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1 Introduction

In this introduction, we first recall the basic phase space structures involved
in Hamiltonian systems, the symplectic form, the Poisson brackets and the
Hamiltonian function and vector fields, and the relationship between them.
Afterwards we describe a few examples of Hamiltonian systems, both of
the classical ‘kinetic+potential’ type as well as others using the symplec-
tic/Poisson structure more explicitly.

There are many applications of the ideas in these notes that have been
investigated by different people, but which I shall not cover. The major ex-
ample, the one for which classical mechanics was invented, is the gravitational
N -body problem. But there are many others too, such as rigid bodies, cou-
pled rigid bodies, coupled rods, underwater sea vehicles, . . . not to mention
the infinite dimensional systems such as water waves, fluid flow, plasmas and
elasticity. The interested reader should consult the books in the list of refer-
ences at the end of these notes. Note that many of the items in the list of
references are not in fact referred to in the text!

1.1 Hamilton’s equations

The archetypal Hamiltonian system describes the motion of a particle in a
potential well. If the particle has mass m, and V (x) is the potential energy
at the point x (in whatever Euclidean space), then Newton’s laws state that

mẍ = −∇V (x).

In the 18th century, Lagrange introduced the phase space by defining y = ẋ
and passing to a first order differential equation, and Hamilton carried this
further by introducing his now-famous equations

q̇ = ∂H/∂p,
ṗ = −∂H/∂q,

where q replaces x, and p = mẋ is the momentum, and

H(q, p) =
1

2m
|p|2 + V (q)
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is the Hamiltonian, or total energy (kinetic + potential). This first order
system is equivalent to Newton’s law above, as is easily checked.

The principal advantage of Lagrange/Hamilton’s approach is that it is
more readily generalized to systems where the configuration space is not a
Euclidean space, but is a manifold. Such systems usually come about because
of constraints imposed (eg in the rigid body the constraints are that the dis-
tances between any two particles is fixed, and the configuration space is then
the set of rotations and translations in Euclidean 3-space).

The other advantage of the Hamilton’s approach is that it lends itself to
generalizations to systems that are not of the kinetic + potential type, such as
the model of a system of N point vortices in the plane or on a sphere, which
we will see below, or Euler’s equations modelling the “reduced” motion of a
rigid body.

These two generalizations lead to defining the dynamics in terms of a
Hamiltonian on a phase space, where the phase space has the additional
structure of being a Poisson or a symplectic manifold. The ‘canonical’ Poisson
structure is given by

{f, g} =

n
∑

j=1

∂f

∂pj

∂g

∂qj
− ∂g

∂pj

∂f

∂qj
,

where f and g are any two smooth functions on the phase space. The canonical
symplectic structure is given by,

ω =

n
∑

j=1

dpj ∧ dqj = dα,

where α =
∑n

j=1 pj ∧ dqj is the canonical Liouville 1-form.a

We shall see other examples of Poisson and symplectic structures in the
course of these lectures.

The Hamiltonian vector field XH is determined by the Hamiltonian H , a
smooth function on the phase space, in either of the following ways:

Ḟ = {H, F}
ω(v,XH) = dH(v),

(1.1)

where Ḟ = XH(F ) is the time-rate of change of the function F along the
trajectories of the dynamical system. Combining these two expressions gives

aNot all authors agree on the choices of signs in the definition of the symplectic form or
the Poisson brackets, so when using formulae involving either from a text or paper, it is
necessary first to check the definitions. Our choice ensures that X{f,g} = [Xf , Xg].
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the useful formula relating the symplectic and Poisson structures,

ω(Xf , Xg) = {f, g} (1.2)

for any smooth functions f, g.
The first property of such Hamiltonian systems is their conservative na-

ture: the Hamiltonian function H is conserved under the dynamics and so
too is the natural volume in phase space (Liouville’s theorem). This has an
important effect, not only on the type of dynamics encountered in such sys-
tems, but also on the types of generic bifurcations that can occur. Indeed, the
first consequence of these conservation laws (energy and volume) is that one
cannot have attractors in Hamiltonian systems, and in particular the notion
of asymptotic stability is not available.

A further feature of Hamiltonian systems is that symmetries lead to con-
served quantities. The two best-known examples of this are rotational sym-
metry leading to conservation of angular momentum, and translational sym-
metry to conservation of ordinary linear momentum. These further conserved
quantities could in principle complicate the types of dynamics and bifurca-
tions one sees. However a well defined process called reduction (or symplectic
reduction) can be used to replace the symmetry and conservation laws by a
family of Hamiltonian systems, parametrized by these conserved quantities,
on which there are general Hamiltonian systems whose bifurcations are those
expected in generic systems.

That said, there is a further complication which is that the phase space(s)
for these reduced systems may be singular, or change or degenerate in a family,
and we are only just beginning to understand the effects of these degenerations
on the dynamics and bifurcations.

1.2 Examples

Spherical pendulum A spherical pendulum is a particle constrained to move
on the surface of a sphere under the influence of gravity. As coordinates,
one can take spherical polar coordinates θ, φ (θ measuring the angle with the
downward vertical, and φ the angle with a fixed horizontal axis). Of course,
this system has the defect of being singular at θ = 0, π. The kinetic energy is

T (q, q̇) = 1
2mℓ

2
(

θ̇2 + sin2θ φ̇2
)

,

while the potential energy is V (q) = mgℓ(1− cosθ). The momenta conjugate
to the spherical polars are

pθ = ∂L/∂θ̇ = mℓ2θ̇, pφ = ∂L/∂φ̇ = mℓ2 sin2 θ φ̇,
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where L = T − V is the Lagrangian, and the Hamiltonian is then

H(q,p) =
1

2mℓ2

(

p2
θ +

1

sin2 θ
p2

φ

)

+ V (q).

The equations of motion are given as usual by Hamilton’s equations. In
particular, one can see from these equations that the angular momentum pφ

about the vertical axis is conserved since H is independent of φ (one has
ṗφ = ∂H/∂φ = 0).

Point vortices Since the work of Helmholtz, Kirchhoff and Poincaré systems
of point vortices on the plane have been widely studied as finite dimensional
approximations to vorticity evolution in fluid dynamics. Small numbers of
point vortices model the dynamics of concentrated regions of vorticity while
large numbers can be used to approximate less concentrated regions. The
equations of motion can be derived by substituting delta functions into Euler’s
equation for a two dimensional ideal fluid. For general surveys of planar point
vortex systems see for example [17,3,15].

For this system of point vortices, each vortex has a vorticity—a real non-
zero number λ—and it is convenient to use complex numbers to describe
the positions of the vortices. The evolution is described by the differential
equation

˙̄zj =
1

2πi

∑

k 6=j

λk

zj − zk

, (1.3)

where zj is a complex number representing the position of the j-th vortex.
This system is Hamiltonian, with the Hamiltonian given by a pairwise inter-
action depending on the mutual distances:

H(z) = − 1

4π

∑

j<k

λjλk log |zj − zk|2

This is clearly not of the form ‘kinetic+potential’. The Poisson structure is

{f, g} =
∑

j

λ−1
j (fzgz̄ − gzfz̄)

and the symplectic form is ω(u,v) =
∑

j λj(uj v̄j − ūjvj). Being of dimension
3, the Euclidean symmetry has 3 conserved quantities associated to it—see
equation (6.2).

A similar model can be obtained for point vortices on the sphere, providing
a simple model for cyclones and hurricanes in planetary atmospheres. See
Section 6.
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1.3 Symmetry

A transformation of the phase space T : P → P is a symmetry of the Hamil-
tonian system, if

(i) H(Tx) = H(x) for all x ∈ P ,

(ii) T preserves the symplectic structure: T ∗ω = ω, or

(ii’) T preserves the Poisson structure: {f ◦ T, g ◦ T }(x) = {f, g}(T (x)).

There are three basic ways that symmetries affect Hamiltonian systems:

(a) The image by T of a solution is also a solution;

(b) A solution with initial point fixed by T lies entirely within the set
Fix(T,P), where

Fix(T,P) = {x ∈ P | Tx = x}.

(c) If T is part of a continuous group, then the group gives rise to conserved
quantities (Noether’s theorem).

The first of these is clear, and in fact is also true of more generalized
symmetries for which H ◦ T −H is constant, and T ∗ω = cω (c a constant).
This occurs for example for homotheties of the plane in the planar point vortex
model described above. The second (b) is less obvious, but very well-known;
it follows from a very simple calculation as follows. If Tx = x then

σt(x) = σt(Tx) = Tσt(x),

where σt is the time t flow associated to the Hamiltonian system, and so σt(x)
is fixed by T . If T is part of a compact group, then not only is Fix(T,P) invari-
ant, but it is a symplectic submanifold, and the restrictions of the Hamiltonian
and the symplectic form (or Poisson structure) to Fix(T,P) is a Hamiltonian
system which coincides with the restriction of the given Hamiltonian system—
an exercise for the reader. This technique of restricting to fixed point spaces
is sometimes called discrete reduction.

In these notes we will be concentrating on the effect of (c). The central
force problem provides the basic motivating example of this.

1.4 Central force problem

Consider a particle of mass m moving in the plane under a conservative
force, whose potential depends only on the distance to the origin (a sim-
ilar analysis is possible for the spherical pendulum). It is then natural
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to use polar coordinates (r, φ) which are adapted to the rotational sym-
metry of the problem, so that V = V (r). The velocity of the particle is
ẋ = (ṙ cosφ+ (r sinφ)φ̇, ṙ sinφ− (r cosφ)φ̇), so that the kinetic energy is

T =
m

2
|ẋ|2 =

m

2

(

ṙ2 + r2φ̇2
)

.

