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We announce two topological results that may be used to estimate the number of
relative periodic orbits of different homotopy classes that are possessed by a sym-

metric Lagrangian system. The results are illustrated by applications to systems

on tori and to strong force N -centre problems.

1. Introduction

Periodic orbits of Lagrangian system have been extensively studied by ap-
plying variational methods to action functionals defined on loop spaces
10,2,12,1,13,14. Symmetries of the Lagrangian are often used to prove the ex-
istence of periodic orbits with particular properties. Typically the strategy
is to minimize an action functional defined on a space of paths γ in the
configuration space M which satisfy the property

γ(t + T ) = g.γ(t) (1)

for a fixed ‘relative period’ T and some fixed diffeomorphism g of M, often
referred to as a ‘phase’, that leaves the Lagrangian invariant. If g has order
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k then the corresponding trajectory is periodic with period kT . Recent
very striking applications of this idea have been the proofs of the existence
of ‘choreographies’ of N -body problems7,8,9.

The method is still valid if g does not have finite order, in which case the
trajectories are only ‘periodic modulo the action of g’. Whether or not g

has finite order we refer to paths in M satisfying (1) as ‘relative loops’ and
to the corresponding solutions of Lagrangian system as ‘relative periodic
orbits’. The variational theory for action functionals on loop spaces extends
in a straightfoward way to relative loop spaces. Our aim in this paper is to
outline some results on the topology of relative loop spaces that give lower
bounds for the number of critical points possessed by ‘well-behaved’ action
functionals.

Let L be a Lagrangian on a configuration manifold M which is invariant
under a diffeomorphism g : M→M. Our aim is to provide lower bounds
for the number of minimizers and/or other critical points of the action
functional

A[γ] =
∫ T

0

dtL(γ, γ̇, t) (2)

defined on Λ1
g(M), a Sobolev space of paths in M satisfying (1) defined in

§2.

Remark 1.1. We may allow L to depend periodically on time, with the
same period T as in (1). If it is independent of time then the action func-
tional is invariant under the time-translation action on relative loop space
given by:

γ(t) → γ(t + τ) with τ ∈ R

If g has finite order then this factors through an action of the circle S1.
Time dependence of L breaks this symmetry.

A ‘well-behaved’ action functional will have at least one local minimum
in each connected component of Λ1

g(M). If in addition all the critical points
are non-degenerate then the Morse inequalities provide lower bounds for
the total number of critical points in each connected component, provided
we have information on the homology groups of the component6. Weaker
estimates for functionals with critical points that are not necessarily non-
degenerate can be obtained from (Lusternik-Schnirelman) category theory6.
In this paper we announce two main results:
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• The number of connected components of the space of relative loops
is equal to the number of orbits of a ‘g-twisted action’ of the fun-
damental group π1(M) on itself (Theorem 2.1).

• If M is K(π, 1) then the connected components of the relative loop
spaces are also K(π, 1)’s, with fundamental groups isomorphic to
the isotropy subgroups of the g-twisted action of π1(M) on itself
(Theorem 2.2).

The second result enables us to compute the category or homology groups
of components of relative loop spaces in particular examples. Proofs of
these theorems and other results in this paper will appear elsewhere. In §3
we present some examples to illustrate how these results may be used to
estimate the numbers of relative periodic orbits of Lagrangian systems.

2. The topology of relative loop spaces

The space of continuous relative loops:

Λg(M) .= {γ ∈ C0(R,M) : γ(t + T ) = g.γ(t)}

is a (not necessarily complete) metric space with distance:

d0(γ1, γ2) = sup
t∈[0,T ]

distM(γ1(t), γ2(t))

where distM(., .) is a distance in M. To employ variational methods we
introduce Λ1

g(M), the space of curves γ such that in any local chart φ : U →
Rd of M we have φ◦γ ∈ H1(γ−1(U), Rd). See 11 for a similar construction.
The space Λ1

g(M) is a metric space with metric

d1(γ1, γ2) = d0(γ1, γ2) +
√
|E(γ1)− E(γ2)|, E(γ) =

1
2

∫ T

0

dt‖γ̇‖2M (3)

and we have:

Proposition 2.1. The natural embedding of Λ1
g(M) in Λ0

g(M) is a homo-
topy equivalence.

