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Abstract. We give a detailed and self-contained introduction to Kolchin’s
approach, mostly in characteristic 0 (cf. [Kol]), including a full proof of the
Rosenfeld lemma.
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1. Auto reduced sets

1.1. Definition. Let

D := {∂i11 ...∂
iK
K | i1, ..., iK ∈ N0}

be the free abelian monoid generated by ∆ := {∂1, ..., ∂K}, written multiplicatively.
Here N0 = {0, 1, 2, 3 . . .}, whereas N = {1, 2, 3, . . .}. Let R = (R,∆1, ...,∆K) be a
unitary, commutative, differential ring in K commuting derivations. Let N ∈ N.
For n ∈ {1, ..., N} and θ ∈ D let θYn be an indeterminate over R. Then the
differential polynomial ring of R in the indeterminates Y1, ..., YN is defined as

A := R{Y1, ..., YN} := R[θYn | θ ∈ D , n ∈ {1, ..., N}]
(where θYN = YN if θ = ∂01 ...∂

0
K by definition), together with the unique derivations

∆i : A −→ A satisfying ∆i(rθYn) := ∆i(r)θYn + r(∂iθ)Yn for every r ∈ R, n ∈
{1, ..., N} and θ ∈ D . So A is a differential ring extension of R and A is the free
object generated by N elements over R in the category of differential rings with K
commuting derivatives.
From now on we also write ∂1, ..., ∂K for the derivations ∆1, ....,∆K given on R.
This will not lead to confusion and increases readability.
1.2. Notation. Let f ∈ R{Y }. We say that a monomial M occurs in f or
appears in f , if there are l ≥ 0, ai ∈ R, monomials Ui 6= M (1 ≤ i ≤ l) and some
a ∈ R, a 6= 0 such that f = aM +

∑l
i=1 aiUi. In particular no monomial occurs in

the zero polynomial.
We say that a variable θYn occurs in f or appears in f , if θYn divides a

monomial occurring in f .1

By convention, if we say θYn occurs or appears in f we mean θYn occurs in f
as a variable.
1.3. The rank on variables Throughout we work with one specific rank on
monomials. Notice that in [Kol] an axiomatic approach of the notion of “rank" is
given.

The rank on D is the map rk : D −→ N0 ×NK0 defined by

rk(∂i11 ...∂
iK
K ) := (i1 + ...+ iK , iK , ..., i1),

where the monoid N0 ×NK0 is ordered lexicographically.

Let DY be the set {θYn | θ ∈ D , n ∈ {1, ..., N}} of indeterminates (also called
“variables"). The rank on DY is the map rk : DY −→ N0×{1, ..., N}×NK0 defined
by

rk(∂i11 ...∂
iK
K Yn) := (i1 + ...+ iK , n, iK , ..., i1),

where the set N0 × {1, ..., N} × NK0 is ordered lexicographically. Observe that
rk : DY −→ N0 × {1, ..., N} ×NK0 is a monoid embedding and the image of rk in
N0 × {1, ..., N} ×NK0 has the order type of N (since every element in that image
has only finitely many predecessors in that image).

Let DY ∗ be the set {(θYn)p | θ ∈ D , n ∈ {1, ..., N}, p ∈ N} ⊆ A. The rank on
DY ∗ is the map rk : DY ∗ −→ N0 × {1, ..., N} ×NK0 ×N defined by

1Observe that by definition, the monomial Y1 does not occur in the polynomial Y 2
1 . However,

the variable Y1 does occur in the polynomial Y 2
1 .
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rk((θYn)p) := (rk θYn, p),

where the set

W := N0 × {1, ..., N} ×NK0 ×N

is ordered lexicographically. Hence W is well ordered and

rk((∂i11 ...∂
iK
K Yn)p) := (i1 + ...+ iK , n, iK , ..., i1, p).

Observe that the rank on DY ∗ is again injective, but its image is not longer of
order type ω.

1.4. Order of a variable We define

ord((∂i11 ...∂
iK
K Yn)p) := ord(∂i11 ...∂

iK
K ) := i1 + ...+ iK

and
ordk((∂i11 ...∂

iK
K Yn)p) := ordk(∂i11 ...∂

iK
K ) := ik.

1.5. Leader, leading degree and rank of a differential polynomial If f ∈
A \ R we define the leader (or conductor) uf of f to be the variable θYn ∈ DY
of highest rank that appears in f . Moreover we define

u∗f := u
deguf

f

f

The natural number deguf f is called the leading degree of f and is denoted by

Ldeg(f) := deguf f.

We expand the rank from DY ∗ to polynomials f ∈ A \R by

rk(f) := rk(u∗f ).

So rk is a map A \R −→W .

1.6. Definition. If f, g ∈ A \R, then f is called weakly reduced with respect to
g if no proper derivative of ug appears in f . Furthermore, f is called reduced with
respect to g if f is weakly reduced with respect to g and if degug f < degug g. So
by definition f is reduced with respect to g if and only if f is reduced with respect
to u∗g, i.e. the relation ’f is reduced with respect to g’ only depends on rk g for
given f . An element f ∈ R is reduced and weakly reduced with respect to every
g ∈ A \R by definition.

Note that if f ∈ A \ R is reduced with respect to g ∈ A \ R, then the rank of f
need not be less than the rank of g. Take f = y′′1 and g = y′2.