The Lagrangian is given by L = T − V , and the Hamiltonian is H = T + V
with associated momentum variables given by pr = ∂L/∂r = mṙ and pφ =

∂L/∂φ̇ = mr2φ̇. Substituting for the velocities ṙ and φ̇ in terms of the
momenta determines the Hamiltonian to be:

H(r, φ, pr, pφ) =
1

2m

(

p2
r +

1

r2
p2

φ

)

+ V (r).

Then Hamilton’s equations with respect to these variables are
{

ṙ = 1
m
pr, ṗr = − 1

mr3 p
2
φ + V ′(r)

φ̇ = 1
mr2 pφ ṗφ = 0.

(1.4)

The last equation says that pφ is preserved under the dynamics. In fact, pφ

is the angular momentum about the origin r = 0.
Since pφ is preserved, let us consider a motion with initial condition for

which pφ = µ. Then (r, pr) evolve as
{

ṙ = 1
m
pr,

ṗr = − 1
mr3µ

2 + V ′(r)
(1.5)

This is in fact a Hamiltonian system, with Hamilton Hµ(r, pr) obtained by
substituting µ for pφ. So that

Hµ(r, pr) =
1

2m
p2

r +
µ2

mr2
+ V (r).

This is a 1-degree of freedom problem, called the reduced system, with
“effective” potential energy

Vµ(r) =
µ2

mr2
+ V (r),

and for a given potential energy function V (r), one can study how the be-
haviour of the system depends on µ.

For example, with the gravitational potential V (r) = −1/r, one obtains
an effective potential of the form in Figure 1 below, where the fist graph shows
the potential V (r) as a function of r, while the second and third show Vµ(r)
for increasing values of µ.
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It is clear that for µ = 0 there is no equilibrium for the reduced system,
while for µ > 0 there is an equilibrium, at rµ satisfying V ′

µ(rµ) = 0—here
rµ = 3µ2/m. Indeed, in this example it is a stable equilibrium for the effective
potential has a minimum at the rµ.

Figure 1. Effective potential for increasing values of µ, for V (r) = −1/r

Since r = rµ and pr = 0 is an equilibrium of the reduced system, it is
natural to substitute these values into the original equation (1.4). The two
remaining equations are then

{

φ̇ = µ
mr2

µ

ṗφ = 0.

This describes a simple periodic orbit in the original phase space:

(r, φ, pr, pφ)(t) = (rµ,
µ

mr2
µ
t, 0, µ),

and there is one such periodic orbit for each value of µ 6= 0 — or more in
the general case if V ′

µ(r) = 0 has several solutions. In the case of a stable
equilibrium in the reduced space, the nearby solutions in the phase space will
be linear flows on invariant tori.

There are three things one should learn from this example:

• the reduced dynamics can vary with the conserved quantity, giving rise
to bifurcation problems where the bifurcation parameter is an “internal”
variable;

• the reduction is possible due to the symmetry of the original problem,

• the relationship between the equilibrium in the reduced system and the
dynamic of the corresponding trajectory (relative equilibrium) in the full
phase space is given by the group action.
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1.5 Lie group actions

These notes assume the reader has a basic knowledge of actions of Lie groups
on manifolds. Here I recall a few basic formulae and properties that are used.
A useful reference is the new book by Chossat and Lauterbach [5].

Let G be a Lie group acting smoothly on a manifold P , and let g be its
Lie algebra. We denote this action by (g, x) 7→ g · x. The orbit through x is
G · x = {g · x | g ∈ G}.

To each element ξ ∈ g there is associated a vector field on P which we
denote ξP . It is defined as follows

ξP(x) =
d

dt t = 0
(exp(tξ) · x) .

The tangent space to the group orbit at x is then g · x = {ξP(x) | ξ ∈ g}.
A simple calculation relates the vector field at x with its image at g · x:

dgxξP(x) = (Adg ξ)P (g · x), (1.6)

where Adg ξ is the adjoint action of g on ξ, which in the case of matrix groups
is just

Adg ξ = gξg−1.

The adjoint representation of g on g is the infinitesimal version obtained by
differentiating the adjoint action of G:

adξ η =
d

dt t = 0
Adexp(tξ) η = [ξ, η].

Dual to the adjoint action on g is the coadjoint action on g∗:

〈Coadg µ, η〉 :=
〈

µ, Adg−1 η
〉

, (1.7)

and similarly there is the infinitesimal version,

〈coadξ µ, η〉 := 〈µ, ad−ξ η〉 = 〈µ, [η, ξ]〉 . (1.8)

Examples 2.5 describe the coadjoint actions for the groups SO(3),SE(2) and
SL(2).

Given x ∈ P , the isotropy subgroup of x is

Gx = {g ∈ G | g · x = x}.

The Lie algebra gx of Gx consists of those ξ ∈ g for which ξP (x) = 0, and the
fixed point set of K

Fix(K,P) = {x ∈ P | K · x = x},
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consists of those points whose isotropy subgroup contains K. It is not hard
to show that it’s a submanifold of P . Moreover, those points with isotropy
precisely K form an open (possibly empty) subset of Fix(K,P).

Stratification by orbit type If G acts on a manifold P , then the orbit space
P/G is smooth at points where Gp is trivial, and more generally where the
orbit type in a neighbourhood of p is constant.

More generally, for each subgroup H < G one defines the orbit type stra-
tum P(H) to be the set of points p for which Gp is conjugate to H . This is a
union of G-orbits, and its image in P/G is also called the orbit type stratum
(now in the orbit space). These orbit type strata are submanifolds of P and
P/G, and they fit together to form a locally trivial stratification (i.e. locally
it has a product structure).

For dynamical systems, the importance of this partition in to orbit type
strata, is that for an equivariant vector field, the strata are preserved by the
dynamics.

Slice to a group action A slice to a group action at x ∈ P is a submanifold of
P which is transverse to the orbit through x and of complementary dimension.
If possible, the slice is chosen to be invariant under the isotropy subgroup Gx

(this is always possible if Gx is compact). A basic result of the theory of Lie
group actions is that under the orbit map P → P/G the slice projects to a
neighbourhood of the image of G · x in the orbit space.

Principle of symmetric criticality This principle is the variational version of
discrete reduction, and provides a useful method for finding critical points of
invariant functions. It states that, if G acts on a manifold P , and if f : P → R
is a smooth invariant function, then x ∈ Fix(G,P) is a critical point of f if
and only if it is a critical point of the restriction f |Fix(G,P) of f to Fix(G,P).
One proof is to use an invariant Riemannian metric to define an equivariant
vector field ∇f , which being equivariant, is tangent to Fix(G,P). For a full
proof, valid also in infinite dimensions, see [58].

2 Noether’s Theorem and the Momentum Map

The purpose of this section is to bring together facts about symmetry and
conserved quantities that are useful for studying bifurcations. They are all
found in various places, more or less explicitly, but not together in a single
source. Furthermore, there appear to be misconceptions about whether “non-
equivariant” momentum maps cause extra problems. Essentially, anything
true for the equivariant ones remains true for non-equivariant ones (which are
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in fact equivariant, but for a modified action, as we shall see below). Many
of the details of this chapter can be found in the books [16,8,10,13].

Examples 2.1 We will be using 3 examples of symplectic group actions in
this section to illustrate various points. These arise in the models of systems
of point vortices.
(A) G = SO(3) acts by rotations on the sphere P = S2, with symplectic
form given by the usual area form with total area 4π (for example in spherical
polars, ω = sin(θ) dθ∧dφ). The Lie algebra so(3) can be represented by skew-
symmetric matrices, and the vector field corresponding to the skew-symmetric
matrix ξ is simply x 7→ ξx.
(B) G = SE(2) acts on the plane P = R2, with its usual symplectic form ω =
dx∧ dy. This group acts by translation and rotations; indeed, SE(2) ≃ R2

⋊

SO(2) (semidirect product), where R2 is the normal subgroup of translations
of the plane, and SO(2) is the group of rotations about some point, e.g.
the origin. The Lie algebra se(2) is represented by constant vector fields
(corresponding to the translation subgroup) and by infinitesimal rotations.
(C) G = SL(2) = SL(2,R) acts by isometries on the hyperbolic plane P = H.
There are several ways to realize this action, of which perhaps the best-known
is to use Möbius transformations on the upper-half plane. However, we will
use one that is more in keeping with the others, which is to represent the
hyperbolic plane as one sheet of a 2-sheeted hyperboloid in R3:

H = {(x, y, z) ∈ R3 | z2 − x2 − y2 = 1, z > 0}. (2.1)

(The hyperbolic metric on H is induced from the Minkowski metric (dx2 +
dy2 − dz2) on R3.) The symplectic form on H is given by

ωx(u,v) = − 1

2‖x‖2
R(x) · u ∧ v, (2.2)

where R(x, y, z) = (x, y,−z) and u,v ∈ TxH. One way to realize the action
of SL(2) on H is to embed H into the set of 2× 2-trace zero matrices sl2(R):

x =





x
y
z



 7→ x̂ =

(

x y + z
y − z −x

)

. (2.3)

Then A · x̂ = Ax̂A−1, for A ∈ SL(2). Note that the image of the embedding
consists of those matrices X of trace zero, unit determinant and such that
X12 > X21. Under this identification, the symplectic form (2.2) becomes the
Kostant-Kirillov-Souriau symplectic form on the coadjoint orbit (see Example
2.5(C)). 2

J. Montaldi, Relative equilibria and conserved quantities . . . . 248



2.1 Noether’s theorem

With such a set-up, the famous theorem of Emmy Noether states that any
1-parameter group of symmetries is associated to a conserved quantity for
the dynamics. In fact one needs some hypothesis such as the phase space
being simply connected, or the group being semisimple (see [8] for details).
For example, the circle group acting on the torus does not produce a globally
well-defined conserved quantity.

