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1

What’s it all about?

M
athematical models of nature almost always involve solving equations
(often differential equations) and these models, and their equations, fre-
quently depend on external parameters. Examples of parameters might

be the temperature of a chemical reaction, or the load on a bridge, or the tension in
a rope (will it snap?), or the temperature of the ocean for plankton populations. In
such models, it is important to understand how phenomena associated to that model
can change as the parameters are varied. Usually one finds that a small change in
the value of the parameters produces a corresponding small change in the (set of)
solutions of the equation. But occasionally, for particular values of the parameter
there is a more radical change, and such changes are called bifurcations. Often
these bifurcations involve simply a change in the number of solutions. This chapter
illustrates these ideas with a few examples.

Bifurcation theory is the (mathematical) study of such qualitative changes aris-
ing as parameters are varied. In this book, we consider a subset of this very general
theory, namely local bifurcations, which excludes for example, routes to chaos
in dynamical systems and other global bifurcations: everything we study can be
described by local questions and local changes.

The majority of applications of mathematics involve differential equations (or-
dinary or partial), and the theory of bifurcations can be applied to these in a straight-
forward manner, as we will see in the first example below. However, the ideas are
more general, and can be applied to other systems that depend on parameters, not
just differential equations.

The general approach is to consider an equation 6(G) = 0, where 6 may have
several components,

6(G) = (61(G), 62(G), . . . , 6? (G)),

and indeed so may G, that is G = (G1, G2, . . . , G=). Then introduce a parameter _
(also possibly multi–dimensional), writing

6_ (G) = 0,
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or � (G;_) = 0. This is called a family of equations, depending on the parameter _.
We shall always assume our families are smooth as functions of (G, _) (i.e. of class
�∞). The basic question of bifurcation theory is, how do solutions in G of these
equations change as _ varies? And a bifurcation occurs when the change is in some
sense qualitative.

There are many applications where the equation is a so-called variational
problem, which means that the equation 6(G) = 0 is in fact of the form ∇+ (G) = 0
for some scalar function + , usually called the potential. Then solutions of the
equations 6(G) = 0 are critical points of the function + . Zeeman’s catastrophe
machine described in Section 1.3 is one such physical example. A more geometric
example is described in Section 1.4.

1.1 The fold or saddle-node bifurcation

The simplest mathematical example exhibiting a bifurcation is provided by the
ordinary differential equation (ode),

.
G = G2 + _. (1.1)

Here _ ∈ R is the parameter, and one often refers to G ∈ R as the state variable. The
dot over the G denotes the time-derivative, and a solution to the equation would be a
function G (C). Since this is a first order ode, an equilibrium point occurs wherever
the right-hand side vanishes. The equilibria therefore occur where

G2 + _ = 0.

Define 6_(G) = G2 + _. Then we are interested in solutions of 6_(G) = 0, that is in
the zeros of 6. We call this set / . Thus,

/ =
{(G, _) ∈ R2 | G2 + _ = 0

}
.

The question we address is how the number of points in / depends on _. In this
example, the curve / is a parabola in the left half of the plane, as illustrated in Figure
1.1a. For _ < 0 there are two solutions (two equilibrium points), at G = ±√−_, and
as _ increases to 0 these coalesce and then for _ > 0 there are no solutions (or they
become complex, but we are just interested in real solutions). The transition, or
bifurcation, occurs when _ = 0 (marked in red). The set of parameter values where
such a bifurcation occurs is called the bifurcation set or discriminant. The map c
shown in the diagram is simply the projection taking (G, _) ∈ / to the parameter
value _.

©2020 James Montaldi



1.1 The fold or saddle-node bifurcation 3

_

G
/

_
b

b

c

(a) The fold, or saddle-node, bifur-
cation diagram

_ < 0

G

b

b

↑

↓

↑

_ = 0

G

b

↑

↑

_ > 0

G

↑
↑
↑

(b) Phase diagram for the saddle-
node bifurcation (1.1)

Figure 1.1 (a) shows the equilibrium points, forming a smooth curve
in the (G, _)-plane. (b) shows whether G is increasing or decreasing (the
sign of ¤G) for different values of _; the dots represent the equilibrium
points and correspond to points on the curve in (a).

The behaviour of the differential equation is illustrated in Figure 1.1b. There are
two equilibrium points when _ < 0 and none for _ > 0. In differential equations,
this transition is often called a saddle-node bifurcation because in two dimensions,
when _ < 0, one of the equilibria would be a saddle and the other a node. In
singularity theory, where the specific application is not of concern, it is more
generally called a fold bifurcation, because of the shape of the curve / folding over
with respect to the parameter space (the _-axis).

Remark In this simple example, the differential equation is a standard one and
can be solved explicitly (by separation of variables, the type of solution depends on
the sign of _). However, more generally, bifurcation theory can be used to study
equilibria (and neighbouring dynamics) of systems of odes where this is not the
case, such as for example the ode .

G = G2eG + _, which does not have a closed form
solution but still exhibits a saddle-node bifurcation. ❞

The beauty of these ideas is that while the example above is so simple (6 is
quadratic), it contains essentially all that is expected to occur if there is just one
parameter and no other restrictions. Imagine a small perturbation of the curve /
shown in Figure 1.1a; it seems reasonable to think that there will still be a single
point where the curve ‘folds over’, with two solutions on the left and none on the

©2020 James Montaldi



4 What’s it all about?

ℎ(G, H) = G2 − H2

ℎ(G, H) = G2 + H2

2 < 0

b

2 = 0 2 > 0
Figure 1.2 Two examples of bifurcation of contours ℎ(G, H) = 2 as 2
varies across the critical value of the function ℎ.

right of this fold point (and one can prove this using the implicit function theorem;
see Problem 1.6). This illustrates the robustness of the saddle-node bifurcation. In
Section 1.5 below, we look briefly at an important bifurcation with one parameter,
the pitchfork bifurcation, but where small perturbations do change its form. But
first we look at two places bifurcations occur, the contours of a function as a
parametrized set of equations, and a mechanical example with two parameters.

1.2 Bifurcations of contours

Landscape is determined in part by the height above sea level of each point of some
region of the Earth. A contour is a curve on the landscape along which the height
is constant; that is, for a given height the associated contour is the set of all points
with that particular height. Let G, H be coordinates in the region in question, and
ℎ(G, H) the height function. Then a contour at height 2 is the set of solutions of the
equation

ℎ(G, H) − 2 = 0.

Here we have a fixed function ℎ and we can consider 2 as a parameter. Of course,
height is only one example; another is the atmospheric pressure as a function on the
surface, in which case the ‘contours’ are the familiar isobars from weather maps
(although atmospheric pressure is best expressed as a function of three variables
%(G, H, I) as it varies with altitude I).

Consider a function ℎ(G, H) and the resulting equation ℎ(G, H) = 2. Most of the
contours are curves, and a natural question to ask is, as 2 is varied, how can these
curves change? The contours of a function are also called its level sets.

©2020 James Montaldi



1.3 Zeeman catastrophe machine 5

\

b P

×A

×
B(D, E)

D

Figure 1.3 Schematic diagram of the Zeeman catastrophe machine.
The red curve marked D is the discriminant or bifurcation set; notice
the four cusps. Its precise size and position depend on the physical
characteristics of the elastics and the position of the point �.

For example, suppose ℎ(G, H) = G2−H2. Then the contours are either hyperbolae
or a pair of lines and the transition is depicted in the top row of Figure 1.2. For
ℎ(G, H) = G2 + H2 the contour is a circle for 2 > 0, a single point for 2 = 0 and is
empty for 2 < 0. See the lower figures in Figure 1.2. In both cases a change occurs
as one crosses the level 2 = 0, and one can show in general that qualitative changes
only occur at critical values of the function; that is, the value the function takes at
a critical point. We will study this in greater depth in later chapters.

A similar example in more variables is provided by ℎ(G, H, I) = G2 + H2 − I2.
The zero level of this function is a circular cone in R3, while ℎ = 1 is a one-sheeted
hyperboloid and ℎ = −1 is a two-sheeted hyperboloid.

1.3 Zeeman catastrophe machine

Conceived by Christopher Zeeman to illustrate the ideas of catastrophe theory, the
Zeeman catastrophe machine consists of a wheel free to rotate about its centre,
with a peg % attached at a point of its circumference. To the peg are attached two
elastics: the other end of the first is pinned at a fixed point � in the plane of the
wheel, while the other end of the second elastic is held by hand at a second point
�(D, E) in that plane. See Figure 1.3. The question is, how many equilibrium states
are there of the wheel?

The answer will depend on where the end � is held; that is on the values of D
and E, so these are the parameters. For each choice of point (D, E), the total elastic

©2020 James Montaldi



6 What’s it all about?

potential +(D,E) (\) is a function of \, the position of the wheel (see Figure 1.4), and
the equilibrium points are the points \ where+ has a critical point: d

d\+(D,E) (\) = 0.
The computation of the potential is straightforward but lengthy (and not relevant

here), but the conclusion can be described simply. In the (D, E)-plane, there is a
curve with four cusps, marked D in the figure. If the point � is within the curve, the
wheel has four equilibrium points, two of which are stable (where + ′′ > 0) and two
are unstable (where + ′′ < 0). On the other hand, if � lies outside this curve, then
the wheel has only one stable and one unstable equilibrium point. The transition
from four to two critical points happens when � approaches the curve D from the
inside, and two of the critical points get closer and coalesce becoming degenerate in
the process, and then disappearing; this curve D is therefore the discriminant of this
family. This transition is the same as that in the fold bifurcation described above,
although something more involved happens at the cusp points of the discriminant.