1.7. Lemma. Let f ∈ A and g ∈ A \R. Then

(i) If f 6∈ R is reduced with respect to g, then rk f 6= rk g.
(ii) Let f ∈ R or rk f < rk g. Then

(a) f is reduced with respect to g.
(b) If ug appears in f , then uf = ug.
(c) If g is reduced with respect to f then ug does not appear in f .
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Proof. Certainly (i) holds.
(ii). We may assume that f 6∈ R. Suppose rk f < rk g, hence rku∗f < rku∗g and

rkuf ≤ rkug.
f is weakly reduced with respect to g, since every proper derivative of ug has

a rank bigger than rku∗g = rk g. So if ug does not appear in f , then f is reduced
with respect to g. If ug appears in f , then rkuf ≤ rkug implies uf = ug and
rku∗f < rku∗g implies degug f < degug g. Hence f is reduced with respect to g and
g is not reduced with respect to f . �

1.8. Definition of (auto)-reduced sets An element f ∈ A is called reduced
with respect to a set G ⊆ A \R, if f is reduced with respect to g for each g ∈ G. A
subset G ⊆ A \R is called reduced or autoreduced if for all f, g ∈ G with f 6= g
we have that f is reduced with respect to g. If G has a single element, then G is
called reduced as well.

1.9. Lemma. If θ1, θ2, ... ∈ D and ord θ1 < ord θ2 < ..., then there is a subsequence
θk1 , θk2 , ... of θ1, θ2, ... such that θki+1

is a proper derivative of θki for every i ∈ N.

Proof. The claim certainly holds if K = 1. Assume we know (i) in the case of
K − 1 partial derivatives. Let θi = ∂

µi1
1 ....∂

µiK
K . Suppose first that there is some

k ∈ {1, ...,K} such that the sequence (µik)i is bounded. Then we also may assume
that it is constant by taking a subsequence of (θi) if necessary. But then we can

apply the inductive hypothesis to the sequence (∂
µi1
1 ....∂

µik−1

k−1 ∂
µik+1

k+1 ...∂
µiK
K )i, which in

turn gives the assertion for the original sequence (θi)i.
So we may assume that (µik)i is unbounded for every k ∈ {1, ...,K}, i.e. - by

taking a subsequence of (θi) if necessary - we may assume that (µik)i is strictly
increasing for every k ∈ {1, ...,K}.

But in this case, for every i ∈ N there is some θ ∈ D with θi+1 = θθi. �

1.10. Proposition. Every reduced set is finite.

Proof. If there is an infinite reduced set, then by 1.7(i) there is a chain rk g1 <
rk g2 < ... and gi is reduced with respect to gj for all i 6= j. Then ugi 6= ugj for all
i 6= j. It follows that ugi is reduced with respect to ugj for all i 6= j and we may
assume that gi = ugi .

As gi is not a derivative of gj for all i 6= j may assume that gi = θiY1 for some
θi ∈ D and all i ∈ N. Since (rk θiY1) is strictly increasing, it follows that after
taking a subsequence, the sequence (ord θiY1)i is strictly increasing, too. But this
contradicts 1.9, since {θjY1 | j ∈ N} is (weakly) reduced by assumption. �

1.11. Definition of the rank of a reduced set Let ∞ be an element, which
is bigger than W . We consider (W ∪ {∞})N as an ordered set, equipped with the
lexicographic order. If G ⊆ A \R is reduced, then G is finite by 1.10 and by 1.7(i),
there is a unique enumeration (g1, ..., gl) of G, such that rk g1 < ... < rk gl and
l ∈ N (Note that l ≤ N if K = 1). We define rkG ∈ (W ∪ {∞})N by

rkG := (rk g1, ..., rk gl,∞,∞, ...).
If f ∈ A \ R, then we want to write rk f = rk{f}, thus we identify W ∪ {∞} with
(W ∪ {∞})×

∏
i>1{∞} ⊆ (W ∪ {∞})N if necessary.

1.12. Theorem. There is no infinite sequence G1, G2, ... of reduced sets with the
property rkG1 > rkG2 > .....
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Proof. Otherwise let Gi := {gi1, ..., giki } with rk gi1 < ... < giki . As rkG1 >

rkG2 > ... we must have rk g11 ≥ rk g21 ≥ ... and the sequence (rk gi1)i is eventually
constant. Let M1 ∈ N be an index such that rk gi1 = rk gM11 for all i ≥M1 − 1.

As rkG1 > rkG2 > ... we must have ki > 1 for all i ≥ M1. Consequently
∞ > rk gM12 ≥ rk g(M1+1)2 ≥ ... and the sequence (rk g(M1+i)2)i is eventually
constant. Let M2 > M1 be an index such that rk gi2 = rk gM22 for all i ≥ M2 − 1.
Then ki > 2 for all i ≥M2.

Proceeding in this way we get a new sequence (GMi
)i which we denote by (Gi)i

again. (Gi)i has the following property: ki ≥ i and rk gii = rk gji for all j ≥ i.
If j > i, then gjj is reduced with respect to gji, since Gj is a reduced set. As
rk gji = rk gii it follows that gjj is reduced with respect to gii. Conversely since
rk gii = rk gji < rk gjj , it follows that gii is reduced with respect to gjj . Hence
{gii, gjj} is a reduced set for all i < j and the set of diagonal entries {gii | i ∈ N}
is an infinite reduced set. This contradicts 1.10. �

2. Characteristic sets

By 1.12 we may define:

2.1. Definition. For each subset M of A, M 6⊆ R we define

rkM := min{rkG | G ⊆M \R, G reduced} ∈ (W ∪ {∞})N.

A characteristic set of M is a reduced subset S of M with rkM = rkS.

2.2. Lemma. If G ⊆ A \R is a reduced set and f ∈ A \R is reduced with respect
to G, then G̃ := {g ∈ G | rk g < rk f} ∪ {f} is a reduced set and rk G̃ < rkG.

Proof. By 1.7(ii), the set G̃ is reduced. Since f is reduced with respect to G, 1.7(i)
implies that rk f 6= rk g for all g ∈ G, thus rk G̃ < rkG. �

2.3. Corollary. If S is a characteristic set of M ⊆ A and f ∈ M \ R, then f is
not reduced with respect to S

Proof. Immediately from 2.2. �

2.4. Definition. The leading coefficient of f ∈ A \R is defined as follows:
Let uf = θYn, let B := R[θ̃Ym | θ̃Ym 6= θYn] and let f = fd · udf + ...+ f1 · uf + f0,
with fd, ..., f0 ∈ B, fd 6= 0. Then fd is called the leading coefficient L(f) of f .