How do these conserved quantities come about? We already have a pro-
cedure for passing from Hamiltonian function to Hamiltonian vector field, and
here we apply the reverse procedure. For each ξ ∈ g let φξ : P → R be a
function that satisfies Hamilton’s equation

dφξ = ω(ξP ,−), (2.4)

if such a function exists. Of course each of these φξ is only defined up to a
constant, since only dφξ is determined.

Such functions are known as momentum functions, and a symplectic ac-
tion for which such momentum functions exist is said to be a Hamiltonian
action. See [8] for conditions under which symplectic actions are Hamilto-
nian.

Theorem 2.2 (Noether) Consider a Hamiltonian action of the Lie group G
on the symplectic (or Poisson) manifold P, and let H be an invariant Hamil-
tonian. Then the flow of the Hamiltonian vector field leaves the momentum
functions φξ invariant.

Proof: A simple algebraic computation:

XH(φξ) = {H,φξ} = −{φξ, H} = −ξP(H) = 0.

This last equation holds because H is G-invariant. ❒

Momentum map We leave questions of dynamics now, and consider the
structure of the set of momentum functions. The first observation is that the
momentum functions φξ can be chosen to depend linearly on ξ. For example,
let {ξ1, . . . , ξd} be a basis for g, and let φξ1

, . . . , φξd
be Hamiltonian functions

for the associated vector fields. Then for ξ = a1ξ1 + · · · + adξd, one can put,

φξ = a1φξ1
+ · · · + adφξd

.

It is easy to check that such φξ satisfy the necessary equation (2.4).
Thus, for each point p ∈ P we have a linear functional ξ 7→ φξ(p), which

we call Φ(p), so that

Φ(p) = (φξ1
(p), . . . , φξd

(p))
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is a map Φ : P → g∗, where g∗ is the vector space dual of the Lie algebra
g. Such a map is called a momentum map. The defining equation for the
momentum map is,

〈dΦp(v), ξ〉 = ωp(ξP (p), v). (2.5)

for all p ∈ P all v ∈ TpP and all ξ ∈ g. An immediate and important
consequence of (2.5) is:

ker(dΦp) = (g · p)ω (2.6)

im(dΦp) = g⊥p ⊂ g∗ (2.7)

Here, Uω is the linear space that is orthogonal to U with respect to the
symplectic form. In particular, the momentum map is a submersion in a
neighbourhood of any point where the action is free (or locally free: gp = 0).

The fact that Φ is only determined by the differential condition (2.5)
means that it is only defined up to a constant. It follows that if Φ is a
momentum map, then Φ1 is a momentum map if and only if there is some
C ∈ g∗ for which, for all p ∈ P ,

Φ1(p) = Φ(p) + C.

We return to the possibility of choosing a different Φ below.

Examples 2.3 Here we see momentum maps for three symplectic actions
that arise for the point-vortex models, firstly for point vortices on the sphere,
secondly for those in the plane and thirdly on the hyperbolic plane. We also
give the general formula for momentum maps for coadjoint actions.
(A) Let G = SO(3) act diagonally on the product P = S2 × . . . × S2 (N

copies). On the ith factor we put the symplectic form ωi = λiω0, where ω0 is
the canonical area form on the unit sphere (

∫

S2 ω0 = 4π). Then a momentum
map is given by

Φ(x1, . . . , xN ) =
∑

j

λjxj , (2.8)

where the Lie algebra so(3) (consisting of skew symmetric 3 × 3 matrices)
is identified with R3 in the “usual way”: B ∈ so(3) corresponds to b ∈ R3

satisfying Bu = b × u for all vectors u ∈ R3. It is clear that this momentum
map is equivariant with respect to the coadjoint action, which under this
identification becomes the usual action of SO(3) on R3.
(B) An analogous example is G = SE(2) acting on a product of N planes,
with symplectic form ω = ⊕jλjωj, where ωj is the standard symplectic form
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on the jth plane. If we write SE(2) as R2
⋊SO(2) (semidirect product), then

the natural momentum map is

Φ(x1, . . . , xN ) =





∑

j

λjJxj ,
1
2

∑

j λj |xj |2


 . (2.9)

where J =

(

0 −1
1 0

)

is the matrix for rotation through π/2.

(C) A further analogous example is G = SL(2) acting on a product of N
copies of the hyperbolic plane, P = HN , with symplectic form ω = ⊕jλjωj,
where ωj is the standard symplectic form on the jth plane, see (2.2). The
natural momentum map is given by,

Φ(x1, . . . , xN ) =
∑

j

λjxj . (2.10)

2

Remark 2.4 Consider any group acting on a manifold X , the configuration
space. Classical mechanics of the “kinetic + potential” type takes place on the
cotangent bundle of a configuration space, and in this setting the given action
on X induces a symplectic action on the cotangent bundle, by the formula

g · (x, p) = (g · x, (dgx)−T p),

where A−T is the inverse transpose of the operator A. Such actions are called
cotangent actions or cotangent lifts and they always preserve the canonical
symplectic form ω on the cotangent bundle.

The momentum map for cotangent actions always exists, and is given by

〈Φ(x, p), ξ〉 = 〈p, ξP(x)〉 ,

where the pairing on the right is between T ∗
xX and TxX . For example, if

P = T ∗R3 is the phase space for a central force problem, which has SO(3)
symmetry, then after identifying so(3)∗ with R3 as above, the momentum
map Φ : P → so(3)∗ is just the angular momentum.

2.2 Equivariance of the momentum map

A natural question arises: since a momentum map Φ : P → g∗ is defined on a
space P with an action of the group G, is there an action of G on g∗ for which
Φ commutes with (intertwines) the two actions? The answer was given in the
affirmative by Souriau [16]. Usually, but not always, this turns out to be the
coadjoint action of G on g∗, and before stating Souriau’s result we give some
examples of coadjoint action.
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Examples 2.5 The coadjoint actions for the groups described in Examples
2.1 are as follows.
(A) For G = SO(3), the Lie algebra g = so(3) consists of the 3 × 3 skew-
symmetric matrices, and via the inner product 〈A, B〉 = tr(ABT ) we can
identify the dual g∗ with g. An easy computation shows that the coadjoint
action is given by

CoadA µ = AµAT .

With the usual identification of so(3) with R3 (see Example 2.3) the coadjoint
action is just the usual action of SO(3) by rotations, so that the orbits for the
coadjoint actions are spheres centered at the origin, and the origin itself. For
each of the 2 types of orbit, the isotropy subgroup is either all of SO(3), or
it is a circle subgroup SO(2) of SO(3). This variation of the symmetry type
of the orbits has interesting repercussions for the dynamics, and in particular
for the families of relative equilibria.
(B) Consider now the 3-dimensional non-compact group G = SE(2) of
Euclidean motions of the plane. As a group this is a semidirect product
R2

⋊ SO(2), where R2 acts by translations and SO(2) by rotations about
some given point (the “origin”). Elements (u, R) ∈ R2

⋊ SO(2) can be iden-
tified with elements

[

R u
0 1

]

∈ GL(R2 × R),

by introducing homogeneous coordinates. A calculation shows that the adjoint
action is

Ad(u,R)(v, B) = (Rv −Bu, B),

since B and R commute. The coadjoint action is then

Coad(u,R)(ν, ψ) = (Rν, ψ +RνuT ). (2.11)

Note that since elements of so(2) are skew-symmetric, it follows that only
the skew-symmetric part of ψ +RνuT is relevant. One can therefore replace
ψ + RνuT by ψ + 1

2 (RνuT − uνTRT ). A nice representation of this using
complex numbers is given in Section 6.

The coadjoint orbits are again of two types: first the cylinders with axis
along the 1-dimensional subspace of g∗ which annihilates the translation sub-
group (or its subalgebra), and secondly the individual points on that axis;
that is, the points of the form (0, ψ). In this case the two types of isotropy
subgroup for the coadjoint action are firstly the translations in a given direc-
tion (orthogonal to ν), so isomorphic to R, or in the case of a single point
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ψ

Figure 2. Coadjoint orbits for SO(3) and for SE(2)

on the axis, it is the whole group. In both cases the isotropy subgroup is
non-compact, a fact to be contrasted with the modified coadjoint action to be
defined below.
(C) For G = SL(2). Let A ∈ SL(2) and µ ∈ sl(2)∗, then

CoadA µ = A−TµAT .

Notice that the determinant of the matrix in sl(2)∗ is constant on each coad-
joint orbit. In fact the coadjoint orbits are of 4 types: (i) the 1-sheeted
hyperboloids (where Gµ ≃ R), (ii) one sheet of the 2-sheeted hyperboloids
(where Gµ ≃ SO(2)), (iii) each sheet of the cone with the origin removed
(where Gµ ≃ R), and (iv) the origin itself (where Gµ = SL(2)). 2

It is easy to see that the momentum maps given in Examples 2.3(A,C)
are equivariant with respect to the coadjoint actions described above, which
is not surprising in the light of the theorem below. However this is not always
true in the case of G = SE(2).