It is also not difficult to show that Λg(M) is homeomorphic to

Λg(M) .= {γ ∈ C0([0, T ],M) : γ(T ) = g.γ(0)}.

To describe the algebraic topology of Λ1
g(M) it is therefore sufficient to

describe that of Λg(M). This is the topic of the following subsections.
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2.1. Main theorems

In what follows for notational simplicity we denote a path and its homotopy
class by the same symbol and use ∗ to denote both concatenation of paths
and the induced operations on homotopy classes.

Assume that M is connected. Choose a base point m ∈M and let

Λg
m(M) .= {γ ∈ Λg(M) : γ(0) = m},

the space of continuous paths from m to gm. Let Λm(M) .= Λid
m (M) denote

the space of continuous loops based at m. Note that the space of connected
components of Λm(M) is the fundamental group of M: π0(Λm(M)) =
π1(M,m).

Fix a particular path ω ∈ Λg
m(M). The map Φω(γ) = ω−1 ∗ γ is a

bijection

Φω : π0(Λg
m(M)) → π0(Λm(M)) = π1(M,m)

where ω−1 is the path obtained by traversing ω ‘backwards’. This bijection
depends (only) on the homotopy class of ω in Λg

m(M).
For any α ∈ Λm(M) let g.α be the loop in Λgm(M) obtained by apply-

ing the diffeomorphism g to α and define an automorphism of π1(M,m)
by:

α 7→ αg = ω−1 ∗ g.α ∗ ω.

Again this depends (only) on the homotopy class of ω in Λg
m(M). Now

define the g-twisted action of π1(M,m) on itself by

α · β = αg ∗ β ∗ α−1 α, β ∈ π1(M,m). (4)

The number of connected components of relative loop space is given by the
following result.

Theorem 2.1. The map Φω induces a bijection

π0(Λg(M)) ∼= π1(M,m)
g
,

where π1(M,m)
g

is the set of orbits of the g-twisted action of π1(M,m)
on itself.

Remark 2.1. If g is homotopic to the identity then Λg(M) is homotopy
equivalent to the loop space Λ(M) .= Λid(M) and the g-twisted action of
π1(M,m) on itself is just conjugation. We therefore recover the well known
result that the connected components of the loop space map bijectively to
the conjugacy classes of the fundamental group.
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Remark 2.2. The g-twisted action of π1(M,m) on itself induces an affine
action of H1(M) on itself:

< α > · < β > = g. < α > − < α > + < β >

where < . > denote the homology class and g. < α > denotes the natural
action of g on H1(M). When π1(M,m) is abelian this is the same as the
action of π1(M,m) on itself. More generally it is easier to calculate than
the π1(M,m) action and in typical applications may be used to describe
relative periodic orbits in terms of winding numbers.

We now describe the topology of the connected components of a relative
loop space in the special case that M is a K(π, 1). This means that all
its homotopy groups except the fundamental group are trivial. Examples
of K(π, 1)’s include tori, the plane R2 with N points removed, and the
configuration spaces of planar N -body problems.

Theorem 2.2. Assume M is a K(π, 1). Then for any γ ∈ Λg
m(M) the

connected component of Λg(M) containing γ, denoted Λg
γ(M), is also a

K(π, 1) with

π1(Λg
γ(M)) ∼= Zg

π1(M)(Φω(γ))

where

Zg
π1(M)(Φω(γ)) .= {α ∈ π1(M) : αg ∗ Φω(γ) ∗ α−1 = Φω(γ)}

i.e. the isotropy subgroup (or centralizer) at Φω(γ) of the g-twisted action
of π1(M,m) on itself.