Observe that rkL(f) < rkuf . Moreover if f is (weakly) reduced with respect
to g then L(f) is (weakly) reduced with respect to g. But in general L(f)m is not
reduced with respect to g if f is reduced with respect to g.

2.5. Lemma. Let R be a domain. Let G ⊆ A \R be a reduced set, G = {g1, ..., gl}
with rk g1 < ... < rk gl. Let h ∈ A be weakly reduced with respect to G and suppose
there is given some i ∈ {1, ..., l} such that h is reduced with respect to {gi+1, ..., gl}.
Then there are q, r ∈ A and some k ∈ N0 such that
(a) L(gi)

k · h = q · gi + r and
(b) r is weakly reduced with respect to G and reduced with respect to {gi, ..., gl}.
(c) rkur ≤ max{rkuh, rkugi} and k = degugi

h− deg ugigi + 1 if h is not reduced
with respect to gi.



6 MARCUS TRESSL

Proof. We may assume that h is not reduced with respect to gi. Let

A0 := R[θYn | θYn appears in h or in gi, θYn 6= ugi ].

Then h, gi ∈ A0[ugi ] and we can apply the division theorem for the ring A0[ugi ].
Hence, there are q, r ∈ A0[ugi ] with L(gi)

k ·h = q ·gi+ r, k = degugi
h−deg ugigi+

1 such that degugi
r < degugi

gi. Furthermore the uniqueness statement of the
division theorem applied to A instead of A0[ugi ] says: if q∗, r∗ ∈ A with L(gi)

k ·h =
q∗ · gi + r∗ and degugi

r∗ < degugi
gi, then q = q∗ and r = r∗.

Since r ∈ A0[ugi ] we know that rkur ≤ rkh or rkur ≤ rkugi and since h and gi
are weakly reduced with respect to G we have that r is weakly reduced with respect
to G as well. By the choice of r we know that r is reduced with respect to gi and
it remains to show that r is reduced with respect to gj for each j ∈ {i+ 1, ..., l}.

Let z be the conductor of gj and let d := degz gj . Since r is weakly reduced with
respect to gj it is enough to prove degz r < d.

Since gj is reduced with respect to gi and rk gi < rk gj the variable z does not
appear in gi (1.7(ii)(c)). Consequently z does not appear in L(gi). Let

Ã := R[θYn | θYn ∈ DY, θYn 6= z].

Since h is reduced with respect to gj , there are h0, ..., hd−1 ∈ Ã, such that h =

hd−1z
d−1 + ...+h1z+h0. Let qβ , rβ ∈ Ã (β ≥ 0) such that q = q0 + q1z+ q2z

2 + ...
and r = r0 + r1z + r2z

2 + .... Now we have the polynomial equality

L(gi)
khd−1 · zd−1 + ...+ L(gi)

kh1 · z + L(gi)
kh0 =

= (giq0 + r0) + (giq1 + r1) · z + (giq2 + r2)z2 + ...

in the variable z, where all coefficients are in Ã. Consequently giqβ + rβ = 0 for
β ≥ d. With q∗ := q0 + q1z + ...+ qd−1z

d−1 and r∗ := r0 + r1z + ...+ rd−1z
d−1 we

found a decomposition L(gi)
k · h = q∗ · gi + r∗ such that degugi

r∗ < degugi
gi and

degz r
∗ < d. From the uniqueness statement of the division theorem we get r = r∗,

thus degz r < d. �

2.6. Remark. In the situation of 2.5 the polynomial L(gi)
m · r is weakly reduced

with respect to G and reduced with respect to {gi, ..., gl} for all m ∈ N0. Hence we
may increase the power k if we want.

2.7.Definition. If G is a finite subset of A\R we define LG := {
∏
g∈G L(g)ig | ig ∈

N0 for g ∈ G} and L(G) :=
∏
g∈G L(g).

If G is a reduced set then every L ∈ LG is weakly reduced with respect to
every g ∈ G but L need not be reduced with respect to G. For example if G =
{Y 3

1 , Y
2
1 Y2, Y

2
1 Y3}.

2.8. Definition. If G ⊆ A and y ∈ DY we define

G≤y = {θg | g ∈ G, θ ∈ D and rk(θug) ≤ rk(y)}
G<y = {θg | g ∈ G, θ ∈ D and rk(θug) < rk(y)}

Note that in general G is not a subset of G≤y, even if y is a proper derivative of
some ug, g ∈ G. Clearly G<y =⋃{G≤z | rk z < rk y}.

At the moment we only work with the set G ∩G≤y = {g ∈ G | rkug ≤ rk y}.
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2.9. Proposition. Let R be a domain. Let G ⊆ A \ R be a reduced set. If f ∈ A
is weakly reduced with respect to G, then there is some f̃ ∈ A, which is reduced with
respect to G and some L ∈ LG, such that L · f ≡ f̃ mod (G ∩G≤uf ). In particular
f̃ ∈ (G ∩G≤uf ) + f ·A.

Proof. Let G = {g1, ..., gl, gl+1, ..., gm} with rk g1 < ... < rk gm and rkugl ≤ rkuf <
rkugl+1

(note that l = m is not excluded; also, in the case rkuf < rkug1 there is
nothing to do). We construct fl, ..., f1, f0 ∈ A taking fl := f with the following
properties:

(1) If i ∈ {1, ..., l}, then gi divides L(gi)
kifi − fi−1 for some ki ∈ N.

(2) fi is weakly reduced with respect to G for i ∈ {0, ..., l}.
(3) fi is reduced with respect to {gi+1, ..., gm} for i ∈ {0, ..., l − 1}.