To describe the action that makes Φ equivariant we follow Souriau and
define the cocycle

θ : G → g∗

g 7→ Φ(g · x) − Coadg Φ(x),
(2.12)

It is of course necessary to show that this expression is independent of x, which
it is provided P is connected. We leave the details to the reader: it suffices to
differentiate with respect to x and use the invariance of the symplectic form.

The map θ defined above allows one to define a modified coadjoint action,
by

Coadθ
g µ := Coadg µ+ θ(g). (2.13)

A short calculation shows that this is indeed an action. Moreover, this action
is by affine transformations whose underlying linear transformations are the
coadjoint action.
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Theorem 2.6 (Souriau) Let the Lie group G act on the connected symplec-
tic manifold P in such a way that there is a momentum map Φ : P → g∗. Let
θ : G → g∗ be defined by (2.12). Then Φ is equivariant with respect to the
modified action on g∗:

Φ(g · x) = Coadθ
g Φ(x).

Furthermore, if G is either semisimple or compact then the momentum map
can be chosen so that θ = 0.

For proofs see [16] or [8]; the first proof of equivariance in the compact
case appears to be in [48].

Examples 2.7 In Examples 2.3 we gave the momentum maps for the three
point-vortex models, and pointed out that for SO(3) and SL(2) the mo-
mentum map is equivariant with respect to the usual coadjoint action (not
surprisingly in view of the theorem above since SO(3) is compact and SL(2)
is semisimple). However, this is not always true in the planar case:
(B) Consider the momentum map given in Example 2.3(B) for the point
vortex model in the plane:

Φ(x1, . . . , xN ) =





∑

j

λjJxj ,
1
2

∑

j λj |xj |2


 .

To find the action that makes this momentum map equivariant, we compute

Φ(Ax1 + u, . . . , AxN + u) =

(

A
∑

j

λjJxj ,
1
2

∑

j λj |xj |2 +
∑

j λjAxj .u

)

+

+ Λ
(

Ju, 1
2 |u|2

)

= Coad(u,A) Φ(x1, . . . , xN ) + Λ(Ju, 1
2 |u|2), (2.14)

where Λ =
∑

j λj ∈ R, and Coad is given in (2.11). The cocycle associated to

this momentum map is thus given by θ(u, A) = Λ(Ju, 1
2 |u|2). If Λ = 0 then

Φ is equivariant with respect to the usual coadjoint action, while if Λ 6= 0
it is equivariant with respect to a modified coadjoint action. Furthermore,
one can show that in this latter case there is no constant vector C ∈ g∗ for
which Φ + C is coadjoint-equivariant. Indeed, it is enough to see that the
orbits for this modified coadjoint action are in fact paraboloids, with axis the
annihilator in g∗ of R2 ⊂ g and these are not translations of the coadjoint
orbits, which are either cylinders or points. See Figure 3. Furthermore, a
short calculation shows that the isotropy subgroups for this action are all
compact: Gµ ≃ SO(2), for all µ ∈ se(2)∗, which is quite different from the
coadjoint action. 2
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ψ

Figure 3. Modified coadjoint orbits for SE(2)

2.3 Reduction

Since by Noether’s theorem the dynamics preserve the level sets of the mo-
mentum map Φ, it makes sense to treat the dynamical problem one level set at
a time. However, these level sets are not in general symplectic submanifolds,
and the system on them is therefore not a Hamiltonian system. However, it
turns out that if one passes to the orbit space of one of these level sets of
Φ, then the resulting reduced space is symplectic, and the induced dynamics
are Hamiltonian. Historically, this process of reduction was first used by Ja-
cobi, in what is called “elimination of the nodes”. However, its systematic
treatment is much more recent, and is due to Meyer [47] and independently
to Marsden and Weinstein [43].

As usual suppose the Lie group G acts in a Hamiltonian fashion on the
symplectic manifold P , and let Φ : P → g∗ be a momentum map which is
equivariant with respect to a (possibly modified) coadjoint action as discussed
above. Consider a value µ ∈ g∗ of the momentum map. Then since Φ is
equivariant, the isotropy subgroup Gµ of this modified coadjoint action acts
on the level set Φ−1(µ). Define the reduced space to be

Pµ := Φ−1(µ)/Gµ. (2.15)

That is, two points of Φ−1(µ) are identified if and only if they lie in the same
group orbit. This defines Pµ as a set, but to do dynamics one needs to give
it more structure.

If the group G acts freely near p (i.e. Gp is trivial), then Pµ is a smooth
manifold near the image of p in Pµ. This is for two reasons: firstly Φ is a
submersion near p by (2.7), and secondly the orbit space by Gµ will have
no singularities. This is the case of regular reduction. We discuss singular
reduction briefly below.

It is important to know whether the induced dynamics on the reduced
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spaces are also Hamiltonian. The answer of course is “yes”. To see this it
is necessary to define the symplectic form ωµ on Pµ. Let ū, v̄ ∈ Tp̄Pµ, be
projections of u, v ∈ TpP , and define

ωµ(ū, v̄) := ω(u, v).

Of course, one must show this to be well defined, non-degenerate and closed:
exercises left to the reader!

The Hamiltonian is an invariant function on P so its restriction to Φ−1(µ)
is Gµ-invariant and so induces a well-defined function on Pµ, denotedHµ. The
dynamics induced on the reduced space is then determined by a vector field
Xµ which satisfies Hamilton’s equation: dHµ = ωµ(Xµ,−).

The orbit momentum map It is clear that Pµ = Φ−1(µ)/G can also be
defined by Pµ = Φ−1(Oµ)/G, where Oµ is the coadjoint orbit through µ.
Since Φ−1(Oµ)/G ⊂ P/G it is natural to use the orbit momentum map:
ϕ : P/G→ g∗/G defined by

P Φ−→ g∗

↓ ↓
P/G ϕ−→ g∗/G

(2.16)

where the vertical arrows are the quotient maps. Then Pµ = ϕ−1(Oµ). This is
very useful for studying bifurcations as the momentum value varies. However,
it may not be so useful if Gµ is not compact, for there the orbit space g∗/G
is not in general a reasonable space (it is not even Hausdorff for example for
the coadjoint action of SE(2) near the ψ-axis).

2.4 Singular reduction

If the action of G on P is not free, then the reduced space is no longer a
manifold. However, it was shown by Sjamaar and Lerman [67] that if G is
compact then the reduced space can be stratified—that is, decomposed into
finitely many submanifolds which fit together in a nice way—and each stratum
has a symplectic form which determines the dynamics on that stratum. In
fact these strata are simply the sets of constant orbit type in Φ−1(µ), or
rather their images in Pµ. For the case of a proper action of a non-compact
group see [20]. The theorem follows from the local normal form of Marle and
Guillemin-Sternberg [8,42].
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2.5 Symplectic slice and the reduced space

Recall that a slice to a group action at a point p ∈ P is a submanifold S
through p satisfying TpS ⊕ g · p = TpP . If Gp is compact, it can be chosen
to be invariant under Gp. The slice, or more precisely S/Gp, provides a local
model for the orbit space P/G.

In the symplectic world, one needs to take into account the symplectic
structure, and one wants the “symplectic slice” to provide a local model for
the reduced space Pµ. In the case of free (or locally free) actions this is fairly
straightforward, but in the general case, this is more delicate because the
momentum map is singular. For this reason, the symplectic slice is usually
taken to be a subspace of TpP rather than a submanifold of P .

Definition 2.8 SupposeGp is compact. Define N ⊂ TpP to be aGp invariant
subspace satisfying TpP = N ⊕ g · p. The symplectic slice is then

N1 := N ∩ ker(dΦp).

It follows from the implicit function theorem that local coordinates can
be chosen that identify a transversal to Gµ · p within the possibly singular set
Φ−1(µ) with a subset of the symplectic slice N1.

3 Relative Equilibria

An equilibrium point is a point in the phase space that is invariant under the
dynamics: p ∈ P for which XH(p) = 0, or equivalently dHp = 0, and one way
to define a relative equilibrium is as a group orbit that is invariant under the
dynamics. Although geometrically appealing, this is not the most physically
transparent definition.

Definition 3.1 A relative equilibrium is a trajectory γ(t) in P such that for
each t ∈ R there is a symmetry transformation gt ∈ G for which γ(t) =
gt · γ(0).

In other words, the trajectory is contained in a single group orbit. It
is clear that if a group orbit is invariant under the dynamics, then all the
trajectories in it are relative equilibria; and conversely, if γ(t) is the trajectory
through p, then g · γ(t) is the trajectory through g · p and consequently the
entire group orbit is invariant as claimed above.

For N -body problems in space, relative equilibria are simply motions
where the shape of the body does not change, and such motions are always
rigid rotations about some axis.

Proposition 3.2 Let Φ be a momentum map for the G-action on P and let
H be a G-invariant Hamiltonian on P. Let p ∈ P and let µ = Φ(p). Then

J. Montaldi, Relative equilibria and conserved quantities . . . . 257



the following are equivalent:

1 The trajectory γ(t) through p is a relative equilibrium,

2 The group orbit G · p is invariant under the dynamics,

3 ∃ξ ∈ g such that γ(t) = exp(tξ) · p, ∀t ∈ R,

4 ∃ξ ∈ g such that p is a critical point of Hξ = H − φξ,

5 p is a critical point of the restriction of H to the level set Φ−1(µ).