1.4 An example from geometry: the evolute

Consider a smooth simple closed curve � in the plane (e.g. an ellipse: a curve is
said to be smooth if it has a parametrization whose derivative is nowhere zero).
Let %(D, E) be a point in the plane (possibly on �) with coordinates (D, E). The
geometric question is, can you draw a perpendicular to the curve from the point %,
and if so how many? (If % lies on the curve then we allow that the ‘segment’ (of
zero length) from % to % is perpendicular to the curve.)

For example, if� is an ellipse, and % is at its centre, then it is not hard to see that
there are 4 such perpendiculars – one to each of the points on the axes of the ellipse.
What happens to those 4 points if % is perturbed? The feet of the perpendiculars
will move, but can there be a different number of them? Imagine instead a point
%′ on the major axis of the ellipse, but outside the ellipse. It is easy to see that
there are now only 2 perpendiculars from %′ to �. See Figure 1.5. The bifurcation
question is, how does 4 change to 2 as % is moved? And more completely, what is
this number for all possible points %?

One observation is that for any % there are at least two such perpendiculars, and
these arise at the nearest and furthest points of the curve to % as some thought should
convince you (and which we prove below). This suggests defining the function on
� which is the distance of each point of � to %. In fact we use the square of the
distance which leads to simpler expressions after differentiating.

Let r(C) be a regular parametrization of the plane curve �, where ‘regular’
means that its derivative

.r(C) is never zero, and for each point c = (D, E) in the

©2020 James Montaldi
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A B C

D E F

D

b

A
b

B
b

C
b

D
b

Eb

F

Figure 1.4 Graphs of the potential + in Zeeman’s catastrophe ma-
chine for the six different parameter values shown in the bottom figure.
Note that Figures b and f have degenerate critical points, and the corre-
sponding points in the bottom diagram lie on the discriminant D. The
horizontal axis in diagrams a–f is \ ∈ [0, 2c].
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8 What’s it all about?

b

%

�

b

%′

�

Figure 1.5 The dashed lines are perpendiculars from % and %′ to the
ellipse �.

plane, define the function

5c (C) = − 1
2 ‖c − r(C)‖2.

(c is the position vector of the point % from the discussion above, and the factor − 1
2

is for convenience.) This is a family of functions of C, with two parameters D and E.
It measures the square of the distance from the point c to the point r(C); it’s called
the distance squared function, or distance squared family.

Question: where does 5c have a critical point, and when is it degenerate?
First differentiate 5c (with respect to C),

5 ′c (C) = (c − r(C)) · ¤r(C). (1.2)

Since ¤r(C) is the derivative of r(C), it represents a non-zero tangent vector to the
curve. It follows that 5 ′c (C) = 0, if c lies on the normal line to the curve at r(C). The
set of critical points is therefore a very geometric object:

� = {(C, D, E) ∈ R3 | (D, E) lies on the normal to the curve at r(C)}. (1.3)

Thus, for given % the original question is now, how many critical points does 5c
have? In particular, the question of how many normals there are for a given point
% is now cast as a variational problem.

Local changes in the number of critical points can only occur when a critical
point is degenerate (as follows from the implicit function theorem). To see if the
critical point is degenerate, we find the second derivative:

5 ′′c (C) = (c − r(C)) · ¥r(C) − ‖¤r(C)‖2. (1.4)

Thus 5c has a degenerate critical point at C if both (1.2) and (1.4) are equal to zero.
We can rewrite the two equations as,{ ¤r(C) · c = r(C) · ¤r(C)

¥r(C) · c = r(C) · ¥r(C) + ‖¤r(C)‖2

©2020 James Montaldi



1.4 The evolute 9

This is simply a pair of linear equations for c, and if the coefficients ¥r(C) and ¤r(C)
are not parallel (they are both vectors), there is a unique solution c, so giving a
unique point1 on that normal line. Call this point e(C): the resulting curve is called
the evolute of the original curve. We have shown that the point c = e(C) if and only
if the function 5c has a degenerate critical point at C; the set of e(C) as C varies is
therefore the discriminant of this family 5c.

Example 1.1. As a specific example, consider the ellipse

r(C) = (3 cos C, 2 sin C).

Then, with c = (D, E),

5c (C) = − 1
2 (D − 3 cos C)2 − 1

2 (E − 2 sin C)2. (1.5)

The first two derivatives are 5 ′c (C) = −3D sin C + 2E cos C + 5 sin C cos C, and

5 ′′c (C) = −3D cos C − 2E sin C + 10 cos2 C − 5.

Solving 5 ′(C) = 5 ′′(C) = 0 gives

D =
5
3

cos3 C, E = −5
2

sin3 C. (1.6)

That is, e(C) =
(

5
3 cos3 C, − 5

2 sin3 C
)
; this curve is shown in Figure 1.6, together with

the ellipse (notice that the ellipse is traversed anticlockwise, while the resulting
parametrization of the evolute is clockwise). Note that this evolute or discriminant
also has 4 cusps, like the ZCM above. We will see in later chapters that cusps occur
very often on discriminants for 2 parameter families of functions, and using the
theory of unfoldings we will explain why.

If c lies inside the evolute, the function 5c has 4 critical points, all nondegenerate,
and if outside it has just 2. Indeed, using the symmetry of the ellipse if you take
c = (0, 0) it is easy to see the 4 points of the curve for which the normal line passes
through c. If, on the other hand, c lies on the evolute but not at one of the cusps,
then 5c has precisely 3 critical points, of which one is degenerate. Finally, if c lies
at a cusp, 5c has a ‘doubly’ degenerate critical point and a nondegenerate one. As
c varies from the interior of the evolute to the exterior, crossing at a regular point
(ie, not at a cusp) then two of the critical points will coalesce and then disappear,

1it is in fact the centre of curvature of the curve at r(C); the evolute was originally defined by
Huygens in the seventeenth century in his study of the pendulum, and it was later realised to be the
locus of centres of curvature.

©2020 James Montaldi



10 What’s it all about?

r(C)
e(C)

Figure 1.6 An ellipse with its evolute

just as they do for the fold family in Section 1.1 and the Zeeman Catastrophe
Machine in Section 1.3. The 4 cusps are interesting geometrically: they are points
on the evolute (centres of curvature) corresponding to points on the curve where
the curvature has a local maximum or minimum.

If the major and minor axes of the ellipse were closer in value (here they are
equal to 3 and 2 respectively), the evolute would be smaller, and in the limit as the
ellipse tends to a circle, so the evolute tends to a single point: the centre of the
circle. ✐

Applications of these ideas to the study of the geometry of curves and surfaces
can be found in two books [18] and [61]; there is also a brief discussion in Chapter
15 in this book.

One question arising from the two very different examples, the evolute and
Zeeman’s catastrophe machine, is why do the bifurcation curves or discriminants
have cusps? We will show in later chapters that this is very natural, given that we
are studying a 2–parameter family of functions. The fact that in both cases there is
only one variable \ or C turns out not to be important: it’s the number of parameters
that is central.

These two examples are both variational problems (arising from looking for
critical points of functions), and such problems will be the study of the first part of
this book. Later we will study more general (non-variational) bifurcation problems,
but it will turn out that for two parameters, folds and cusps are still all that are to be
expected.

©2020 James Montaldi



1.5 Pitchfork bifurcation 11

_

G

/

/

_

b

b

c

Figure 1.7 The pitchfork bifurcation: the zero-set / consists of two
intersecting curves, one of which is folded over relative to the projection.

1.5 Pitchfork bifurcation

Let us now look at a different 1–parameter example, namely the pitchfork bifurca-
tion. Consider the family of odes,

.
G = G3 − _G.

Again _ is the parameter.
This bifurcation often arises in problems where there is an assumed symmetry

in the problem: notice that both sides of the equation are odd functions of G.
In this example 6_ (G) = G3 − _G, and the zero-set is

/ =
{(G, _) ∈ R2 | G (G2 − _) = 0

}
.

This is the set shown in the top diagram in Figure 1.7. For _ < 0 there is just one
solution (namely G = 0), while for _ > 0 there are three. Again, the bifurcation
point is at _ = 0 (marked in red), and the map c : / R is simply the projection
c(G, _) = _.

In contrast to the fold bifurcation, this pitchfork bifurcation is not robust, or
‘structurally stable’, in the following sense. Consider the small perturbation given
by .
G = G3 − _G + Y (where Y ∈ R is a small constant). The new zero-set is depicted

in Figure 1.8, and looks very different (structurally different).

