra of B(H).

Proof. By 7.12, it suffices to show that Φ is an injective C∗-algebra homomorphism.
The injectivity follows from 8.6. That Φ is a C∗-algebra homomorphism can be
checked coordinate wise using 9.1. �
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