Remarks 3.3 (i) The vector ξ appearing in (3) is the angular velocity of the
relative equilibrium. It is the same as the vector ξ appearing in (4). The
angular velocity is only unique if the action is locally free at p; in general it
is well-defined modulo gp.
(ii) If Φ−1(µ) is singular then it has a natural stratification (see §2.4), and
condition (4) of the proposition should be interpreted as being a stratified
critical point; that is all derivatives of H along the stratum containing p
vanish at p.
(iii) Notice that (3) implies that relative equilibria cannot meandre around
a group orbit, but must move in a rather rigid fashion. It follows from this
equation that the trajectory is in fact a dense linear winding on a torus, at
least if G is compact. The dimension of the torus is at most equal to the rank
of the group G. For G = SO(3), the rank is 1, and this means that any re

that is not an equilibrium is in fact a periodic orbit.

Proof: The equivalence of (1) and (2) is outlined above.
Equivalence of (1) and (3): (3) ⇒ (1) is clear. For the converse, since

γ(t) lies in G · p so its derivative XH(p) = γ̇(0) lies in the tangent space
g ·p = Tp(G ·p). Let ξ ∈ g be such that XH(p) = ξP(p). Then by equivariance
XH(g ·p) = (Adg ξ)P (g ·p), see (1.6). Let gt = exp(tξ). Then since Adgt

ξ = ξ,

d

dt
(gt · p) = ξP (gt · p) = XH(gt · p).

That is, t 7→ gt · p is the unique solution through p.
Equivalence of (3) and (4): (3) is equivalent to XH(p) = ξP(p). Using

the symplectic form, this is in turn equivalent to dH(p) = dφξ(p).
Equivalence of (4) and (5): If Φ is submersive at p then Φ−1(µ) is a

submanifold of P and this is just Lagrange multipliers, since dφξ = 〈dΦ(p), ξ〉.
In the case that Φ is singular, the result follows from the principle of symmetric
criticality (see the end of the Introduction for a statement). If Φ is singular at
p, then by (2.7) gp 6= 0. Consider the restriction of H to Fix(Gp,P). By the
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theorem of Sjamaar and Lerman, the set Φ−1(µ) is stratified by the subsets
of constant orbit type—see §2.4. Consider then the set PGp

of points with
isotropy precisely Gp (this an open subset of Fix(Gp,P) containing p), and
restrict both Φ and H to this submanifold. Now Φ restricted to PGp

is of
constant rank, so that Φ−1(µ)∩PGp

is a submanifold. The result then follows
as before, since by the principle of symmetric criticality H restricted to PGp

has a critical point at p if and only if H has a critical point at p. ❒

One of the earliest systematic investigations of relative equilibria was in
a paper of Riemann where he classified all possible relative equilibria in a
model of affine fluid flow that is now called the Riemann ellipsoid problem
(or affine rigid body or pseudo-rigid body)—see [25] and [66] for details. The
configuration space is the set of all 3×3 invertible matrices, and the symmetry
group is SO(3)×SO(3). In that paper he identified the 6 conserved quantities
and found geometric restrictions on the possible forms of relative equilibria
using the fact that the momentum is conserved, and that the solutions are
of the form given in (3) of the proposition above. In terms of general group
actions, the geometric condition Riemann used is the following, which follows
immediately from Proposition 3.2 above together with the conservation of
momentum.

Corollary 3.4 Let p ∈ P be a point of a relative equilibrium, of angular
velocity ξ, and let θ be the cocycle associated to the momentum map, then

coadθ
ξ Φ(p) = 0.

If G is compact, so the adjoint and coadjoint actions can be identified and
θ = 0 for a suitable choice of momentum map, this means that the angular
velocity and momentum of a relative equilibrium commute. For example, for
any system with symmetry SO(3) this means that at any relative equilibrium,
the angular velocity and the value of the momentum are parallel.

Definition 3.5 A relative equilibrium through p is said to be non-degenerate
if the restriction of the Hessian d2Hξ(p) to the symplectic slice N1 is a non-
degenerate quadratic form.

Definition 3.6 A point µ ∈ g∗ is a regular point of the (modified) coadjoint
action if in a neighbourhood of µ all the isotropy subgroups are conjugate.

Examples of regular points are: all points except the origin for the coad-
joint action of SO(3), all points except the special axis for the coadjoint action
of SE(2), and all points for the modified coadjoint action of SE(2) described
in Example 2.7(B).

The following result, the first on the structure of the families of relative
equilibria, was observed by V.I. Arnold in [2]. The proof is an application of
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the implicit function theorem.

Theorem 3.7 (Arnold) Suppose that p lies on a non-degenerate relative
equilibrium, with Gp = 0 and µ = Φ(p) a regular point of the (modified)
coadjoint action. Then in a neighbourhood of p there exists a smooth family
of relative equilibria parametrized by µ ∈ g∗.

Lyapounov stability A compact invariant subset S of phase space is said to be
Lyapounov stable if “any motion that starts nearby remains nearby”, or more
precisely, for every neighbourhood V of S there is another neighbourhood
V ′ ⊂ V such that every trajectory intersecting V ′ is entirely contained in V .

A compact subset is said to be Lyapounov stable relative to or modulo G
if the V and V ′ above are only required to be G-invariant subsets.

The principal tool for showing an equilibrium to be Lyapounov stable is
Dirichlet’s criterion, which is that if the equilibrium point is a non-degenerate
local minimum of the Hamiltonian, then it is Lyapounov stable. The proof
consists of noting that in this case the level sets of the Hamiltonian are topolog-
ically spheres surrounding the equilibrium, and so by conservation of energy,
if a trajectory lies within one of these spheres, it remains within it.

It is reasonably clear firstly that it is sufficient if any conserved quantity
has a local minimum at the equilibrium point, not necessarily the Hamiltonian
itself, and secondly that the local minimum may in fact be degenerate. These
observations lead to the notion of . . .

Extremal relative equilibria A special role is played by extremal relative
equilibria. This is partly due to Dirichlet’s criterion for Lyapounov stability,
and partly because of their robustness.

A relative equilibrium is said to be extremal if the reduced Hamiltonian
Hµ on Pµ has a local extremum (max or min) at that point. This is usually
established by showing the restriction to the symplectic slice of the Hessian
of Hξ = H − φξ to be positive (or negative) definite, for some ξ for which Hξ

has a critical point at p, see Proposition 3.2.
It is of course conceivable that a relative equilibrium is extremal while the

Hessian matrix is degenerate. The simplest case of this is for H(x, y) = x2+y4

in the plane. In fact this arises in the case of 7 identical point vortices in the
plane. The configuration where they lie at the vertices of a regular heptagon
is a relative equilibrium, and the Hessian of H on the symplectic slice is only
positive semi-definite. However, a lengthy calculation shows that the relevant
fourth order terms do not vanish, and the reduced Hamiltonian does indeed
have a local minimum there.

For the following statement, recall that any momentum map is equivariant
with respect to an appropriate action of G on g∗ (Section 2), and for µ ∈ g∗
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we write Gµ for the isotropy subgroup of µ for that action.

Theorem 3.8 ([48,34]) Let G act properly on P with momentum map Φ,
and suppose p ∈ Φ−1(µ) is an extremal relative equilibrium, with Gµ compact.
Then,

(i) The relative equilibrium is Lyapounov stable, relative to G;

(ii) There is a G-invariant neighbourhood U of p such that, for all µ′ ∈ Φ(U)
there is a relative equilibrium in U ∩ Φ−1(µ′).

The proof is mostly point-set topology on the orbit space and using the
orbit momentum map (2.16), though part (ii) uses the deeper property of
(local) openness of the momentum map. In fact the proof of (i) also holds if µ is
a regular point for the (modified) coadjoint action, even if Gµ is not compact.
By Proposition 2.4 of [35] this result can be refined to conclude that the
relative equilibrium is stable relative to Gµ, as described by Patrick [59]. Note
that the compactness of Gµ ensures that gµ has a Gµ-invariant complement in
g, as required in [35]. A consequence of using point-set topology is that there
is very little information on the structure of the family of relative equilibria;
for such information see Section 5.

The crucial remaining point is how to determine whether a given relative
equilibrium is extremal. In the case of free actions this was done by the
so-called energy-momentum and/or energy-Casimir methods of Arnold and
Marsden and others. Recently this was extended to the general case of proper
actions:

Proposition 3.9 (Lerman, Singer [35]) Let p ∈ Φ−1(µ) be a relative equi-
librium satisfying the same hypotheses as the theorem above, and let ξ ∈ g be
any angular velocity of the re as in Proposition 3.2. If the restriction to the
symplectic slice of the quadratic form d2Hξ is definite, then the re is extremal,
and so Lyapounov stable relative to Gµ.

4 Bifurcations of (relative) equilibria

In this section we take an extremely brief look at the typical bifurcations of
equilibria in families of Hamiltonian systems as a single parameter is varied.
These results also apply to relative equilibria, provided the reduced space is
smooth in a neighbourhood of the relative equilibrium, and failing that, it
applies to the stratum containing the relative equilibrium. Bifurcations of
relative equilibria near singular points of the reduced space have not been
investigated systematically.
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4.1 One degree of freedom

Saddle-centre bifurcation
This is the generic bifurcation of equilibria in 1 d.o.f. See Fig. 4. For

λ < 0 there are two equilibrium points: at (x, y) = (±
√
−λ, 0), one local

extremum and one saddle. As λ → 0 these coalesce and then disappear
for λ > 0. One notices also a homoclinic orbit for λ < 0, connecting the
saddle point with itself, which can also be seen as a limit of the family of
periodic orbits surrounding the stable equilibrium. In terms of eigenvalues of
the associated linear system, this bifurcation can be seen as a pair of simple
imaginary eigenvalues (a centre) decreases along the imaginary axis, collide at
0 and “then” emerge along the real axis (a saddle). This description is slightly
misleading as the centre and saddle coexist. At the point of bifurcation, the

linear system is

(

0 1
0 0

)

; that is, it has non-zero nilpotent part.