©2020 James Montaldi



12 What’s it all about?

_

G /

/

_
b

b

c

Figure 1.8 A perturbation of the pitchfork bifurcation

The symmetry of the pitchfork bifurcation was mentioned above, and the pertur-
bation just given does not preserve this symmetry. It turns out that if only symmetric
perturbations are allowed, then the pitchfork does not change qualitatively, and one
says it is robust, or structurally stable, with respect to symmetric perturbations. This
idea of symmetry breaking is important in applications: see for example the book
[60] on imperfect bifurcations. These imperfect bifurcations arise by perturbing
a ‘perfect bifurcation’: in this case the pitchfork would be the perfect bifurcation
(with perfect symmetry), but in reality one expects systems not to have perfect
symmetry and for the symmetry to be broken, leading to the ‘imperfect bifurcation’
shown in Figure 1.8.

An example of this scenario of pitchfork and perturbation can be seen within the
Zeeman catastrophe machine described earlier. While the ZCM is a 2-parameter
system, consider just the 1–parameter system where the point (D, E) lies on the line
of symmetry E = 0, and let (D1, 0) and (D2, 0) be the two points where this line
meets the bifurcation set D (the first is marked F in Figure 1.4). As D increases
from D = D1, a single solution splits into 3, giving a diagram similar to the one
in Figure 1.7. A similar figure can be drawn for D varying through D2, but with 3
solutions coalescing into 1, so the diagram should be reversed.

Now perturb this path a little, say by raising it (the line E = 0.1 say). The new
bifurcation diagram near D = D1 would be similar to the one in Figure 1.8, and near
D = D2 would be a reversed version, both with a single saddle-node bifurcation.

This idea of considering bifurcations as paths in some parameter space and their
perturbations, was introduced in [48] and is central to the so-called path approach
to bifurcation theory that we study in depth in Part III.

©2020 James Montaldi



1.6 Conclusions 13

1.6 Conclusions

• A bifurcation problem is a family of equations, which we write 6_(G) = 0
where _ is the parameter (in later chapters we will often use D, E, . . . as
parameters). This might arise as the equation for equilibria of the differential
equation .

G = 6_ (G), but it may arise as an equation in its own right (such as
for contours). One is interested in how the solutions of 6_(G) = 0 change as
the parameter is varied.

• A bifurcation is a qualitative change in the set of solutions to the bifurcation
problem, as the parameter is varied. For example, if there are finitely many
solutions, then a bifurcation occurs where the number of solutions changes,
while if the solution set is a curve or surface then a bifurcation would occur
when the topology of the set changes. The set of parameter values where a
bifurcation occurs is called the bifurcation set or the discriminant.

• In many applications, a bifurcation problem arises as an equation for critical
points of a function (of one or several variables). Such equations are called
variational problems. So our 6_ (G) would be equal to m

mG+_(G) for some
‘potential’ function +_(G). These variational problems form the part of
bifurcation theory we call catastrophe theory, and are the subject of the
first part of this book. This is for both historical and technical reasons.
Catastrophe theory was introduced by René Thom in the 1960s and the use
of similar techniques in more general bifurcation theory was developed a
decade or so later, and uses many of the ideas Thom introduced. Moreover,
the techniques for variational problems are more straightforward.

The principal aim of this text is to show that there are only a few basic models
for bifurcations, provided there are not too many parameters. For example, if there
is just a single parameter, and no other restrictions, then the only bifurcation arising
‘generically’ is the saddle-node, or fold bifurcation described in Section 1.1, while if
there are two parameters with no further restriction then there are two possibilities:
the fold and the cusp (a further restriction might be something like the problem
having some symmetry as described above). These ideas were first developed in
the 1960s by the French mathematician and Fields medal winner René Thom.

A short account of early bifurcation theory can be found in the book by Drazin
[33], who discusses how the first bifurcation problem to be studied was by Euler in
the eighteenth century, who addressed what is now called the Euler beam problem,
where a beam buckles under a load and as the load increases there is a (pitchfork)
bifurcation.
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Problems

1.1 Consider the following perturbation of the ode given in Section 1.1, namely
.
G = G2 + _ + YG where Y ∈ R is a small consant. Show that the bifurcation
diagram is similar to the one in Figure 1.1a, but with discriminant equal to
{Y2/4}.

1.2 Investigate the bifurcations in the set of equilibria occurring as _ varies, in
the family .

G = G2 + _2 − 1. In particular, show the bifurcation set consists of
two points on the _-axis.

1.3 Investigate the bifurcations in the set of equilibria occurring as _ varies, in
the two pitchfork families of odes,

.
G = ±(G3 − _G),

showing the phase diagram analogous to Figure 1.1b. Notice that in both of
these, the origin is attracting (stable) for _ on one side of the origin and and
repelling (unstable) on the other. Correspondingly, the bifurcating equilibria
are stable in one of these and unstable in the other. When they are stable it
is called a supercritical pitchfork bifurcation, and when they are unstable it
is a subcritical pitchfork bifurcation. (This is the only place in the book we
consider dynamical properties such as stability and instability.) (†)

1.4 Investigate the contours of the height function ℎ(G, H) = 2G4 + 4H4 − G2 + H2,
and relate the transitions (bifurcations) to what was seen in Section 1.2,
specifically in Figure 1.2. [Hint: find the critical points, and hence critical
values, and then use a graphing calculator, or Wolfram Alpha on the internet. For
the latter you can enter an instruction such as, plot 2*x^4+4*y^4-x^2+y^2=0
or contour plot 2*x^4+4*y^4-x^2+y^2].

1.5 Investigate the level sets (contours) of the function ℎD (G) = G3 − 3DG for
different values of D. (Here the level sets are finite sets of points, so the
question is, how many points in each level set? The answer depends on the
value of 2 as well as D.)
[Hint: begin by sketching the curve H = ℎD (G) for D > 0, D = 0 and D < 0. You
will see that bifurcations occur at critical points of ℎD (i.e., d

dG (ℎD) = 0). Find the
locus of points in the (D, 2)-plane where these occur – that is the discriminant.] (†)

1.6 Here we show the robustness of the saddle-node bifurcation. Consider the
saddle-node bifurcation 6_ (G) = G2 + _ = 0 shown in Figure 1.1a. Let
� (G, _, D) be any smooth ‘perturbation’ of 6; that is suppose � is a smooth
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function (with D ∈ R) and that � (G, _, 0) = 6_ (G). Note that one cannot
solve 6(G, _) = 0 for G as a function of _, but one can instead solve for _
as a function of G, and this function has a nodegenerate extremum at the
bifurcation point.
Use the implicit function theorem to show that for sufficiently small values
of D, the perturbed bifurcation problem 6D given by 6D (G, _) = � (G, _, D)
(for D fixed) also has a saddle-node bifurcation, in the sense that one can
solve (locally) for _ as a function of G (and D) and for each D this function _
has a nondegenerate extremum. (†)

1.7 In contrast to the saddle-node bifurcation the so-called hysteresis bifurcation
is not robust. Consider ¤G = G3 + _, and its perturbation ¤G = G3 + _ + DG.
Sketch three phase portraits for this system similar to Figure 1.1b, one with
D > 0, one with D = 0 and with with D < 0 (D fixed in each case). [See
Figure 18.3c on p. 226 for the curves of equilibria.]

1.8 Investigate the change in contours for the family of surfaces ℎ(G, H, I) =
G2 + H2 − I2 = 2, distinguishing 2 = 0, 2 > 0 and 2 < 0. (†)

1.9 Find the evolute of the parabola H = G2, and show it has a single cusp. On a
sketch, show that from a point inside (or above) the evolute there are three
lines perpendicular to the parabola, while from a point outside there is only
one.

1.10 The diagram below shows a curve (in blue) and its evolute (in red). For a
point % in each of the five components of the complement of the evolute find
the number of perpendiculars to the curve from %.

[Hint: (1) If % is far from the curve there are only two perpendiculars, and (2) as %
crosses a smooth point of the evolute, two solutions are either created or destroyed
(depending on the direction of crossing), like in saddle-node bifurcations.] (†)
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Catastrophe theory





2

Families of functions

C
atastrophe theory is the study of families of functions, and in particular
of their critical points, the principal motivation being to study bifurca-
tions in variational problems.1 For example the function considered in

Problem 1.5, namely 5_ (G) = G3 − 3_G has a single (degenerate) critical point when
_ = 0, it has two critical points when _ > 0 and none at all when _ < 0 (or two
complex ones if one prefers to include those). On the other hand if a family has
only nondegenerate critical points when _ = 0, then for nearby values of _ it will
still have nondegenerate critical points and they will be close to the original ones.
We will prove this later in the book.

G

_ < 0

G

_ = 0

G

_ > 0

In most areas of mathematics the words ‘function’ and ‘map’ are more or less
interchangeable; however it is traditional in this area to reserve the word ‘function’
to refer to scalar-valued functions (so 5 : R= R or 5 : C= C), while ‘map’
refers to an 5 : R= R? with ? > 1, or the complex analogue.

2.1 Critical points

We consider smooth functions 5 : R= R: here smooth means infinitely differ-
entiable, although in practice, smooth just means ‘as many times differentiable as
is needed in the current context’, so for example if we are talking about the second

1A variational problem is one involving finding critical points of functions. In applications these
are often, but not always, required to be local maxima or minima.
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derivative of 5 , we will need to assume it is twice differentiable, and the second
derivatives are continuous (in short, 5 is of class �2). However, we will make the
blanket assumption that all functions we consider are infinitely differentiable.