We note that all K(π, 1)’s with isomorphic fundamental groups are homo-
topy equivalent to each other4,16, and so this result determines the homo-
topy types of connected components of relative loop spaces. The homology
groups can be computed algebraically as the homology groups of the fun-
damental group5.

2.2. A simple example

Let M = T 1, the circle, and consider first the loop space Λ(T 1). The ‘g-
twisted action’ of π1(T 1) on itself is just conjugation, and since π1(T 1) ∼= Z
is abelian this is trivial. So π0(Λ(M)) ∼= Z, the homotopy classes of loops
being specified precisely by their winding numbers. Since T 1 is a K(π, 1),
Theorem 2.2 says that each component of loop space is also a K(π, 1) with
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fundamental group isomorphic to Z, and therefore has the homotopy type
of a circle.

Now consider Λg(T 1) where g : T 1 → T 1 is a reflection. Choose one of
the two fixed points of the reflection to be the base point m. We may choose
ω to be the trivial path from m to m. Then for each α ∈ π1(T 1,m) ∼= Z
we have αg = −α and so the ‘g-twisted action’ (4) is the translation

α.β = β − 2α. (5)

This has two orbits, π1(T 1)
g ∼= Z2, and the isotropy subgroups are trivial.

It follows from Theorems 2.1 and 2.2 that the space of relative loops Λg(T 1)
has two components, each of which is contractible. We strongly recommend
that the reader convinces him/herself that this is true by drawing some
pictures!

We note that exactly the same calculations hold for M = C\{0}, since
this is homotopy equivalent to T 1. Generalisations of these calculations to
both N -tori and C\{N points} will be given in the next section, along with
applications to systems of coupled rotors and N -centre problems.

3. Applications

We first recall two general results on the existence of critical points.

Existence of minima We will say that a continuous function A on a
metric space X is coercive if every sequence γn in X either has a convergent
subsequence or a subsequence on which A[γn] → +∞. Note that if A is
coercive then the sublevel sets Xc = {x ∈ X : A[x] ≤ c} are all sequentially
compact and therefore complete. A coercive function that is bounded below
necessarily attains its minimum in each connected component of X. If A

is a smooth function on a Hilbert manifold (without boundary) then these
minima are critical points of A 15.

Lower bounds from category theory A smooth function A on a Hilbert
manifold X is said to satisfy the Palais-Smale condition if every sequence γn

in X with A[γn] bounded and DA[γn] → 0 has a convergent subsequence.
If A is bounded from below and satisfies the Palais-Smale condition, and
all the sublevel sets Xc are complete, then the number of critical points of
A is greater than or equal to the (Lusternik-Schnirelman) category of X
12. Category is a homotopy invariant which is equal to 1 if the space is
contractible, to 2 for an N -sphere and to N + 1 for real projective N -space
and for the N -torus TN .
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3.1. Geodesic flows on T N and coupled rotors

Let M = TN = RN/Ω where Ω ⊂ RN is a lattice. Consider a Lagrangian
system with kinetic energy given by a Riemannian metric on TN . This
metric lifts to an Ω-invariant metric on RN . Let E(RN ) and E(TN ) denote
the groups of isometries of RN and TN with respect to these metrics. The
elements of E(TN ) lift to elements of E(RN ) that commute with Ω and we
have

E(TN ) ∼= NE(RN )(Ω)/Ω

where NE(RN )(Ω) is the normalizer of Ω in E(RN ). Note that the action of
g on TN induces a linear map on H1(TN ) ∼= ZN which we will denote by
g.

Proposition 3.1.

(1) If rank(g− id) = N in H1(TN ) then Λ1
g(T

N ) has |det(g− id)| < ∞
connected components, each of which is contractible.

(2) If rank(g− id) = N − l with 0 < l ≤ N then Λ1
g(T

N ) has an infinite
number of connected components, each of which has the homotopy
type of T l, and so has category l + 1.

Note that this generalises the calculations in §2.2.