Note that this bifurcation is compatible with an antisymplectic (i.e. time-
reversing) symmetry (x, y) → (x,−y).

λ < 0 λ = 0 λ > 0

H(x, y) = 1
2y

2 + 1
3x

3 + λx+ h.o.t.

Figure 4. Saddle-centre bifurcation

Symmetric pitchfork This is usually caused by symmetry, and is 2 saddle
centre bifurcations occurring simultaneously. On one side of the critical pa-
rameter value, there are 3 coexisting equilibria, while on the other side there
is only one. In fact there are two types of pitchfork: a supercritical pitchfork
involves two centres collapsing into a central saddle, leaving a single centre,
and a subcritical pitchfork involves two saddles collapsing into a central centre,
leaving a single saddle. See Figures 5 and 6.

These results and normal forms are derived from Singularity/Catastrophe
Theory.
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λ < 0 λ = 0 λ > 0

H(x, y) = 1
2y

2 + x4 + λx2 + h.o.t.

Figure 5. Supercritical Pitchfork

λ < 0 λ = 0 λ > 0

H(x, y) = 1
2y

2 − x4 − λx2 + h.o.t.

Figure 6. Subcritical Pitchfork

4.2 Higher degrees of freedom

From the point of view of bifurcations of equilibria, or of critical points of
the Hamiltonian, the results for 1 degree of freedom carry over to higher
dimensions, by adding a sum of quadratic terms in the other variables. So for
example the saddle-centre bifurcations has as “normal form”,

Hλ(x,y) = 1
2y

2
1 + 1

3x
3
1 + λx1 + 1

2

∑

j>1(±x2
j ± y2

j ) + h.o.t.

Whether any of the equilibria are stable depends of course on the signs of the
quadratic terms.

On the other hand, it is a much more subtle question as to whether any
of the associated dynamics, such as the heteroclinic connections, survive this
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passage into higher dimensions. For the saddle-centre bifurcation, see [22] and
for the time-reversible case, see the lectures of Eric Lombardi in this volume,
and for more detail [39].

5 Geometric Bifurcations

In this section we discuss bifurcations of the families of relative equilibria
(res) due to degenerations in the geometry of the momentum map. One
understands fairly well now the geometry of the family of relative equilibria
in the neighbourhood of a point where the reduced phase spaces change in
dimension, which occurs at special values of the momentum map, provided
however that the group action on the phase space is (locally) free, so that
the momentum map is submersive. However, the general structure of relative
equilibria near points with continuous isotropy is not so well understood,
although some recent progress has been made.

Notation Throughout the theorems below, we will suppose that p ∈ P is a
point on a non-degenerate re, that the angular velocity of this re is ξ and the
momentum value is µ. Recall that an re is said to be non-degenerate if the
Hessian d2Hξ restricted to the symplectic slice is a non-degenerate quadratic
form.

In an important paper [60], George Patrick investigates the structure
of the set of relative equilibria as quoted in the following theorem. He also
studied the nearby dynamics and introduced the notion of drift around relative
equilibria in terms of the linearized vector field there, but we will not be
describing that aspect here.

Theorem 5.1 (Patrick [60]) Assume G is compact, Gp is finite and Gξ ∩
Gµ is a maximal torus. Then in a neighbourhood of p the set of relative
equilibria forms a smooth symplectic submanifold of P of dimension dim(G)+
rank(G).

Note that, as matrices, since ξ and µ commute they are simultaneously
diagonalizable. Consequently, they are both contained in a common maximal
torus, so that Gξ ∩Gµ always contains a maximal torus. The condition of the
theorem is therefore a generic condition. For example, for SO(3) the condition
is satisfied if and only if ξ and µ are not both zero. This theorem has been
refined by Patrick and Mark Roberts [62], where they show that assuming
a generic transversality hypothesis and that as before Gp is finite, the set of
relative equilibria near p is a stratified set, with the strata corresponding to
the conjugacy class of the group Gξ ∩Gµ.
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The following result is more of a bifurcation theorem, as it is aimed at
counting the number of relative equilibria on each reduced phase space, near a
given non-degenerate re. Recall that, if µ is a regular point for the coadjoint
action and Gp is trivial, then by Arnold’s theorem (Theorem 3.7) there is a
unique re on each nearby reduced space.

Theorem 5.2 (Montaldi [48]) Assume Gµ is compact and Gp trivial.
Then for regular µ′ near µ there are at least w(Gµ) res on the reduced space
Pµ′ , where w(Gµ) is the order of the Weyl group of Gµ. Furthermore, if ξ is
regular then there are precisely this number of relative equilibria on Pµ′ . (For
non-regular µ′ see [48].)

Note that if Gµ is a torus, then w(Gµ) = 1, and this result reduces
to Arnold’s in the case that G is compact. The lower bound of w(G) for
general ξ follows from the Morse inequalities on the coadjoint orbits, and
so presupposes that the res on Pµ are all non-degenerate. Without that
assumption one can use the Lyusternik-Schnirelman category giving a lower
bound of 1

2 dim(Oµ) + 1.
The proof of this result relies on the local normal form of Marle [42] and

Guillemin-Sternberg [28]. Here I will outline the idea of the proof in the case
that µ = 0. The idea is to use the reduced Hamiltonian rather than the
augmented Hamiltonian Hξ. So, the relative equilibria in question are critical
points of the Hamiltonian restricted to Pµ′ , and near p one has

Pµ′ ≃ P0 ×Oµ′ ⊂ P0 × g∗.

The reduced space P0 can be identified with the symplectic slice N1 (see §2.5),
so that by hypothesis p ∈ P0 = P0 × {0} is a non-degenerate critical point of
the restriction of H to P0. Write coordinates (y, ν) ∈ P × g∗. Then for each
ν, the function H(·, ν) has an isolated non-degenerate critical point y = y(ν).
Define h : g∗ → R by

h(ν) = H(y(ν), ν).

Then one can show that the restriction hµ′ of h to Oµ′ has a critical point
at ν iff H |Pµ′

has a critical point at (y(ν), ν). In this manner, the problem
is reduced to finding critical points of the restrictions of a smooth function
h to coadjoint orbits Oµ′ , and then one can use Morse theory or Lyusternik-
Schnirelman techniques.

The above proof assumes that Gp is trivial. However, if Gp is finite,
then the proof can be modified to show that the nearby relative equilibria
correspond to critical points of a smooth Gp-invariant function h, constructed
in the same manner as above, but on P0 × g∗ rather than on the full orbit
space P0 ×Gp

g∗. This time though, different critical points correspond to
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the same relative equilibrium if they lie in the same Gp-orbit on Oµ′ . This
argument gives the following ‘equivariant’ version of Theorem 5.2.

Theorem 5.3 (Montaldi, Roberts [50]) If Gp is finite, then it acts on
nearby coadjoint orbits Oµ′ . If a subgroup Σ of Gp is such that Fix(Σ,Oµ′)
consists of isolated points, then they are all relative equilibria.

This result uses the fact that H is Gp-invariant, and not that Gp acts
symplectically. In [50] this bifurcation result is applied to finding relative
equilibria of molecules, and in [37] it is applied to finding relative equilibria
of systems of point vortices on the sphere, and in both we use antisymplectic
symmetries ofH as well as symplectic ones. An action ofG where the elements
act either symplectically or antisymplectically, i.e. g∗ω = ±ω, is said to be
semisymplectic [51].

In [50], the stability of the bifurcating relative equilibria is also calculated
using these methods. The reader should also see [65,36,62,57] for further
developments.

6 Examples

Let us look at three examples of symmetric Hamiltonian systems.
• Point vortices on the sphere.
• Point vortices in the plane.
• Molecules (as classical mechanical systems).
The motivation for choosing these models is that the first is relatively

simple: it has no points where the action fails to be free (unless there are only
2 point vortices), and the group is compact. The bifurcations that arise are
therefore of the types described in Section 5.

The second is similar, except that the group of symmetries is no longer
compact.

The study of the classical mechanics of molecules is also of interest in
molecular spectroscopy, where it is common practice to label particular quan-
tum states in terms of the corresponding classical behaviour. We treat this
example extremely briefly!

6.1 Point vortices on the sphere

The model is a finite set of point vortices on the unit sphere in 3-space. A
point vortex is an infinitesimal region of vorticity in a 2-dimensional fluid
flow, though we ignore the fluid, and just concentrate on the vortices. The
equations of motion for this system were obtained by V.A. Bogomolov [21].
A study of the dynamics of 3 point vortices has been carried out by Kidambi
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and Newton [30] and by Pekarsky and Marsden [63]. The case of N identical
point vortices has been treated in [37].

If x1, . . . , xN are the distinct locations of these point-vortices (unit vectors
in R3), then the differential equation describing their motion is

ẋj =
∑

k 6=j

λk

xk × xj

1 − xk · xj

.

Here λ1, . . . , λN are the strengths of the vortices: each λj is a non-zero real
number. It turns out that this vector field is Hamiltonian, with

H(x) = − 1

4π

∑

j<k

λjλk log (1 − xj · xk) ,

and Poisson structure

{f, g}(x) = −
∑

j

λ−1
j djf × djg · xj ,

where djf = djf(x) ∈ R3 is the differential of f with respect to the point
xj ∈ S2, and x = (x1, . . . , xN ).