In general, our function may not be defined on all of R=, and we adopt the
notation 5 : R= R (notice the different arrow) to mean a function of = variables
whose domain is some open subset of R=. This saves us writing things like, ‘let
5 : * R be a smooth function, where* is an open subset of R=’, and instead we
write ‘let 5 : R= R be a smooth function’. If we need to refer to the domain of
such an 5 we will denote it dom( 5 ).

Definition 2.1. A smooth function 5 : R= R has a critical point at G0 if its
differential there vanishes: d5G0 = 0. ✯

Here d5G0 is the differential of 5 at G0, so

d5G0 =

(
m 5

mG1
(G0), m 5

mG2
(G0), . . . , m 5

mG=
(G0)

)
.

Thus G0 is a critical point of 5 if all = partial derivatives of 5 vanish at G0:

m 5

mG1
(G0) = m 5

mG2
(G0) = · · · = m 5

mG=
(G0) = 0.

Critical points are also known as singular points of the function.

Definition 2.2. If G0 is a critical point of 5 : R= R, then the Hessian matrix of
5 at G0 is the symmetric = × = matrix of second partial derivatives,

� 5 (G0) = d25G0 = (ℎ8 9 )

where
ℎ8 9 =

m2 5

mG8 mG 9
(G0).

A critical point G0 of 5 is nondegenerate if det � 5 (G0) ≠ 0: otherwise it is
degenerate. ✯

Example 2.3. Find the critical points of 5 (G, H, I) = G3 − GH2 + 3G2 + H2 + I2, and
determine whether each is nondegenerate.
Solution: Differentiating 5 with respect to each of the three variables gives the
equations

3G2 − H2 + 6G = 0, −2GH + 2H = 0, 2I = 0.
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2.1 Critical points 21

The solutions, 4 in all, are found to be

(0, 0, 0), (−2, 0, 0), (1, 3, 0), (1,−3, 0).

The second differential (Hessian matrix) of 5 is

d25 (G, H, I) = ©­«
6G + 6 −2H 0
−2H −2G + 2 0

0 0 2

ª®¬
.

The Hessian at each of the critical points is,

©­«
6 0 0
0 2 0
0 0 2

ª®¬
,

©­«
−6 0 0
0 6 0
0 0 2

ª®¬
,

©­«
12 −6 0
−6 0 0
0 0 2

ª®¬
,

©­«
12 6 0
6 0 0
0 0 2

ª®¬
.

A quick inspection shows that all four matrices are invertible, and hence all four
critical points are nondegenerate. ✐

Recall that the eigenvalues of a symmetric matrix are all real. Moreover, at
a critical point, the Hessian matrix is ‘intrinsic’ in the following sense. Suppose
5 has a critical point at the origin and let q be a change of coordinates about
the origin (i.e. such that q(0) = 0). Write � 5 for the Hessian matrix of 5 at
the origin in the original coordinates, and � ′

5 for the matrix in the transformed
coordinates. Then by the chain rule for second derivatives (see Proposition A.10)
d2 ( 5 ◦ q)0 (u2) = d2 50(dq0u)2 (using d50 = 0), whence

Φ) � 5 Φ = � ′
5 , (2.1)

where Φ = dq0 (the Jacobian matrix of q).

Definition 2.4. If G0 ∈ R= is a nondegenerate critical point of the smooth function
5 , then its index is the number of negative eigenvalues of the Hessian matrix,
counting multiplicity. ✯

It is important to realize that while the eigenvalues of the Hessian do depend
on the chosen basis (or coordinates), their signs do not; in particular the index of
a critical point does not depend on the chosen coordinates, which follows from
(2.1). For a symmetric = × = matrix, there can be anywhere between 0 and =
negative eigenvalues, so the index of a nondegenerate critical point in = variables
lies between 0 and = inclusive. The term ‘counting multiplicity’ means that for
example if an eigenvalue is a double root of the characteristic polynomial of the

©2020 James Montaldi



22 Families of functions

matrix, then it should count twice; that way one always has exactly = eigenvalues
‘counting multiplicity’. In particular, the identity matrix has eigenvalue 1 with
multiplicity =, and the index of the critical point of the function −G2

1 − · · · − G2
= is =.

In Example 2.3 above, the origin is of index 0, while the other critical points
are all of index 1. The index of a nondegenerate critical point is an important
invariant and determines the geometry of the level sets of 5 near the critical point.
For example, a point of index 0 is a local minimum of the function, and one of
index = is a local maximum (if = is the number of variables). This follows from the
following important result which we will return to later (Section 4.4).

Morse Lemma Let ? ∈ R= be a nondegenerate critical point of 5 of index :.
Then there is a change of coordinates G = q(H) near ? such that in these new
coordinates H8 the function has the form

5 (H) = 5 (?) − H2
1 − H2

2 − · · · − H2
: + H2

:+1 + · · · + H2
=.

This is a particularly simple form of Taylor series for the function: since ? is a
critical point the linear terms in the Taylor series at ? must all vanish, so this lemma
is saying that if the critical point is nondegenerate then in some local coordinate
system the Taylor series is purely quadratic.

Complex functions A complex analytic function 5 : C= C also has critical
points, at points where all partial derivatives vanish, and one can form the Hessian
matrix, but whose eigenvalues may now be complex. However, the notion of index
is meaningless: firstly because the eigenvalues of the Hessian may not be real, and
secondly if they are real, then a change of coordinates can change their sign: for
example the function G2 becomes −H2 upon substituting G = 8H.

2.2 Degeneracy in one variable

The story is fairly simple in one variable. Suppose 5 : R R is a smooth function
of a single variable. Then a point G0 ∈ dom( 5 ) is a critical point of 5 if 5 ′(G0) = 0.
This critical point is nondegenerate if 5 ′′(G0) ≠ 0, otherwise it is degenerate. And
one can continue looking at higher and higher derivatives as follows.

Definition 2.5. A critical point of a smooth function 5 of a single variable is of
type A: if the first : derivatives of 5 all vanish at that point, but the (: + 1)th does
not. ✯
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The same definition is made for critical points of complex analytic functions
5 : C C. Thus in particular, a critical point (real or complex) of type A1 is
a nondegenerate critical point, and one sometimes says that a degenerate critical
point is of type A≥2, or of type at least A2.

Example 2.6. Consider the simple monomial 5 (G) = G:+1, with : ≥ 1 and G ∈ R
or C. Then

5 ′(0) = 5 ′′(0) = · · · = 5 (:) (0) = 0, but 5 (:+1) (0) = (: + 1)! ≠ 0.

It follows that the function G G:+1 (whether real or complex) has a critical point
of type A: at G = 0. ✐

We will see in Chapter 4 that any function of one variable with a critical point
of type A: is equivalent to G:+1 (in a neighbourhood of the critical point), in the
sense that there is a local change of coordinates that turns the given function into
the appropriate monomial.

We will see later the corresponding definitions for functions of several variables;
note for now that any nondegenerate critical point is said to be of type A1, for any
number of variables.

2.3 Families of functions

We begin with a simple example, demonstrating the issues of interest.

Example 2.7. To set the scene, consider the 1–parameter family of functions

� (G; D) = 5D (G) = G3 + DG,

parametrized by D ∈ R. This is called the fold family, or fold catastrophe. Note
that when D = 0, the function 50 (G) = G3 which has a critical point of type A2 at the
origin. The 3 figures below show graphs of the function 5D for D < 0, D = 0 and
D > 0 respectively. Notice that there are 2, 1 and 0 critical points in the three figures,
and as D increases from negative values to 0 so the 2 critical points coalesce and
then disappear for D > 0. At the point of coalescing the critical point is degenerate.
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G

D < 0

G

D = 0

G

D > 0

To visualize this better, we plot below the set of critical points in (G, D)-space:

D

G

��

b

The curve �� = {(G, D) | 3G2 + D = 0} is the set of critical points of 5D (since
( 5D) ′(G) = 3G2 + D), and for each D < 0 there are two corresponding values of
G (equal to ±

√
−D/3), which coalesce when D = 0 and then for D > 0 there are

no points on �� (or at least, no real ones). The red dot is the point where the
two critical points coalesce and in general is called the singular set of the family
of functions, while �� is called the catastrophe set. We will define these more
generally below.

The reason this family is called the fold family is simply that �� is folded over
compared to the parameter space. This is the same as the saddle-node bifurcation
described in Section 1.1. ✐

In general we consider a family of functions, 5D (G), with G ∈ R= and D ∈ R0.
This needs to be smooth in D as well as G, so altogether we require that the map
(function),

5 : R= × R0 R, � (G, D) = 5D (G)
be smooth as a function of = + 0 variables. We call these smooth families of
functions.
Convention: As a rule, we will use G, H, I or G1, G2, G3, . . . as variables, and D, E, F
or D1, D2, D3, . . . as parameters. A useful convention is to use a semicolon and write
� (G; D) instead of � (G, D) to distinguish variables from parameters.
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Definition 2.8. A smooth 0–parameter family of functions on R= is a smooth map

5 : R= × R0 R

(G, D) 5D (G).