Firstly fl = f is weakly reduced with respect to G by assumption and reduced
with respect to {gl+1, ..., gm} as rkuf < rkugl+1

. Thus (2) and (3) hold for fl.
Suppose we have already constructed the fj , i ≤ j ≤ l, with i ∈ {1, ..., l}, such
that (2) and (3) holds for j ≥ i and (1) holds for j > i. We apply 2.5 with h = fi
(note that fi ∈ R is allowed here). We get some ki ∈ N0 and fi−1 (the remainder
polynomial r from 2.5) such that gi divides L(gi)

kifi−fi−1, such that fi−1 is weakly
reduced with respect to G and reduced with respect to {gi, ..., gl}. Hence property
(1) holds for i and properties (2),(3) hold for i − 1. This gives the construction.
Note that in the case fi = 0 we have fj = 0 for each j ≤ i.

If we take f̃ := f0, then condition (1) implies that L · f ≡ f̃ mod ({g1, ..., gl})
for some L ∈ LG. By condition (3) we have that f̃ = f0 is reduced with respect to
G. �

2.10. Definition. If Z is a subset of A and 1 ∈ H ⊆ A is multiplicatively closed
we define

SatH(Z) := {f ∈ A | h · f ∈ Z for some h ∈ H}.
If h ∈ A then

Sath(Z) := Sat{1,h,h2,...}(Z).

2.11. Corollary. Let R be a domain. Let 0 6= a ⊆ A be an ideal and let G ⊆ a \R
be a characteristic set of a. If f ∈ a is weakly reduced with respect to G, then

f ∈ SatLG(a ∩R+ (G ∩G≤uf )).

If a ∩R = 0 then

f ∈ SatL(G)((G ∩G≤uf )) = SatLG((G ∩G≤uf )).

Proof. Take f̃ as in 2.9. Since f ∈ a we get f̃ ∈ a from f̃ ∈ (G) + f ·A. Since f̃ is
reduced with respect to G this is only possible if f̃ ∈ R (by 2.3). �

2.12. Remark. If a is an ideal of A with a ∩R = 0 and G is a characteristic set of
a, then L(g) 6= 0 is reduced with respect to G for every g ∈ G, hence L(g) 6∈ a by
2.3. Thus if a is prime in addition, then SatLG((G)) ⊆ a.

2.13. Example. Without the assumption a∩R = 0 we need not have SatLG((G)) ⊆ a
- even if a is prime. The reason is that L(g) might be a member of a - more precisely
of a ∩R for some g ∈ G.

To see an example let R0 be a factorial Q-algebra, let t be an ordinary inde-
terminate over R0 and let R := R0[t] together with derivations ∂1, ...., ∂K , such
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that ∂it ∈ t · R (e.g. if all derivatives are trivial). Let Y be a single differential
indeterminate, A := R{Y } and let a := t ·A be the ideal generated by t in A. Since
∂it ∈ t · R it follows that a is a differential prime ideal. Moreover a set G ⊆ A is
a characteristic set of a if and only if G = {t · (h1 · Y + h0)} for some h1, h0 ∈ R,
h1 6= 0. Now if we take h1 = 1 and h0 = 0 then Y ∈ SatLG((G)), since t · Y ∈ (G)
and t = L(t · Y ). But Y 6∈ a.

Moreover this example shows that in general there is no characteristic set G of a
such that SatLG(a∩R+(G)) ⊆ a - even if a is prime. This is so, since for arbitrary
h1, h0 ∈ R, h1 6= 0 we have SatLG(a ∩R+ (G)) = A, as t · h1 · 1 ∈ a ∩R.

2.14. Example. Let R be an arbitrary differential domain in K derivations, Z ⊆ R
and let A := R{Y } be the differential polynomial ring over R in the single variable
Y . If a ⊆ A is an ideal and r ∈ R ∩ a, r 6= 0, then {r · Y } is a characteristic subset
of a. Hence every characteristic subset of a is of the form {r1Y + r0} with some
r1, r0 ∈ R, r1 6= 0.

2.15. Proposition. Let R be a field and let G be a characteristic set of an ideal
a ⊆ A with a 6= (0) and a ∩R = (0).
(i) If a is a radical ideal then no g ∈ G is a proper power of another polynomial

from A.
(ii) If a is a prime ideal, then for each g ∈ G there is a unique irreducible factor g0

of g with g0 ∈ a. The set {g0 | g ∈ G} of all these factors is a characteristic
set of p. Moreover if h ∈ A with g = g0 · h, then h ∈ R or h is reduced with
respect to G and rkh < rkug.

Proof. (i). Suppose hd = g ∈ G. Then h ∈ a, so h is not reduced with respect to G.
Since h divides g, h is reduced with respect to every g̃ ∈ G \ {g} by 2.3. It follows
that h is not reduced with respect to g, thus h = g.

(ii). Fix some g ∈ G. Let g0 be an irreducible factor of g with g0 ∈ a. Since
G is reduced, g0 is reduced with respect to each g̃ ∈ G \ {g}. By 2.3 g0 is not
reduced with respect to g. Since g0 divides g we must have u∗g0 = u∗g, hence
rk g0 = rk g. This proves that ug must not appear in any other irreducible factor of
g and g = g0 · h implies rkh < rkug. Since h divides g, it is reduced with respect
to every g̃ ∈ G \ {g}.

Since u∗g0 = u∗g and g0 divides g (g ∈ G), the set {g0 | g ∈ G} ⊆ a is a reduced
subset of a. As rk g0 = rk g (g ∈ G) this set is even a characteristic set of a. �
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3. The Separant

From now on we assume that R has characteristic 0.
By convention every f ∈ A is a derivative of itself (namely the 0th derivative).
Again, we say that a variable z ∈ DY appears in f ∈ A if the degree of the
polynomial f in the variable z is non zero. So z appears in a derivative of z but z
does not appear in any proper derivative of z.