The phase space is P = S2 × S2 × . . . × S2 \ ∆, where ∆ is the ‘big
diagonal’ where at least one pair of points coincides, which is removed to
avoid collisions. The symplectic form on P is given by

ω = λ1ω1 ⊕ · · · ⊕ λNωN ,

where ωj is the standard area form on the jth copy of S2.
This system has full rotational symmetry G = SO(3), and hence a 3-

component conserved quantity. After identifying so(3) with R3 as usual, this
momentum map is the so-called centre of vorticity:

Φ(x) =
∑

j

λjxj .

There are a number of immediate general consequences for this system
that can be drawn from the Hamiltonian structure. For example, if all the
vorticities are of the same sign, then as x → ∆ in P , so H(x) → +∞ and
it follows that H attains its minimum at some point; this point is necessar-
ily an equilibrium point, and the set on which this minimum is attained is
Lyapounov stable (one would expect this set to be a finite union of SO(3)-
orbits). Moreover, for any µ ∈ so(3)∗ ≃ R3 the same argument can be applied
on Φ−1(µ), and the minimum on that set is necessarily a relative equilibrium,
by Proposition 3.2.
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However, if the vorticities are of mixed signs, then there is no general
statement about the existence of equilibria or relative equilibria, except for
N = 3 where all res are known (see below).

If there are some identical vortices, then there is an extra finite symmetry
group—a subgroup of the permutation group SN . This extra finite symmetry
group is used to considerable effect in [37], from which Figures 7 and 8 are
taken. Moreover, the time-reversing symmetries obtained from the reflexions
in O(3) are also used together with the principle of symmetric criticality to
prove the existence of many types of relative equilibria.

For example, let Ch denote the group of order 2 generated by reflexion in
the horizontal plane. Then x ∈ Fix(Ch) if all the vortices are on the equator.
An application of the arguments above shows that if all the vorticities are of
the same sign then there is a point on Fix(Ch,P) where the restriction of the
Hamiltonian attains its minimum, and by the principle of symmetric critical-
ity (see §1.5) it follows that this is an equilibrium point for the full system
(though no longer a local minimum in general). And the same extension to this
argument as before provides relative equilibria in Fix(Ch,Φ

−1(µ)). In general
there will be several relative equilibria in each component of Fix(Ch,Φ

−1(µ)).
However, it is shown in [37] that if all the vorticities are of the same sign then
in each component of Fix(Ch,P) there is a unique equilibrium point.

2 vortices If there are only 2 point vortices, then every solution is a relative
equilibrium. Indeed, if Φ(x) = µ 6= 0 then the two points rotate at the same
angular velocity about the axis containing µ. The only possible case where
µ = 0 is if λ1 = λ2 and x1 = −x2 which is an equilibrium point.

3 vortices There have been two recent studies of the system of 3 point
vortices, by Kidambi and Newton [30] (who also treat the 2 vortex case in
an appendix) and by Pekarsky and Marsden [63]. The former describes not
only the relative equilibria, but also self-similar collapse, where triple collision
occurs in finite time with the three vortices retaining their same shape up to
similarity. The latter describes the res and their stability using the techniques
described in these lectures (many of which were in fact developed by Marsden
and co-workers).

One of the results of Kidambi and Newton is that there are two classes
of re: those lying on a great-circle and those lying at the vertices of an
equilateral triangle, and any re belongs to one of these classes. Moreover,
every equilateral triangle on the sphere is an re, as we shall prove below.

The following results are mostly taken from [30] and [63], and some are
discussed below. Denote λ1λ2 + λ2λ3 + λ3λ1 by σ2(λ).

Proposition 6.1 For the system of N = 3 point vortices on the sphere,
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C  (R)3v C  (R,p)2v

Figure 7. Relative equilibria for 3 identical vortices on the sphere

(i) There exist equilibria iff σ2(λ) > 0, and they always lie on a great circle.
(ii) All equilateral configurations are res, and they are Lyapounov stable
modulo SO(2) if σ2(λ) > 0, and are unstable if σ2(λ) < 0.
(iii) Self-similar collapse occurs iff σ2(λ) = 0.
(iv) The configurations where the vortices lie on a great circle, at the vertices
of a right-angled isosceles triangle is always an re. Furthermore, the triangle
with x1 at the right-angle is Lyapounov stable provided

λ2
2 + λ2

3 > 2σ2(λ).

The phase space is of dimension 6 in this case, and so the orbit space
P/SO(3) is of dimension 3, and points in the orbit space correspond to the
shapes of the triangle formed by the 3 vortices. The obvious set of coordinates
consisting of the three pairwise distances has a problem for great circle con-
figurations since nearby such a configuration these distances do not determine
the configuration uniquely. Indeed, these three distances are O(3) invariants,
as they do not distinguish the orientation, and configurations on a great circle
have non-trivial isotropy for the O(3)-action so it is not surprising that these
coordinates have a problem there. For a good set of SO(3)-invariants, one
must use the oriented volume as well, which is what is done in the two works
cited above.

However, the three distances do form a good set of coordinates away from
the great circle configurations, and we will restrict our attention to those. So,
let r1 be the chord distance ‖x2 − x3‖ etc. Then the Hamiltonian and the
orbit momentum map (2.16) are given by

H(r1, r2, r3) = −λ1λ2

2π
log(r3) − λ2λ3

2π
log(r1) − λ3λ1

2π
log(r2)

ϕ(r1, r2, r3) = |Φ|2 = (λ1 + λ2 + λ3)
2 − λ1λ2r

2
3 − λ2λ3r

2
1 − λ3λ1r

2
2

(6.1)
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The reduced spaces are then Pµ := ϕ−1(µ2). The relative equilibria
are determined by the critical points of the restriction of H to the reduced
spaces, and are therefore critical points of H − ηϕ, for some η (the Lagrange
multiplier). A short calculation shows that the only solutions to this equation
are

r1 = r2 = r3 = r, say, and η = 1/(4πr2).

Thus all relative equilibria away from great circle configurations are equilateral
triangles. Note that the relation between the angular velocity ξ (Proposition
3.2) and η is simply ξ = 2ηΦ(x), since

0 = d(H − ηϕ) = d(H − η|Φ|2) = dH − 2ηΦ.dΦ.

Of course, Φ 6= 0 since the vortices do not all lie on a great circle.
For the stability of these equilateral res, we first calculate the Hessian of

H − ηϕ (this is in fact Arnold’s “energy-Casimir” method):

d2(H − ηϕ)(r) =
4

r2





λ2λ3 0 0
0 λ3λ1 0
0 0 λ1λ2



 .

Now, the tangent space to ϕ−1(µ2) is spanned by (λ1,−λ2, 0), (λ1, 0,−λ3),
and a computation then shows that the Hessian of the reduced Hamiltonian
is definite if and only if σ2(λ) > 0.

The computations for the configurations of vortices lying on great circles
are longer, and I will not go into them further here; details can be found in
the original papers [30,63].

Remarks 6.2 (i) The case σ2(λ) = 0 remains to be understood.
(ii) It is not known whether any other form of collapse (i.e. not self-similar)

can occur.
(iii) A further bifurcation occurs at equilateral res which lie on a great

circle which to my knowledge has not been investigated.

4 vortices Much less is known in general about the case of 4 vortices. It is
shown in [63] that the configuration where the four vortices lie at the vertices
of a regular tetrahedron is always a relative equilibrium. It is also easy to show
(from the equations of motion) that a square lying in a great circle is always
an re, independently of the values of the vorticities. However, in contrast to
the 3-vortex case, squares not lying in great circles are not res unless all the
vortices are identical.

In the case that all the vorticities coincide, a classification of symmetric
res is given in [37], from which Figure 8 is taken. Moreover, using the implicit
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C  (R,R’)2v C  (2R)2v

C  (R,p)3v

C  (R,2p)2v

C  (R)4v

Figure 8. Relative equilibria for 4 identical vortices on the sphere

function theorem one can show that many of the res shown to exist in [37]
persist under small perturbations of the Hamiltonian, and so in particular
under small changes of the values of the vorticities. There is one interesting
occurrence of a symmetric pitchfork bifurcation: consider the family of square
configurations, on the co-latitude θ—type C4v(R) in the figure. When the
ring is close to the North pole (say), the re is stable. As θ increases, one
pair of eigenvalues approaches 0, and at θ = arccos(1/

√
3) there is a pitchfork

bifurcation (of type I in the terminology of §4.1). The bifurcating pair of
relative equilibria are of type C2v(R,R′).

Stability of a ring of vortices It was shown by Dritschel and Polvani [64]
that the stability of a single ring of identical vortices depends on the latitude.
They show that if θ is the angle subtended by any of the vortices with the axis
of symmetry of the ring (the colatitude), then the configuration of a regular
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ring of N identical vortices is linearly stable as follows

N range of stability N range of stability
3 all θ 4 cos2 θ > 1/3
5 cos2 θ > 1/2 6 cos2 θ > 4/5

while for N > 6 the ring is never stable. See also [38], where it is shown that
the rings are not only linearly stable but Lyapounov stable.

Bifurcations The changes in stability that occur in the table above involve
bifurcations of the relative equilibria, and indeed the supercritical pitch-
fork bifurcation described in Section 4, since they all involve a loss of C2

symmetry. Consider for example the case of N = 4 identical vortices. A
single ring (square) near the pole is a Lyapounov stable relative equilib-
rium. As θ → cos−1(1/

√
3), so one of the eigenvalues tends to 0, and for

θ > cos−1(1/
√

3), there appears a new family of relative equilibria consisting
of vortices alternately above and below the vortices in the now-unstable square
configuration. These bifurcating res—denoted C2v(R,R

′) in [37]—are then
Lyapounov stable. Other stability transitions have been observed in [37,38],
but the corresponding bifurcations have not been studied.