The notation 5D (G) reflects the interpretation that D is a parameter and G the variable,
so we are interested in the behaviour (especially critical points) of the function 5D
for each D and how this varies as D changes. As already mentioned, we often write
� (G; D) rather than � (G, D) to emphasize this distinction.

In applications G is often called the state variable.
Since we are interested in the critical points of functions, it is natural to make

the following definition. Let 5 : R= ×R0 R be a smooth family of functions, as
above, and define the catastrophe set of � to be

�� = {(G, D) ∈ R= × R0 | d( 5D)G = 0} .

In other words, it is the set of points (G, D) ∈ R=+0 such that 5D has a critical point
at G:

m 5D
mG1

(G) = · · · = m 5D
mG=

(G) = 0.

In many important cases, this will be a subset of dimension equal to 0 (the number
of parameters), as we shall see.

An important subset of the catastrophe set is the singular set, denoted Σ� ,
which is the set of points in �� where the critical point is degenerate:

Σ� := {(G, D) ∈ �� | det(� 5D (G)) = 0}.

Finally, we define the discriminant or bifurcation set Δ� . This is a subset of
the set of parameters, equal to the set of parameter values D for which 5D has a
degenerate critical point. In other words, if we let c� be the map projecting ��

onto the parameter space,

c� : �� R0

(G, D) D,

then
Δ� = c� (Σ� ) = {D ∈ R0 | ∃G ∈ R=, (G, D) ∈ Σ� }.

✯
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The reason Δ� is called the bifurcation set is that it is where transitions (or
bifurcations) take place. The idea is that if D0 ∉ Δ� then there is a neighbourhood
* of D0 such that ∀E ∈ *, the number of critical points of 5E is the same as for 5D0 .
Thus Δ� divides R0 into a number of connected components, and in each of these
the number of critical points is constant. We will see this in examples.

In Example 2.7 we saw that the catastrophe set is the parabola

�� = {(G, D) ∈ R2 | 3G2 + D = 0}
and Σ� = {(0, 0)} so Δ� = {0} ⊂ R (ie, the point D = 0). The complement of
Δ� in R consists of two components {D < 0} and {D > 0}, and the number of
critical points is 2 and 0 respectively. Notice that �� can be parametrized by G,
with D = −3G2; we will find that catastrophe sets often have good parametrizations.

2.4 Cusp catastrophe

The cusp family is the 2–parameter family given by

� (G; D, E) = 1
4G

4 + 1
2DG

2 + EG
(the coefficients of 1/4 and 1/2 are for convenience). With D = E = 0 the function
5(0,0) has a critical point at the origin of type A3 (see Definition 2.5). The catastrophe
set �� is given by the equation 5 ′(D,E) (G) = 0, so is given by

�� =
{(G, D, E) ∈ R3 �� G3 + DG + E = 0

}
.

This can be parametrized by (G, D) with E = −G3 − DG and is the curved sheet in
Figure 2.1. In this parametrization, the projection c 5 : �� � = R2 is given by

c� (G, D) = (D, E) = (D,−G3 − DG). (2.2)

Now consider the Hessian matrix at the critical points (this is why it is useful
to be able to parametrize �� ):

� 5 = 5 ′′(D,E) (G) = 3G2 + D.
This means that the singular set Σ� is

Σ� =
{(G, D, E) ∈ ��

�� 3G2 + D = 0
}
.

So on Σ� we have D = −3G2. Given that E = −G3 − DG on �� we have that

Σ� =
{(G, D, E) �� D = −3G2, E = 2G3} .
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��

Σ�

�Δ�

c�

Figure 2.1 The cusp catastrophe: G is vertical.

This is a smooth curve in R3 (parametrized by G) – see the red curve in the top sheet
of Figure 2.1.

The image of this singular set in � = R2 is,

Δ� =
{(D, E) ∈ R2 ��∃G, D = −3G2, E = 2G3}

which is the discriminant of �. Eliminating G gives a curve with equation

(D
3

)3
+
( E
2

)2
= 0,

or 27E2 + 4D3 = 0, which is the classical semicubical parabola or cusp, and is why
this is called the cusp family. See the red curve on the bottom sheet � in Figure 2.1.

Figure 2.2 shows the graph of 5(D,E) for a few different points (D, E) ∈ �. Over
points in the grey region in that and Figure 2.1, c� has 3 preimage points, and
so 5(D,E) has 3 critical points, and over the other points it has 1, except along the
discriminant, where it has precisely two (one of which is degenerate).

In both the Zeeman Catastrophe Machine and the evolute of the ellipse, de-
scribed in Chapter 1, the catastrophe set has 4 cusp catastrophes occurring in
different places, and this is a challenge to visualize globally.
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Δ�

b
b

b

b

D

E

E
b

0
b

�1

b

�2

Figure 2.2 (top) The shape of the graph of 5(D,E) in the cusp family,
for different values of (D, E). (bottom) The potential function 5D,E (G)
for D = −1 and different values of E. The points �1 and �2 represent
the points where the line D = −1 crosses the discriminant.
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c�

��

Ebb

�1 0 �2

Figure 2.3 The effect of moving around the cusp point in the cusp
catastrophe. See the text for discussion.

2.5 Why ‘catastrophes’

In his fundamental work [111], René Thom describes his approach to ‘qualitative’
modelling, which we discuss in the preface. He is particularly concerned with the
origin of and changes in form or shape, or morphogenesis. He covers examples
of forms that are physical, biological (at many different scales), or linguistic. A
particular assumption in Thom’s work is that a form is selected by minimizing
some potential function, which justifies the particular interest in critical points of
functions.

Thom writes about regimes of conflict, which occur where there are coexisting
local minima, and a ‘catastrophe’ occurs when the state of the system jumps from
one local minimum to another. There are two types of conflict point, firstly where
there are more than one critical point with the same critical value (the importance
of these is attributed to Maxwell) and secondly where a local minimum disappears
after collision with a saddle point and local maximum, as shown in the figure on
p. 19, which is a (local) bifurcation point (a saddle-node or fold bifurcation). See
also the changes that occur in Figure 2.2 as E crosses �1 or �2; the origin on that
axis E = 0 corresponds to the Maxwell point.

The catastrophic jump resulting from the local bifurcation is illustrated in Figure
2.3 which represents a tour across (or around) the cusp catastrophe. Compare also
with Figs 2.1 and 2.2. The curve in Figure 2.3 is a section through the catastrophe
set �� in Figure 2.1 with D < 0 constant (a similar picture is obtained from a
path around the cusp point). If the parameters (D, E) are outside the shaded region
within the discriminant (say on the side with E > 0) then there is only one possible
state for the system (the unique minimum in the bottom right graph in Figure 2.2).
Call this the top sheet. Now as the parameters vary to cross the discriminant (e.g.

©2020 James Montaldi



30 Families of functions

E is decreased), then the state changes slowly as the parameter is varied, until the
parameter passes the point �1, where there is no more ‘top sheet’, and the system
is forced to jump to the other equilibrium, the one on the ‘bottom’ sheet: this is
a discontinuous, or ‘catastrophic’, change. Reversing the path in parameter space,
the system would remain on the lower sheet until the parameter reaches the point
�2, when it would again jump to the upper sheet, giving a hysteresis effect.

Thom’s remarkable work shows that for a small number of parameters (he con-
sidered up to four), there are only a few local models describing how these bifur-
cations occur. Without further constraints (such as symmetries, as in the pitchfork
bifurcation discussed in Chapter 1), the only structurally stable bifurcations are
named as follows:

• for 1 parameter, only the fold (saddle-node),
• for 2 parameters, the cusp,
• for 3 parameters, the swallowtail and the elliptic and hyperbolic umbilics,
• for 4 parameters, the butterfly and the parabolic umbilic.
These seven local models are called the elementary catastrophes by Thom, and

we discuss these in more detail in Chapter 7 on ‘unfoldings’.

Remark 2.9. The two types of conflict set described above give rise to two notions
of bifurcation set. The one we have descibed is sometimes called the local bifur-
cation set, to distinguish from the full bifurcation set. The latter includes points
in parameter space (the Maxwell set) where two or more critical values coincide,
where a critical value is a value 5 (G) where G is a critical point. Which type of
bifurcation set is relevant to a particular problem depends on the context. Except for
a brief metion in the final chapter of the book, we only consider the local bifurcation
set as defined above. ❞

Problems

2.1 Let 5 : R2 R be the function 5 (G, H) = G4 − 2G2 + H2 + 11. Find all the
critical points of 5 , and determine whether each is nondegenerate, and if it
is find its index.

2.2 Repeat the previous question for the function 5 : R3 R given by

5 (G, H, I) = 1
4G

4 + G3 − G2 + 2GH − H2 − I2.