If rk θ < rkE with θ,E ∈ D then E need not be a derivative of θ unless there
is only one derivative. This is the main difficulty in the reduction process of the
order. We begin with a fairly obvious but useful

3.1. Observation. If z1, ...., zl ∈ DY and θ ∈ D , then

θ(R[z1, ..., zl]) ⊆ R[Ez1, ..., Ezl | E ∈ D and there is some Ẽ ∈ D with ẼE = θ]

Hence if f ∈ A, then by choosing the zi as the list of all the variables in DY that
appear in f , we get the following:

If z ∈ DY appears in θf (so z is one of the Ezi), then there is a variable y ∈ DY
appearing in f (namely zi) such that z is a derivative of y, and θy (= θzi = ẼEzi =

Ẽz) is a derivative of z.

Proof. This is a consequence of the Leibniz rule on the derivative of products. �

3.2. Definition. The separant of f ∈ A \R is defined as follows:
Let uf = θYn, let B := R[θ̃Ym | θ̃Ym 6= θYn] and let f = fd · udf + ...+ f1 · uf + f0,
with fd, ..., f0 ∈ B, fd 6= 0. The separant S(f) is

S(f) :=
d

duf
f = d · fd · ud−1f + ...+ f1.

Moreover if θ ∈ D is of order > 0 we define

[θ]f := θf − S(f)θuf .

If θ = ∂01 ...∂
0
k we define [θ]f := f . An alternative notation is fθ = [θ]f .

3.3. Lemma. Let θ ∈ D , z ∈ DY , k ∈ {1, ...,K} and f ∈ A \R.
(i) If f = fdu

d
f + ...+ f1uf + f0, where uf does not appear in any fi, then

[∂k]f = (∂kfd)u
d
f + ...+ (∂kf1)uf + ∂kf0.

(ii) θuf is the leader of θf and S(f) = S(θf) 6= 0.
(iii) If ord θ > 0 then S(f) = L(θf) and Ldeg(f) = 1.
(iv) [∂kθ]f = [∂k]θf .
(v) If ord θ > 0 and [θ]f 6∈ R then rk[θ]f < rk θuf .

Proof. (i) follows immediately from the product rule for the derivative.

For the remaining parts we use
Claim. If [∂k]f 6∈ R then rk[∂k]f < rk ∂kuf .
Proof. Look at the representation of [∂k]f from (i). It is enough to show that
rk ∂kfi has rank < rk ∂kuf . Let z ∈ DY be a variable which appears in rk ∂kfi. By
3.1, there is a variable y ∈ DY which appears in fi, such that z is a derivative of y
and such that ∂ky is a derivative of z. Hence z = y or z = ∂ky. As y appears in fi
we have rk y < rkuf , thus rk z < rk ∂kuf and the claim is proved. �
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(ii) and (iii). Clearly every variable y ∈ DY which appears in S(f) has rank
< rk ∂kuf . So the claim implies that ∂kuf is the conductor of ∂kf , as well as
S(∂kf) = S(f) = L(∂kf). By a trivial induction we get (ii) and (iii).
(iv) holds if ord θ = 0. If ord θ > 0 then [∂k]θf = ∂kθf − S(θf)∂kuθf = ∂kθf −
S(f)∂kθuf by (ii) and (iii), so [∂k]θf = [∂kθ]f .
(v). As ord θ > 0 we may assume that θ = ∂kE for some E ∈ D . Hence rk[θ]f =
[∂k]Ef < rk ∂kuEf by (iv) and the claim. Hence (ii) implies rk[θ]f < rk ∂kEuf =
rk θuf . �

3.4. Example. Clearly θuf = uθf . However, neither is θuf a derivative of the
leader of [θ]f nor is the leader of [θ]f a derivative of uf in general. For example if
f = ∂1Y ∂2Y and θ = ∂3. Then uf = ∂2Y , u∂3f = ∂3∂2Y and u[∂3]f = ∂3∂1Y .

4. Reduction of the order

By 3.3(v) we have

θf = S(f)θuf + [θ]f and rk[θ]f < rk θuf .

This is the core step for the reduction of the order if ordD > 0. It means that
S(f)θuf can be reduced to a polynomial (namely −[θ]f) of smaller rank modulo
the differential ideal [f ].

4.1. Definition. If G ⊆ A \R is finite then the separant of G is the polynomial

S(G) :=
∏
g∈G

S(g)

Moreover we define SG := {
∏n
i=1 S(gi) | n ∈ N, gi ∈ G}.

Observe that S(G) 6= 0, as charR = 0 and R is a domain. Moreover if G is a
reduced set, then S(G)d is weakly reduced with respect to G for all d ∈ N0. S(G)
need not be reduced with respect to G, for example G = {Y 2

1 , Y1Y2} has separant
S(G) = 2Y 2

1 .

In what follows we fix a reduced set G ⊆ A. If f ∈ A is not weakly reduced with
respect to G we define

rG(f) := max{rk(y) | y ∈ DY appears in f and
y is a proper derivative of some ug, g ∈ G}

Observe for g ∈ G such that ug appears in f we need not have rk(ug) ≤ rG(f).
Therefore the next lemma is not true if we would define rG(f) as
max{rk(y) | y ∈ DY appears in f and y is a derivative of some ug, g ∈ G}

4.2. Lemma. Let f ∈ A \ R and let G be a reduced set. Let y ∈ DY be a
variable which appears in f and suppose for some g ∈ G, θ ∈ D , ordD > 0 we
have y = θug (observe that g is not uniquely determined by this demand, even if
rk(y) = rG(f)). Let f = fdy

d + fd−1y
d−1 + ...+ f0, where y does not appear in fj,

fd 6= 0. Furthermore let

h =

d∑
α=0

fα · S(g)d−α · (−[θ]g)α.
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Then
S(g)df ≡ hmod (θg)

and either h is weakly reduced with respect to G or rG(h) ≤ rG(f). Moreover
rk(S(g)α · h) ≤ rk(f) for all α ∈ N0 and if rk(y) = rG(f) then rG(h) < rG(f).