The other type of bifurcation that occurs in this problem is the geometric
bifurcation due to the different geometry of the reduced spaces for µ = 0 and
µ 6= 0—see Section 5. Consider a relative equilibrium pe on µ = 0, for example
the ring of N identical vortices on the equator. This corresponds to a point
with symmetry DNh in the phase space (the dihedral group in the equatorial
plane together with inversion in that plane). Nearby reduced spaces are then
locally of the form Pµ ≃ P0 × Oµ, where Oµ is the coadjoint orbit through
µ, which here is a sphere, as described very briefly in Section 5. The relative
equilibria on Pµ near pe are the critical points of some function h : Oµ → R,
and moreover this function is invariant under some action of Dnh ≃ DN ×C2

on Oµ. An analysis of this action shows that there must be critical points with
symmetry of types CNv and C2v; see Figure 9. The corresponding relative
equilibria have configurations of types CNv(R) (a regular ring) and if N = 2m
then C2v(mR) and C2v((m−1)R, 2p), while if N = 2m+1 then C2v(mR, p).
Here the configuration C2v(mR, ℓp) consists of m pairs and ℓ poles all lying
on a common great circle, while the great circle is rotating rigidly about an
axis containing the poles. See Figure 8, and see [37] for details.

6.2 Point vortices in the plane

This system has a much older history than the model of vortices on the sphere,
going back to Helmoltz and Kirchhoff, and has been studied by many people
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Figure 9. Level sets of a typical function on a sphere with symmetry D3h, showing half of
the 8 critical points

since; for reviews see [17,3,15]. Consider an ideal fluid in the plane whose
vorticity is concentrated in N point vortices, of strengths λ1, . . . , λN . These
points move according to the differential system

żj =
1

2πi

∑

k 6=j

λk

zj − zk

,

where zj is a complex number representing the position of the j-th vortex,
after identifying the plane with C, see (1.3). The Hamiltonian for this system
is

H(z) = − 1

4π

∑

j<k

λjλk log |zj − zk|2 .

The symmetry here is the group of 2-D Euclidean motions SE(2)—which is
not compact. The corresponding conserved quantity (momentum map) is

Φ(z1, . . . , zN) =

(

i
∑

j

λjzj,
1
2

∑

λj |zj |2
)

. (6.2)

From the geometric point of view, this is interesting because if the total
vorticity Λ ≡ ∑

j λj is non-zero, the coadjoint action on se(2)∗ must be mod-
ified in order that the momentum map be equivariant (see Section 2). If we
identify SE(2) with C ⋊ U(1) and u(1) with R, then the modified coadjoint
action (2.7) becomes

CoadΛ
(u,θ)(ν, ψ) =

(

eiθν, ψ + ℑ(eiθνū)
)

+ Λ
(

iu, 1
2 |u|2

)

(6.3)

where ℑ(z) is the imaginary part of z.
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If Λ = 0 then the orbits are points on the ψ-axis, and cylinders around
that axis, while if Λ 6= 0 the orbits are all paraboloids—see Examples 2.5 and
2.7 respectively and Figures 2 and 3. Indeed, one can show that the modified
coadjoint orbits are given by the level sets of f : C × R → R defined by

f(ν, ψ) = |ν|2 − 2Λψ, (6.4)

at least if Λ 6= 0. If Λ = 0 then the non-zero level sets are the cylindrical
orbits, but the zero level set is the whole ψ-axis.

2 vortices in the plane As in the case of 2 vortices on the sphere, here they
are also always relative equilibria. It is simple to prove from the differential
equation that if Λ ≡ λ1 +λ2 6= 0 then the two point vortices rotate about the
fixed point (λ1z1 + λ2z2)/Λ. On the other hand, if Λ = 0 then they translate
together towards infinity, in the direction orthogonal to the segment joining
them. These two types of motion are both relative equilibria.

From a geometrical point of view, the reduced spaces are all just single
points, so the corresponding motions are indeed all relative equilibria, and
furthermore the relative equilibria are trivially extremal, and so provided Gµ

is compact (ie. Λ 6= 0, so Gµ ≃ SO(2)) they are stable modulo Gµ.

3 vortices in the plane The classical work on three planar point vortices is
a beautiful paper by J.L. Synge [69]. We approach this problem as we did
for three point vortices on the sphere. That is, points in the quotient of the
phase space (R2)3 ≃ C3 by SE(2) correspond to shapes of oriented triangles.
Again we ignore the orientation, which only causes problems near collinear
configurations. Then a point in the quotient space is determined by the three
lengths (r1, r2, r3), and on that space

4πH(r1, r2, r3) = −λ1λ2 log(r3) − λ2λ3 log(r1) − λ3λ1 log(r2)
ϕ(r1, r2, r3) = −λ1λ2r

2
3 − λ2λ3r

2
1 − λ3λ1r

2
2 ,

(6.5)

the second is just f ◦Φ. It is remarkable that apart from constant term in ϕ,
these are identical to equations (6.1) for 3 point vortices on the sphere.

The non-collinear relative equilibria are given by the critical points of H
restricted to the level-sets of ϕ, and the computation has already been done.
Thus the relative equilibria are again equilateral triangles, of side r say, with
Lagrange multiplier η = 1/(4πr2) again. Note however, that this time the
relation between η and the “angular velocity” ξ is not so simple:

0 = d(H − ηϕ)(p) = d(H − ηf ◦ Φ)(p) = dH(p) − η df(µ)dΦ(p),

so that ξ = η df(µ). Thus if Φ(p) = (ν, ψ) then

ξ = 2η(ν,−Λ).
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One consequence of this expression for ξ is that if Λ = 0 then the “angu-
lar velocity” is in fact rectilinear motion, with constant velocity ξ = 2ην =
(1/2πr2)ν, where ν = i

∑

j λjzj, which in modulus is independent of the rep-
resentative triangle. Note that if the 3 vortices are not collinear, then ν 6= 0
so that the function f separates the relevant coadjoint orbits even in the case
Λ = 0. On the other hand, if Λ 6= 0, and η 6= 0, then the relative equilibrium
is a periodic orbit.

Furthermore, the Lyapounov stabilities modulo G of these equilateral
relative equilibria are the same as for the spherical case.

The symplectic reduction for a particular class of planar 4-vortex prob-
lems has recently been considered by Patrick [61]. In particular he treats the
case Λ = 0 so that the momentum map is coadjoint-equivariant; it would be
interesting to see how the results are affected by changing to Λ 6= 0.

6.3 Molecules

Consider a molecule consisting of N atoms. The Born-Oppenheimer approxi-
mation consists of ignoring the movement of the electrons (which is reasonable
as they are so light). The system then has 3N degrees of freedom, the 3 di-
rections of motion for each nucleus, or 3N − 3 after fixing the centre of mass.

The rotational symmetry of the system gives rise to the conservation of
angular momentum J. If we put J = 0, then there are 3N − 6 degrees of
freedom which describes the shape of the molecule, and correspond to the
vibrational motions. In other words, the J = 0 reduced space is of dimension
6N − 12. The simplest motions beyond the equilibria are the periodic orbits,
which near the stable equilibrium are given by Lyapounov’s theorem and
its generalizations. For J 6= 0, the motion has a rotational aspect, and the
simplest type of motion is the relative equilibrium. Beyond that are motions
that are a combination of rotations and vibrations, so-called rovibrational
states. The reduced spaces for J 6= 0 are of dimension 6N − 10.

Consider now the simplest interesting case of a triatomic molecule. The
reduced spaces are of dimension 6 (for J = 0) or 8 (for J 6= 0). There is
one complication that we will not discuss here, namely the reduced space for
J = 0 is singular at points corresponding to collinear equilibria. Consider then
an equilibrium of a triatomic molecule which is not collinear. The geometric
bifurcation methods discussed in Section 5, and at the end of §6.1, show that
there are relative equilibria which bifurcate from the equilibria, and in fact
there at at least 6 such families of re parametrized by ‖J‖ and corresponding
to critical points of functions on a sphere. The stabilities of these bifurcating
families are discussed in [50]. For a complete investigation into the relative
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equilibria of a specific molecule with 3 identical atoms—namely H+
3 —see [33].

Another interesting example is the tetra-atomic molecule ammonia NH3.
This has an equilibrium where the three hydrogen atoms form an equilateral
triangle, and the nitrogen atom is slighly above (or below) the centre of the
triangle—so that the molecule is nearly planar. The analysis is similar to the
triatomic case, with 6 families of res that bifurcate from each equilibrium.
The stability analyses should also be similar to the triatomic case. However,
the presence of two very close stable equilibria (with the nitrogen atom on
one side and on the other of the hydrogen-plane) and an unstable planar
equilibrium betewen them suggests that there will be further bifurcations. An
interesting “semilocal” analysis could be obtained by adding a new parameter
λ so that the equilibria undergo a pitchfork bifurcation (of type I) at λ = 0,
with the genuine system corresponding to say λ = −1 and an artificial one
for λ > 0 with the symmetric planar equilibrium being stable. One needs
to investigate how the pitchfork bifurcation within the reduced space P0,
obtained by varying λ, couples with the geometric bifurcation, obtained by
varying ‖J‖.
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