2.3 The functions 5 (G) = G2 sin5 (G) and 6(G) = G2 cos5 (G) have critical points
at the origin. What are their types (ie A: for which :)? (†)
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2.4 Sketch the catastrophe set of the family � (G; D) = G3 − 3D2G. What is the
singular set for this family? (†)

2.5 Let � (G, H; D, E) = 1
3G

3 − GH2 − D(G2 + H2) − EG. Find �� , Σ� and Δ� . For
each component of the complement of the discriminant, find the number of
critical points of 5(D,E) . What are their indices?

2.6 Let � (G; D) = 1
4G

4 − 3
2D

2G2 + 2D3G. Sketch the catastrophe set �� [Hint: the
expression for �� factorizes]. Find Σ� , and show that Δ� = R.
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B

Local geometry of regular maps

T
hroughout this text, we consider maps from R= toR?, and the purpose
of this chapter is twofold. Firstly, in order to understand singularities
one should first understand non–singularities – that is points where the

rank of the Jacobian matrix of the map takes its maximal possible value. The
local geometry in the neighbourhood of such a point is governed by the inverse
function theorem and its brethren such as the local immersion and local submersion
theorems. Secondly the inverse function theorem is fundamental to singularity
theory through the resulting changes of coordinates. The proof we give (in Chapter
5) of the inverse function theorem involves existence and uniqueness theorems
for ordinary differential equations, and the resulting idea of flows, all of which is
covered in Appendix C. The principal reason for giving the proof is that one of the
main theorems of the subject (the finite determinacy theorem of Chapter 5) has an
analogous, if slightly more complex, proof.

We use the notation 5 : R= R? to mean that 5 is a map whose domain is an
open subset of R=.

Definition B.1. Let 5 : R= R? be a smooth map. The rank of the map at a
point G is defined to be the rank of its Jacobian matrix d5G at that point, and denoted
rkG ( 5 ). ✯

The Jacobian matrix d5G is a ? × =matrix so rkG ( 5 ) ≤ min{=, ?}. This chapter
is principally about the structure of maps 5 near points Gwhere rkG ( 5 ) = min{=, ?}.

B.1 Changes of coordinates and diffeomorphisms

In linear algebra, a change of basis is implemented by an invertible linear map. If
{e1, . . . , e=} is a basis for + , and � ∈ GL(=), then {e′1, . . . , e′=} with e′8 = �e8 is
another basis (because � is invertible). The coordinates of a point (vector) v ∈ +
with respect to the basis {e8} are the coefficients G8 appearing in the expression
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v =
∑
G8e8. In changing to the new basis the coordinates are also changed, to the

coefficients G ′8 in the expression v =
∑
G ′8e′8. And the two are related by x = �x′,

that is G8 =
∑

9 08 9G
′
9 , so G ′9 =

∑
9 18 9G 9 , where � = �−1.

On the other hand, when we are working with smooth maps and ignoring the
linear structure on R=, we don’t use bases so much as just the coordinates. This
is because it is useful to consider nonlinear changes of coordinates which do not
respect the nature of bases. Nonlinear changes of coordinates should be familiar
from multiple integrals, for example changing from Cartesian coordinates to polar
coordinates.

To define coordinates systems on R=, or on an open set * ⊂ R=, one can
start with the usual Cartesian one on R= and then say what constitutes a change of
coordinates. The fundamental notion is the diffeomorphism.

Definition B.2. Let *,+ ⊂ R= be open sets. A smooth map 5 : * + is
a diffeomorphism if it has a smooth inverse; that is, if there is a smooth map
6 : + * such that 5 ◦ 6 = Id+ and 6 ◦ 5 = Id* (here Id* is the identity map on
*, and Id+ that on +). In this case one writes 6 = 5 −1. ✯

Examples B.3.

(i). Let 5 : R R, 5 (G) = G2. This is not invertible so is certainly not a
diffeomorphism.

(ii). Restrict this map to 5 : (0,∞) (0,∞), with again 5 (G) = G2. Now 5
is invertible, with 5 −1 (H) = √

H, and both 5 and 5 −1 are smooth (note that
0 ∉ dom( 5 −1)).

(iii). Let 6 : R R be defined by 6(G) = G3. This is invertible, with 6−1 (H) = H1/3,
but 6−1 is not differentiable at H = 0 so 6 is not a diffeomorphism. [This map
6(G) = G3 is an example of a homeomorphism which is not a diffeomorphism:
it is a continuous and invertible map and its inverse is also continuous;
however, its inverse is not differentiable.]

(iv). Let* ⊂ R+ × (−c, c) be any open set, where R+ is the set of strictly positive
real numbers, and define

q(A, \) = (A cos \, A sin \).
Then q is a diffeomorphism of* with q(*) – the familiar change of coordi-
nates between polar and Cartesian. Note that if one includes A = 0 in* then
the map is defined but fails to be a diffeomorphism; indeed it fails to have an
inverse as q(0, \) = (0, 0) for all \.
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(v). Any invertible linear map on R= is a diffeomorphism, because both the map
and its inverse are smooth. If we choose bases so the linear map is represented
by a matrix, then the inverse map is represented by the inverse matrix. ✐

Returning to coordinate systems, suppose we start out with a given coordinate
system on an open set * ⊂ R= (possibly the usual Cartesian one), then a new
coordinate system {G ′1, . . . , G ′=} is related to the original one by G ′8 = q8 (G1, . . . , G=),
for for some functions q8 with 8 = 1, . . . , =. These components define a map
q : * R= by

q(G1, . . . , G=) = (q1 (G1, . . . , G=), . . . , q= (G1, . . . , G=)) .
What properties should this map q have to be a change of coordinates? Firstly, it
must be invertible, otherwise we cannot change back to the original coordinates.
Moreover q and q−1 should both be differentiable (or better, smooth), otherwise
a function which is differentiable (or smooth) in one coordinate system might not
be in the other system (for an example, see Problem B.3). In short, q must be a
diffeomorphism. In Example B.3(iv) the diffeomorphism q is the familiar change
of coordinates from polar to Cartesian.

Thus a change of coordinates is a diffeomorphism, and vice versa: the new
coordinates are the components of the diffeomorphism. That is, if we call the new
coordinates (H1, . . . , H=) then

H8 = q8 (G1, . . . , G=).
We will use the expression coordinates about a point @ to mean coordinates defined
on a neighbourhood of @, whose components are all equal to 0 at the point @.

One should think about coordinate systems and diffeomorphisms as follows,
and this becomes particularly useful when we define submanifolds below.

Let * ⊂ R= be an open set and @ ∈ *. Now consider another copy of R= with
its usual Cartesian coordinates (G1, . . . , G=). A system of coordinates on * is then
a map q : * R= which is a diffeomorphism with its image q(*), the coordinates
being the components of q; see Figure B.1. Thus a single coordinate, q1 say, is just
a function on *, q1 : * R, and is often written G1 ◦ q since G1 is a coordinate
function on R=. Furthermore, q defines a coordinate system about @ if q(@) = 0.

In the next section we see how to determine whether a given smooth map is
a diffeomorphism, at least in some neighbourhood of a given point. Before doing
that, we give one final definition.

Definition B.4. Two subsets (1, (2 of R= are diffeomorphic if there are neighbour-
hoods *1 of (1 and*2 of (2 and a diffeomorphism q : *1 *2 which maps (1 to
(2. ✯
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*
R=

q

Figure B.1 A coordinate system on*

Maps and changes of coordinates Let 5 : R= R? be a (smooth) map. The
expression for the map will depend on the coordinates used on its domain. For
example the function 5 : R2 R given in Cartesian coordinates by 5 (G, H) =
G2− H2, becomes in polar coordinates (see Example B.3(iv)) 5 ◦q(A, \) = A2 sin 2\.
Here q maps from R+ × (−c/c) to the domain of 5 .

We would often express this in reverse: if * ⊂ dom( 5 ), then new coordinates
on* would be defined by a diffeomorphism q : * + . Then the new expression
for 5 would then be 5 (G) = 5 ◦ q−1 (H).

B.2 Inverse function theorem

Many of the methods of singularity theory involve calculations using infinitesimal
data (differentials and vector fields) and making deductions about maps. The inverse
function theorem is the archetype of such results, and not only is it a result of central
importance, but the proof we give (in Chapter 5) provides a model for the proofs
of several important theorems in this text and so is worthwhile understanding in
detail.

Before stating the theorem, we show its converse: if * and + are open sets in
R= and 5 : * + is a diffeomorphism, then the differential d5G is invertible for
all G ∈ *.

This is not surprising: if there is any justice in mathematics (and there is!), then
the best linear approximation to an invertible map ought to be invertible. Indeed,
since 5 is invertible, let 6 = 5 −1 : + * be its inverse, so that 6 ◦ 5 : * * is
the identity map on *. Applying the chain rule gives

d6H d5G = Id=,

where H = 5 (G) and Id= is the = × = identity matrix, so [d5G]−1 = d6H .
The inverse function is the converse of this observation. It says that if the

best linear approximation (the differential) to a smooth map at a particular point is
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invertible, then so is the map itself – at least in some neighbourhood of that point.
More formally:

Theorem B.5 (Inverse function theorem). Let 5 : R= R= be a smooth map with
G0 ∈ dom( 5 ), and suppose 5 has rank = at G0. Then there is a neighbourhood * of
G0 such that the restriction 5 |* : * 5 (*) is a diffeomorphism.