Proof. The plan is to replace y = θug in f by 1
S(g) (θg − [θ]g). After multiplying

the resulting expression with a suitable power of S(g) we subtract a multiple of θg
in A to get h.

Since y = θug, we have

S(g)df = fd · (S(g)θug)
d + fd−1S(g)(S(g)θug)

d−1 + ...+ f0S(g)d.

Since S(g)θug = θg− [θ]g we may replace S(g)θug by θg− [θ]g in this equation and
get

S(g)df = fd · (θg − [θ]g)d + fd−1S(g)(θg − [θ]g)d−1 + ...+ f0S(g)d,

which proves S(g)df − h ∈ (θg).
Now suppose h is not weakly reduced with respect to G. Let z ∈ DY , suppose

z appears in h and z is a proper derivative of ug̃ for some g̃ ∈ G. If z appears
in S(g), then rk z ≤ rkug < rk θug = rk y ≤ rG(f). If z appears in [θ]g then
rk z ≤ rk[θ]g < rk θug = rk y ≤ rG(f) by 3.3(v). If z appears in fα for some
α ∈ {0, .., d} then rk z ≤ rG(f) by the definition of rG(f). If rk y = rG(f) and z
appears in fα for some α ∈ {0, .., d} then rk z < rk y =≤ rG(f) by the definition of
rG(f) and the choice of the fα’s. This shows rG(h) ≤ rG(f) and rG(h) < rG(f) if
rk y = rkG(f). It remains to prove rkS(g)α · h ≤ rk f .

Let u := uS(g)α·h. If u does not appear in S(g) and in [θ]g, then u∗ appears in
some fα, hence rkS(g)α·h ≤ rk f . If uh appears in S(g), then rku ≤ rk g < rk θug ≤
rk f , so rkS(g)α · h < rk f . If u appears in [θ]g, then rku ≤ rk[θ]g < rk θug ≤ rk f
(by 3.3), hence rkS(g)α · h < rk f . �

4.3. Notation If f ∈ A is not weakly reduced with respect to G then we define

G≤f := {θg | g ∈ G, θ ∈ D and rk(θug) ≤ rG(f)}
G<f := {θg | g ∈ G, θ ∈ D and rk(θug) < rG(f)}

Observe that for g ∈ G we do not have g ∈ G≤f in general, even if ug appears in f .

Moreover, if y ∈ DY appears in f with rk(y) = rG(f), then G≤f = G≤y and
G<f = G<y. (See 2.8 for definitions.)

If f is weakly reduced with respect to G we define G≤f := G≤uf and G<f := G<uf .

4.4. Corollary. Let G ⊆ A be a reduced set and let f ∈ A. Then there is some
f̃ ∈ A which is weakly reduced with respect to G and some S ∈ SG such that
rk(f̃) ≤ rk(f) and

S · f ≡ f̃ mod (G≤f ).

In particular
S · f ≡ f̃ mod (G≤uf ).

Proof. If f is weakly reduced with respect to G we may take f̃ = f and S = 1. If f
is not weakly reduced with respect to G, we apply 4.2 to f and denote the resulting
polynomial by f1. If f1 is not weakly reduced with respect to G we apply 4.2 to
f1. Ongoing in this way we get a sequence f = f0, f1, f2, ... of polynomials with
rG(f) > rG(f1) > ... and rk f ≥ rk f1 ≥ .... As such a sequence can not be infinite,
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some fm has to be weakly reduced with respect to G. We have rk fm ≤ rk f and
Si · fi ≡ fi+1 mod (Digi) for some Si ∈ SG, θi ∈ D and gi ∈ G with rG(f) ≥
rG(fi) = rk θiugi . Thus θigi ∈ G≤f and S0 · ... · Sm−1f ≡ fm mod (G≤f ). So we
may take f̃ = fm. �

4.5. Definition. If G ⊆ A is finite we define

HG := {L · S | L ∈ LG, S ∈ SG}
and

H(G) := L(G) · S(G).

We summarize both reduction processes:

4.6. Theorem. Let G ⊆ A be a reduced set and let f ∈ A. Then there is some
f̃ ∈ A, which is reduced with respect to G and some H ∈ HG such that

H · f ≡ f̃ mod (G≤uf ).

In particular H · f ≡ f̃ mod [G].

Proof. By 4.4 there is some h ∈ A, which is weakly reduced with respect to G such
that S · f ≡ hmod (G≤uf ) for some S ∈ SG and such that rk(h) ≤ rk(f). By 2.9
there is some f̃ ∈ A, which is reduced with respect to G and some L ∈ LG such
that L · h ≡ f̃ mod (G ∩ G≤uh). As rk(h) ≤ rk(f) we get G≤uh ⊆ G≤uf , hence
H · f ≡ f̃ mod (G≤uf ) with H := L · S. �

4.7. Corollary. Let R be a domain. Let 0 6= a ⊆ A be a differential ideal, a∩R = 0
and let G ⊆ a \R be a characteristic set of a. Then
(i)

a ⊆ SatHG [G].

(ii) (Coherence of the characteristic set G)
If g1, g2 ∈ G, g1 6= g2 and θ1, θ2 ∈ D such that θ1ug1 = θ2ug2 =: y, then there
is some H ∈ HG such that

H · (S(g2) · θ1g1 − S(g1) · θ2g2) ∈ (G<y).

(Recall that G<y := {θg | g ∈ G, θ ∈ D and rk(θug) < rk(y)}.)
(iii) If a is prime then

a = SatHG [G].

Proof. (i) and (ii). Let f ∈ a and take f̃ and H as in 4.6. Since f ∈ a we get f̃ ∈ a

from f̃ ∈ [G] + f · A. Since f̃ is reduced with respect to G this is only possible if
f̃ ∈ R (by 2.3). So f̃ ∈ R∩ a = 0 and H · f ∈ (G≤uf ). In particular f ∈ SatHG [G].