Proof. The g-twisted action of π1(TN ) ∼= H1(TN ) ∼= ZN on itself is given
by

α · γ = γ + (g − id).α.

It follows that Zπ1(M)(γ) = ker(g− id) and so is isomorphic to Zl where l is
the corank of g − id. Theorem 2.2 implies that the connected components
of Λ1

g(T
N ) are either contractible (l = 0) or have the homotopy type of T l.

If rank(g− id) < N then the orbits of the g-twisted action lie in proper
affine subspaces of ZN , so there must be an infinite number of them. If
rank(g − id) = N then the number of orbits is equal to the area of a
fundamental domain of the lattice (g − id)Ω (regarding g as an element of
E(RN )) divided by the area of a fundamental domain of the lattice Ω. This
is equal to |det(g − id)|.

On TN we consider Lagrangians of the form

L(x, ẋ, t) =
1
2
|ẋ|2 − V (x, t)
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where x ∈ TN and V is T -periodic in t. For V ≡ 0 this gives a geodesic
flow on TN , while more general systems may be interpreted as systems of
coupled rotors or pendula. If V is invariant under g ∈ E(TN ) then so is L

and relative periodic orbits satisfying (1) are critical points of the action

A[x] =
∫ T

0

dtL(x, ẋ, t)

on the relative loop space Λ1
g(T

N ). Since TN is compact we have:

(i) Λ1
g(T

N ) is complete,
(ii) A is bounded from below,
(iii) The Palais-Smale condition holds for A in Λ1

g(M).

Thus the number of critical points of A in each connected component of
Λ1

g(T
N ) will be bounded below by the category of that component. So we

can conclude:

• If rank(g− id) = N then there are |det(g− id)| relative periodic or-
bits, lying in different homotopy classes in Λ1

g(M), which minimise
the action functional.

• If rank(g − id) = N − l < N then there is an infinite number
of minimising relative periodic orbits of different homotopy types.
Moreover each homotopy class contains at least l+1 relative periodic
orbits.

By Remark 1.1 in the autonomous case, when V is independent of t, the
relative periodic orbits form S1 orbits (provided g has finite order), and
so there will be an infinite number in each homotopy class. In this case it
would interesting to be able to estimate the number of S1 orbits of critical
points in each component using an equivariant category theory.

3.2. Strong force N-centre problems

For a second application, we consider the motion of a particle in the plane,
identified with C, which is attracted to each of N fixed points at p1, . . . , pN

by a ‘strong force’ potential field. The Lagrangian on the configuration
space M = C\{p1, . . . , pN} is

L(z, ż, t) =
1
2
|ż|2 −

N∑
j=1

Vj(z, t)
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where each potential Vj is negative, T -periodic in t and satisfies

lim
|z|→∞

Vj(z, t) = 0 uniformly in t.

Moreover we assume that there exist neighbourhoods Uj of pj such that Vj

is smooth outside Uj and satisfies

− Aj

|z − pj |a
≤ Vj(z, t) ≤ − Bl

|z − pl|a
a ≥ 2

for some constants Aj , Bj > 0 when z ∈ Uj . The conditions on the potential
imply:

(i) The action functional A is bounded from below,
(ii) A → ∞ on sequences of paths that ‘converge’ to paths containing

collisions z = pj
1,

(iii) A → ∞ on sequences of homotopically non-trivial closed loops
containing points for which the distances from the centres go to
infinity.

Items (ii) and (iii) imply that A is coercive (in the sense defined at the
beginning of this section) on the non-trivial homotopy classes in Λ1(M). It
is clearly not coercive on the trivial homotopy class. Coercivity on classes
of relative loops will be discussed below. The action functional also satisfies
the Palais-Smale condition 1.