The statement that 5 has rank = at G0 is equivalent to saying that the Jacboian
matrix d5G0 is invertible. In most texts, this theorem is proved using the contraction
mapping principle. We prove it using the ‘homotopy method’ in Chapter 5 (p. 72).

Remark B.6. Since diffeomorphisms are equivalent to smooth changes of coor-
dinates, the statement of the theorem can also conclude that there is a change of
coordinates in, say, the target, such that the map takes the form

5 (G1, . . . , G=) = (G1, . . . , G=).

Namely, the change of coordinates is 5 −1, for of course 5 −1 ◦ 5 = Id. Likewise, if
one fixed the coordinates in the target, there is a change of coordinates in the source
such that 5 takes the same form, since in this case 5 ◦ 5 −1 = Id.

Such choices of coordinates are a particular case of linearly adapted coordi-
nates; we will see more of this idea below. ❞

Example B.7. Let 5 : R2 R2 be the smooth map

(D1, D2) = 5 (G1, G2) = (G1 + G2
2, G2 + G2

1).

Then at the origin d5(0,0) = Id which is invertible. Consequently there is a neighbou-
hood* of the origin in the source such that 5

*
: * 5 (*) is a diffeomorphism.

Moreover, if we let H1 = G1+G2
2 and H2 = G2+G2

1 then H1, H2 defines a coordinate
system in a neighbourhood of (0, 0) in the source, and with these coordinates
5 (H1, H2) = (H1, H2).

Likewise, if we let E1, E2 be such that D1 = E1 + E2
2 and D2 = E2 + E2

1 then E1, E2
defines a coordinate system in a neighbourhood of (0, 0) in the target, and with
these coordinates 5 (G1, G2) = (G1, G2).

Note that to find E1, E2 in terms of D1, D2, involves solving the equations which
in general is not possible. ✐
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B.3 Immersions & submersions

The inverse function theorem describes the local structure of a map 5 : R= R?

of maximal rank when = = ?. There are similar descriptions for maps of maximal
rank when = ≠ ?, and these are derived from the inverse function theorem. We
turn to these now: first we consider = < ? (immersions) and then below = > ?
(submersions).

B.3a Immersions

Definition B.8. A smooth map 5 : R= R? is an immersion at G if 5 has rank
= at that point. The map is an immersion if it is an immersion at every point in
dom( 5 ). ✯

Of course, this is only possible if = ≤ ?, and if = = ? then the property is
precisely that of being a local diffeomorphism. See Figure B.2 for an example:
notice that 5 is not 1–1 as there are two points mapping to the same point of
intersection.

Example B.9. The graph of any smooth map 5 : R= R? defines an immersion

6 : dom( 5 ) ↩ R= × R?,

given by 6(G) = (G, 5 (G)). The proof is an exercise (see Problem B.13). ✐

In fact the graph is more than an immersion, it is an example of an embedding :
an immersion 5 : # % is an embedding if (i) it is 1–1, and (ii) for every open set
* in # there is an open set + ⊂ % for which * = 5 −1 (+). Another way to say this
second condition is (ii)′ if (G 9) is a sequence in # such that 5 (G 9) 5 (@) for some
@ ∈ # then G= @, but we will not pursue this further here. The map depicted in
Figure B.2 is an immersion but not an embedding, as it violates condition (i) (see
Problem B.21 for an example of a 1-1 immersion which violates condition (ii)). As
was mentioned earlier, being an immersion is a local property. On the other hand,
being an embedding is definitely not local.

Theorem B.10 (Local immersion theorem). Let 5 : R= R? be a smooth map
with = < ?. Suppose that 5 is an immersion at G ∈ dom( 5 ). Then there is a
neighbourhood * of G and local coordinates in the target about 5 (G) such that

5 (G1, . . . , G=) = (G1, . . . , G=, 0, . . . , 0).
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b
C R

b5 (C)
5

Figure B.2 An immersion: 5 (C) = (C3 − C, C2).

Proof: The proof is as follows, but the details are left to the reader. First permute
the basis vectors of R? so that

d5G =

[
�
�

]
,

where � is an invertible = × = matrix (this is done by permuting the rows of d5G
so that the first = rows are linearly independent). Next define � : R= R= by

� (G1, . . . , G=, H1, . . . , H?−=) = 5 (G1, . . . , G=) + (0, . . . , 0, H1, . . . , H?−=).

It is easy to check that � satisfies the hypotheses of the inverse function theorem.
Finally, one changes coordinates on R? using �−1. ✔

B.3b Submersions

The other major theorem on regular behaviour of maps is the submersion theorem,
and the essentially equivalent implicit function theorem. We deduce this theorem
from the inverse function theorem, although it can also be proved directly using the
homotopy method.

Definition B.11. A smooth map 5 : R= R? is a submersion at G if 5 has rank
? at that point. It is a submersion if it is a submersion at every point in its domain
dom( 5 ). ✯

Example B.12. The projection 5 : R? × R: R? given by 5 (G, H) = G is a
submersion. ✐

In fact this example is the archetype of a submersion, at least locally, as the next
theorem shows.
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5

G1, . . . , G?

G?+1, . . . , G=

Figure B.3 A submersion

Theorem B.13 (Local submersion theorem). Let 5 : R= R? be a smooth map
with = > ?, and suppose 5 is a submersion at G0 ∈ dom( 5 ), and H0 = 5 (G0). Given
any system of coordinates about H0 in R?, there is a neighbourhood * of G0 and
coordinates about G0 for which 5 takes the form

5 (G1, . . . , G?, G?+1, . . . , G=) = (G1, . . . , G?).

That is, a submersion is locally a projection; see Figure B.3. Notice moreover
that the image of any submersion is open. This theorem, like the next, follows from
the extended implicit function theorem – the proof is given below.

In terms of applications, the implicit function theorem is the most important
theorem of this appendix. A great deal of information about the theorem, its history
and its applications can be found in [66].

Theorem B.14 (Implicit function theorem). Let 5 : R? × R: R? be a smooth
map with 5 (G0, H0) = I0, and suppose d5(G0 ,H0) has the form

d5(G0 ,H0) = [� �] , (B.1)

where � is an invertible ? × ? matrix, and � is any ? × : matrix. Then there are
neighbourhoods * of G0 and + of H0 in R? and R: respectively, and a smooth map
ℎ : + *, with ℎ(H0) = G0, such that, for (G, H) ∈ * ×+ ,

5 (G, H) = I0 ⇐⇒ G = ℎ(H).

In other words, the equation 5 (G, H) = I0 can (in principle) be solved for G as a
function of H. This function ℎ is the eponymous ‘implicit function’. It is unusual to

©2020 James Montaldi



B.3 Immersions & submersions 343

be able to find an explicit form for this implicit function, although its Taylor series
to any order can be computed using implicit differentiation.

Example B.15. As a very simple example, consider the equation G3 − GH − H4 = 5.
One sees that the point (G, H) = (2, 1) satisfies the equation. Can the set of solutions
near to this point be written as G being a function of H? Answer: yes! Because
m 5
mG (2, 1) ≠ 0. And because m 5

mH (2, 1) ≠ 0, it can also be solved (locally) for H as a
function of G. See Problem B.9. ✐

Both the submersion theorem and the implicit function theorem follow from the
inverse function theorem, via the following result, which has a pleasing symmetry
about its conclusion.

Theorem B.16 (Extended implicit function theorem). Assume 5 satisfies the hy-
pothesis of the implicit function theorem above. Then there are neighbourhoods
*,+,, of G0, H0 and I0 in R?, R: and R? respectively and a smooth map
6 : + ×, *, satisfying for (G, H, I) ∈ * ×+ ×, ,

5 (G, H) = I ⇐⇒ 6(I, H) = G.

Proof: Define a map � : R? × R: R? × R: by

� (G, H) = ( 5 (G, H), H).

The Jacobian matrix of � at (G0, H0) is

d�(G0,H0) =
[
� �
0 �:

]
.

This is invertible, with inverse
[
�−1 −�−1�
0 �:

]
(as is readily checked), so by the

inverse function theorem there is a neighbourhood *1 of (G0, H0) (which we can
take to be of the form * ×+) and a map � : , ×+ *, where , = 5 (* ×+)
which is a neighbourhood of I0, satisfying � ◦ � = Id+ . Moreover � has the
form

� (I, H) = (6(I, H), H)
for some smooth map 6 : + R? (exercise: prove this). Since � = �−1 it
follows that

� (G, H) = (I, H) ⇐⇒ (G, H) = � (I, H),
and this is equivalent to 5 (G, H) = I ⇐⇒ G = 6(I, H) as required. ✔
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This extended implicit function theorem can be viewed as a parametrized version
of the inverse function theorem: here H is the parameter, and for each value of H the
maps 5H and 6H are mutually inverse. From this theorem we can derive the local
submersion and the (ordinary) implicit function theorems as follows.

Proof of Theorem B.13: As a first step, permute the columns of d5G0 so that
the first ? columns are linearly independent; this amounts to permuting the basis
vectors inR=. Then d5G0 has the form (B.1), so we can apply the extended implicit
function theorem, and write G0 = (D0, H0) ∈ R? × R: where : = = − ?.