If f = S(g2)·θ1g1−S(g1)·θ2g2, then rk(uf ) < rk(y) and 4.6 shows H ·f ∈ (G<y).

(iii). If a is a differential prime ideal and f ∈ SatHG [G] then H · f ∈ a for some
H ∈ HG. Since H 6= 0 and each leading coefficient and each separant of an element
in G is reduced with respect to G we get H 6∈ a from 2.3 again. Hence f ∈ a. �
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5. Coherence and the Rosenfeld Lemma

We start with a lemma about saturations when passing to polynomial rings

5.1. Generation of the saturation Let B ba a ring and let Y be a set of
indeterminates over B. Let G ⊆ B and let H ⊆ B be multiplicatively closed. Let
A := B[Y ] and let (G)B, (G)A be the ideal generated by G in B and in A respectively
. Let

b = {f ∈ B | h · f ∈ (G)B for some h ∈ H}
a = {f ∈ B[Y ] | h · f ∈ (G)A for some h ∈ H}.

Then
(i) The ideal a of A is generated by the ideal b of B.
(ii) a ∩B = b.
(iii) a is radical if and only if b is radical and a is prime if and only if b is prime.

Proof. Clearly (ii) holds and (iii) follows from (i). In order to see (i) we may assume
that Y is a finite set of indeterminates. Then the claim follows by induction on the
number of variables from the one variable case. So we may assume that A = B[Y ]
is the polynomial ring over B in one indeterminate Y .

We prove (i) by induction on the degree of f ∈ a in Y . If deg f = 0, then we
have f ∈ b. Now suppose f = f̂ · Y + r ∈ a with r ∈ B and deg f̂ < deg f .
Take h ∈ H, fi ∈ A and gi ∈ G with h · f =

∑
fi · gi. Setting Y = 0 shows

r ∈ b, hence we may assume that r = 0. Let fi = f∗i Y + ri with ri ∈ B. Then
h · f̂ ·Y =

∑
i∈I f

∗
i gi ·Y +

∑
rigi, so

∑
rigi = 0 and h · f̂ =

∑
i∈I f

∗
i gi. This means

f̂ ∈ a and by the inductive hypothesis, f̂ is in the ideal generated by b in A. So
f = f̂ · Y is in the ideal generated by b in A as well. �

Again R is a differential domain containing Z in K commuting derivatives and A :=
R{Y1, ..., YN} is the differential polynomial ring in N variables and K derivations.
Recall from 2.8 that for G ⊆ A and y ∈ DY we have defined

G≤y = {θg | g ∈ G, θ ∈ D and rk(θug) ≤ rk(y)}
G<y = {θg | g ∈ G, θ ∈ D and rk(θug) < rk(y)}

Recall that G is in general not a subset of G≤y, even if y is a proper derivative of
some ug, g ∈ G.

Clearly G<y =⋃{G≤z | rk z < rk y}. Moreover G ∪ ∂i(G≤y) ⊆ G≤∂iy, thus
∂i((G≤y)) ⊆ (G≤∂iy).

5.2. Definition. A reduced subset G of A is called coherent if for all g1, g2 for
which ug1 and ug2 have a common (higher) derivative the following condition holds.

Let θ1, θ2 ∈ D be such that y := θ1ug1 = θ2ug2 is the least common derivative
of ug1 and ug2 . Then there is some n ∈ N0 such that

H(G)n(S(g2)θ1g1 − S(g1)θ2g2) ∈ (G<y).

If w := θ1ug1 = θ2ug2 is any common derivative of ug1 and ug2 , then one checks
that there is some n ∈ N0 with

H(G)n(S(g2)θ1g1 − S(g1)θ2g2) ∈ (G<w).

This is done in the following lemma.
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5.3. Lemma. Let G ⊆ A, g1, g2 ∈ G, θ1, θ2 ∈ D , h, s1, s2 ∈ A and y ∈ DY such
that y is a derivative of θ1ug1 and of θ2ug2 . If

hn(s1θ1g1 − s2θ2g2) ∈ (G≤y)

then
hn+1(s1∂iθ1g1 − s2∂iθ2g2) ∈ (G≤∂iy)

Proof. Let f := s1θ1g1 − s2θ2g2. Then

h · ∂i(hn · f) = nhnf∂ih+ hn+1∂if =

= nhnf∂ih+

+ hn+1(∂i(s1)θ1g1 − ∂i(s2)θ2g2) +

+ hn+1(s1∂iθ1g1 − s2∂iθ2g2)

Since hn · f ∈ (G≤y) by assumption we get that h · ∂i(hn · f), nhnf∂ih, θ1g1
and θ2g2 are in (G≤∂iy), so hn+1(s1∂iθ1g1 − s2∂iθ2g2) ∈ (G≤∂iy) as well. �

5.4. Proposition. Let G ⊆ A be a reduced and coherent set. If f ∈ A is weakly
reduced with respect to G and f ∈ SatHG [G], then f ∈ SatHG(G), where (G) denotes
the ideal generated by G in A.

Proof. Let g1, ..., gm ∈ G and let θ1, ..., θm ∈ D of order > 0 such that

(∗) H · f =

m∑
i=1

fi · θigi +
∑
g∈G

hg · g

for some H ∈ HG and polynomials fi, hg ∈ A (1 ≤ i ≤ m, g ∈ G). Let α :=
max{rk θiugi | 1 ≤ i ≤ m}. We’ll reduce (∗) to an equation of the form (∗) where
the corresponding α is smaller than the present one. After applying this argument
finitely many times we get a representation of f in SatHG(G) which proves the
proposition. The reduction goes as follows.