3.2.1. Periodic orbits

We first describe the implications of the results of §2 for periodic orbits
of this system. The configuration space M is a K(π, 1) with fundamental
group π1(M) = FN , the free group on N generators. The connected com-
ponents of Λ1(M) correspond bijectively to the conjugacy classes of FN ,
which are easily described. The remarks above on coercivity and Theorem
2.1 imply that each non-null homotopy class contains at least one periodic
orbit of the system. Note that H1(M) = ZN and the homology class of a
loop is determined precisely by the N winding numbers of the loop with
respect to the N points pj . However these winding numbers are crude
invariants: each homology class contains an infinite number of homotopy
classes.

The centralizer of a non-trivial element γ ∈ FN , ie the set of elements
that commute with it, consists only of ‘roots’ and powers of γ, and so is iso-
morphic to Z. Theorem 2.2 therefore implies that each non-null homotopy
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class of Λ1(M) has the homotopy type of a circle and so its category equals
2. It follows that each of these classes must contain at least two periodic
orbits.

3.2.2. Relative periodic orbits

Let g be a rotation or reflection of C that permutes the points pj and
assume that if two points lie on the same orbit of g then the corresponding
potentials are identical. Then the Lagrangian L is g invariant and we can
seek relative periodic orbits with relative period T and phase g.

Rather than attempting to describe the calculations in general, we con-
sider the particular case of N = 2, p1 = 1, p2 = −1 and g.z = z, ie two
centres fixed by a reflection. We may choose 0 ∈ C as the base point m.
Then π1(M,m) is the group freely generated by α1 and α2, where αj is
a loop that starts at m and winds once round pj in a clockwise direction.
The automorphism α 7→ αg of π1(M,m) is defined by its action on these
generators, namely αj 7→ α−1

j , and the g-twisted action of π1(M,m) on
itself is defined by the action of these generators:

αj · β = α−1
j βα−1

j for all β ∈ π1(M,m).

Note that αk
j is equivalent under this action to either 1 (if k is even) or

αj (if k is odd). This is similar to the behaviour observed in the simple
example in §2.2. Every other element lies in the orbit of an element of the
form

αr1
1 αs1

2 . . . αrl
1 αsl

2 (6)

where all the rj and sj are non-zero. There are an infinite number of such
orbits, and so Λ1

g(M) has an infinite number of connected components.
Every relative loop γ defines a full loop g.γ ∗ γ by concantenating it

with its image under the action of g on M. The action functional will be
coercive on the component of Λ1

g(M) containing γ if the action functional
on the full loop space Λ(M) is coercive on the component containing g.γ∗γ.
If γ is represented by (6) in π1(M,m) then g.γ ∗ γ is represented by

α−r1
1 α−s1

2 . . . α−rl
1 α−sl

2 αr1
1 αs1

2 . . . αrl
1 αsl

2

which is non-null if and only if γ does not lie in the orbit of one of the classes
1, α1 or α2. Hence every component of Λ1

g(M) except those corresponding
to the orbits of 1, α1 and α2 will contain a relative periodic orbit of the
symmetric strong force two centre problem. It is easily seen that the action
functional is not coercive on the 1, α1 and α2 components.
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The g-twisted action of π1(M,m) on itself is free, and so all the isotropy
subgroups are trivial and, by Theorem 2.2, every connected component of
Λ1

g(M) is contractible. So a non-autonomous system need have only one
relative periodic orbit in each component on which the action functional
is coercive. However the following argument suggests that an autonomous
system will have an infinite number of relative periodic orbits in each such
component.

Assume that the action functional of the autonomous system is an S1-
invariant Morse function on Λ1

g(M). The critical points form S1 orbits.
Choose a component of Λ1

g(M). Let the number of critical orbits of the
action functional in the chosen component with index i be ni. Since the
Poincaré polynomial of S1 is 1 + t and that of the component is 1, the
Morse inequalities for a function with non-degenerate critical manifolds are
equivalent to the equation3:

∞∑
i=0

nit
i(1 + t)− 1 = (1 + t)

∞∑
i=0

qit
i

for some qi ≥ 0. It follows that all the ni for i even must be strictly positive.
An alternative approach to proving this estimate for the number of critical
points in each non-trivial component would be to use an S1 equivariant
category theory.
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