We may assume that there is some l ∈ {1, ...,m} such that rk θiugi = α (l ≤ i ≤
m) and rk θiugi < α (1 ≤ i < l). Let y = θlugl = ... = θmugm . By (∗) we know
that H · f ∈

∑m
i=l fi · θigi + (G<y) + (G). We have

S(gm) ·
m∑
i=l

fi · θigi =

m∑
i=l

(S(gm)fi · θigi − S(gi) · fiθmgm) +

m∑
i=l

S(gi) · fiθmgm.

Since G is a coherent set we get that S(gm) ·
∑m
i=l fi · θigi ∈ f̃ · θmgm + (G<y),

where f̃ =
∑m
i=l S(gi) · fi. Hence

S(gm) ·H · f ∈ f̃ · θmgm + (G<y) + (G).

This means that there is an equation of the form (∗) such that θiugi = y for at
most one index i ∈ {1, ...,m}. Say y = θmugm . Then θmugm does not appear in
H, f, θ1g1, ..., θm−1gm−1 nor in any g ∈ G. We have θmgm = S(gm)·θmugm+[θm]gm
and θmugm does not appear in [θm]gm. So if we replace θmugm by −[θm]gm/S(gm)
in (∗) we get an equation

(∗∗) H · f =

m−1∑
i=1

f̃i · θigi +
∑
g∈G

h̃g · g
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with rational functions f̃i, h̃g ∈ AS(gm). By multiplying with a suitable power p of
S(gm) we get S(gm)p ·H · f ∈ (G<y) + (G) as desired. �

5.5. Corollary. Let G ⊆ A be reduced and coherent. If SatHG(G) is reduced then
SatHG [G] is reduced. If SatHG(G) is prime then SatHG [G] is prime.

Proof. Let f1, f2 ∈ A with f1f2 ∈ SatHG(G). Let Hi ∈ HG and f̃i ∈ A reduced
with respect to G such that Hifi ≡ f̃i mod [G]. Since H · f1f2 ∈ [G] for some
H ∈ HG it follows that f̃1f̃2 ∈ SatHG [G]. As f̃1f̃2 is weakly reduced with respect
to G it follows f̃1f̃2 ∈ SatHG(G) from 5.4. Hence f̃1 ∈ SatHG(G) or f̃2 ∈ SatHG(G)
if SatHG(G) is prime and f1 or f2 is in SatHG [G]. This shows that SatHG [G] is
prime if SatHG(G) is prime. The same argument proves that SatHG [G] is reduced
if SatHG(G) is reduced. �

5.6. Theorem. (The Rosenfeld Lemma)
Let G ⊆ A be a reduced set. Then the following are equivalent.
(1) G is a characteristic set of [G] : H∞G and [G] : H∞G ∩R = 0.
(2) (a) G is coherent and

(b) The ideal (G)A : H∞G of A does not contain non zero elements of A,
reduced with respect to G.

(3) Let B denote the R-algebra R[y ∈ DY | y appears in g for some g ∈ G].
(a) G is coherent and
(b) The ideal (G)B : H∞G of B does not contain non zero elements of B,

reduced with respect to G.
In this case [G] : H∞G is reduced respectively prime if and only if (G)A : H∞G is
reduced respectively prime.

Proof. (1)⇒(2) follows from 4.7 and 2.3.
(2)⇒(1). Let G = {g1, ..., gl} with rk g1 < ... < rk gl and let G̃ = {g̃1, ..., g̃m} be

a characteristic set of a := [G] : H∞G such that rk g̃1 < ... < rk g̃m. As rk G̃ ≤ rkG
we have rk g̃1 ≤ rk g1. Suppose rk g̃1 < rk g1. Then g̃1 ∈ a is reduced with respect
to G. By (a) and 5.4 we have g̃1 ∈ (G)A : H∞G . By (2)(b) we have g̃1 = 0, which is
impossible.

Thus rk g̃1 = rk g1 and we may replace g̃1 with g1 in G̃. The same argument
now applies to g̃2 and we may replace g̃2 by g2. Ongoing in this way we obtain
l ≤ m and G ⊆ G̃. But l < m is not possible either, otherwise the argument above,
applied to g̃m produces a contradiction, too. This shows that G is a characteristic
set of [G] : H∞G , hence (1) and (2) are equivalent.

Clearly (2) implies (3). We prove (3)(b)⇒(2)(b) now. Let f ∈ (G)A : H∞G
and suppose f 6= 0. We consider f as a polynomial over R[y ∈ DY | y 6∈ B] and
write f =

∑
fimi, where mi are mutually different monomials in the variables

from B and fi are polynomials not containing any variable from B. As f 6= 0
there is at least one fj among the fi such that fj 6= 0. Let ψ : A −→ B be a
B-algebra homomorphism sending fj to a nonzero element of R and every variable
y ∈ DY \ B to an element from R. Let H ∈ HG with H · f ∈

∑
g∈GAg. Then

H · ψ(f) ∈
∑
g∈GBg and ψ(f) 6= 0. Moreover ψ(f) is reduced with respect to G,

so the ideal (G)A : H∞G of B contains the nonzero element ψ(f), which is reduced
with respect to G.

So we know that (1), (2) and (3) are equivalent. Finally suppose [G] : H∞G is
prime and let B := R[y | y ∈ DY appears in some g ∈ G]. By 5.1 it is enough to
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show that (G)B : H∞G is prime. So let f1, f2 ∈ B with f1 · f2 ∈ (G)B : H∞G . By
assumption we may assume that f1 ∈ [G] : H∞G . Since f1 ∈ B, B is weakly reduced
with respect to G, hence f1 ∈ R ∩ (G)A : H∞G = (G)B : H∞G . A similar argument
shows that (G)A : H∞G is reduced if [G]A : H∞G is reduced. Finally 5.5 finishes the
proof of the theorem. �

5.7. Example. Suppose G ⊆ A is reduced, (G)B is prime and L(g), S(g) 6∈ (G)B
(g ∈ G), where B = R[y | y ∈ G]. Then (G)A : H∞G = (G)A by 5.1.
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