The map � (D, H) = ( 5 (D, H), H) is therefore a diffeomorphism in a neighbour-
hood of G0 (cf. the proof of Theorem B.16). Consider the change of coordinates
�−1. Then 5 ◦ �−1 has the required form. ✔

Proof of Theorem B.14: Here one just defines ℎ(H) = 6(I0, H). ✔

Definition B.17. The :–dimensional suspension of a map 5 : R= R? is the map

R= × R: R? × R:
(G, H) ( 5 (G), H). ✯

It is easy to see that if 5 is an immersion, submersion or diffeomorphism, then
so, correspondingly, is any suspension of 5 .

B.4 Submanifolds and local straightening

The idea of submanifolds is a crucial concept in singularity theory, as well as
in many other branches of mathematics such as topology, geometry, differential
equations, classical mechanics and many more besides.

Definition B.18. A subset " ⊂ R= is a submanifold if there is an integer 3 (called
the dimension of ") such that for each point @ ∈ " there is a neighbourhood * of
@ in R= and a diffeomorphism Φ : * + , where + ⊂ R= is an open set, such that

Φ(" ∩*) = (R3 × {0}) ∩+ ⊂ R3 × R=−3 .
The diffeomorphism Φ is called a local straightening map for " at @ (or in a
neighbourhood of @). One also says that " is of codimension (= − 3) in R=. ✯
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"

b

*

@

+

b
Φ(@)

Φ

Φ(") ∩+

Figure B.4 A local straightening.

It is worth emphasizing that the straightening mapΦmust be a diffeomorphism,
and * and + are both open sets in R=. Such a submanifold is often referred to as
an embedded submanifold, as distinct from an immersed submanifold, which we’ll
encounter later in this appendix.

Examples B.19 (of submanifolds).

(i). Let " = {(G, H) ∈ R2 | H = G2} (the parabola in the plane). In this case we
can define a single global straightening map Φ : R2 R2 by

Φ(G, H) = (G, H − G2).

Then Φ(") = R × {0}, showing that the parabola is a submanifold of
dimension 1 (and codimension 1).

(ii). Consider the unit circle in the plane, centre the origin, usually denoted
(1 ⊂ R2. This needs more than one straightening map: for @ = (@1, @2) ∈ (1,
define

• if @2 > 0 put Φ(G, H) = (G, H −
√

1 − G2), which is a diffeomorphism
for * = {(G, H) ∈ (1 | H > 0};

• if @2 < 0 put Φ(G, H) = (G, H +
√

1 − G2), which is a diffeomorphism
for * = {(G, H) ∈ (1 | H < 0};

• if @1 > 0 put Φ(G, H) = (G −
√

1 − H2 , H), which is a diffeomorphism
for * = {(G, H) ∈ (1 | G > 0};

• if @1 < 0 put Φ(G, H) = (G +
√

1 − H2 , H), which is a diffeomorphism
for * = {(G, H) ∈ (1 | G < 0}.
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Figure B.5 None of these sets are submanifolds: the figure–8, the
semicubical parabola (cusp) and the cone; each has one singular point.

These four straightening maps together cover the entire circle, which is
enough to show it is a submanifold (of dimension 1). ✐

The following result is often used to show a subset is a submanifold. Recall
that the graph of a map 5 : - . is the set

Γ 5 = {(G, H) ∈ - × . | H = 5 (G)}.

Proposition B.20. Let 5 : R= R? be a smooth map. The graph Γ 5 of 5 is a
submanifold of R= × R? of dimension =.

Proof: Γ 5 has a global straightening map, Φ : R= × R? R= × R? defined
simply by Φ(G, H) = (G, H − 5 (G)). This is a diffeomorphism, as its inverse is

Φ−1 (G, I) = (G, I + 5 (G)),

as can be readily checked, and both Φ and Φ−1 are smooth. Moreover,

Φ(G, 5 (G)) = (G, 5 (G) − 5 (G)) = (G, 0),

so Φ(Γ 5 ) = R= × {0}, as required. ✔

Clearly in this setting, the codimension of the graph is codim(Γ 5 ) = ?.

Local parametrizations One of the main features of manifolds is they have (local)
parametrizations, or coordinates. Let " ⊂ R= be a submanifold of dimension 3
and let ? ∈ " , and let Φ : * R= be a local straightening map defined in a
neighbourhood of ?. Write Φ(G) = (Ψ(G), j(G)), so Ψ(G) ∈ R3, and j(G) = 0 if
and only if G ∈ " ∩*.
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Figure B.6 Two views of the Cayley cross–cap – not a submanifold:
it has a half–line of singular points. It is the image of the map (G, H)
(G, GH, H2) which fails to be an immersion only at (0, 0).

If we restrict to G ∈ " , then the restriction Ψ : " ∩* R3 defines a smooth
map whose inverse is Ψ−1(H) = Φ−1 (H, 0). Thus Ψ−1 : * ′ " is a smooth map
of rank 3 whose image is a neighbourhood of G in "; here * ′ = Ψ(" ∩*) ⊂ R3.
If we use coordinates (G1, . . . , G3) on * ′, then Ψ−1 (G1, . . . , G3) gives a smooth
parametrization of a neighbourhood of G in" . Although (at this point) we have very
little explicit information on what " can be like, this local parametrization allows
us to define what is meant for a function on " to be smooth, namely 5 : " R is
smooth if and only if 5 ◦ Ψ−1 : * ′ R is smooth (see Problem B.16).

Example B.21. Continuing part (ii) of the previous example, with " = (1 and
@ = (0, 1), we haveΨ(G, H) = G, and since on " we have G =

√
1 − H2, it follows that

Ψ−1(G) = (G,
√

1 − G2), which is a parametrization of the upper half of the circle (1

(i.e., of that part with H > 0). Moreover, the function 5 (G, H) = sin(H) is smooth on
the portion of the circle parametrized by Ψ−1 because 5 ◦ Ψ−1 (G) = sin(

√
1 − G2)

which is smooth provided |G | < 1. ✐

Remark B.22. Readers familiar with the abstract definition of manifold will recog-
nize the local parametrizations as the basis of that definition; indeed the map Ψ

"

defines a local coordinate chart. The compatibility between different coordinate
charts follows automatically here, since the composition of two diffeomorphisms is
a diffeomorphism. ❞

Immersions and submersions If 5 : R: R= is an immersion, the local im-
mersion theorem tells us that locally (in R:) the image of 5 is a submanifold of
R= of dimension :. If on the other hand 5 : R= R? is a submersion, then the
local submersion theorem implies that all the level sets of 5 (the subsets of the form
5 −1 (H)) are submanifolds of dimension =− ? ; indeed, the reader can check that the
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change of coordinates in the definition provides the local straightening maps. It is
useful to formalize this as the Regular Value Theorem – a regular value of a map 5
is a point H in the image for which 5 is a submersion at every G ∈ 5 −1 (H).

Theorem B.23 (Regular value theorem). Let 5 : R= R?, with = > ?, be a
smooth map, and H ∈ R? a regular value of 5 . Then 5 −1 (H) is a submanifold of
R= of codimension ?, and hence dimension = − ?.

The proof follows from the local submersion theorem, and details are left to the
reader.

Tangent spaces Let - ⊂ R= be a submanifold with G ∈ - . Let D : R - be a
smooth parametrized curve in - with D(0) = G. Then the vector .

D(0) = d
dC D(0) is

called a tangent vector to - at G. The set of all such vectors is the tangent space of
- at G written,

)G- = { .
D (0) | D : R - with D(0) = G}.

Proposition B.24. Let - be a submanifold of R= of dimension : and let G ∈ - .

(i). If 6 : R: R= is an immersion with image - then the tangent space

)G- = im d6@,

where G = 6(@).
(ii). If 5 : R= R? is a submersion with - = 5 −1 (0) (where ? = = − :) then

)G- = ker d5G .

Proof: (i) Let E : R R: be a path with E(0) = @. Then D = 6 ◦ E is a path
in - , and its velocity vector is .

D = d6@
.
E so that .

D ∈ im d6@. Furthermore, any
curve in - through G can be obtained in this way, so that indeed )G- = im d6@.
(ii) Let D be a path in - . Then 5 ◦ D ≡ 0. Differentiating with respect to C gives
d5G

.
D(0) = 0. Thus )G- ⊂ ker d5G . However, these two spaces have the same

dimension, namely : = = − ?, so they must be equal. ✔

B.5 Example: the set of matrices of given rank

Consider the vector space Mat(?, =) of ? × = matrices (representing linear maps
R= R?). Let ΔA = ΔA (?, =) ⊂ Mat(?, =) be the subset consisting of those
matrices of rank equal to A.
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Theorem B.25. The subset ΔA (?, =) ⊂ Mat(?, =) is a submanifold of dimension
A (= + ? − A).

Proof: Let � ∈ ΔA , and choose a basis so that � takes the form given in
Proposition A.2. Now any matrix �′ ∈ Mat(?, =) can be written in block form as

�′ =
[
�A + � �
� �

]
,

where �A is the A × A identity matrix, � ∈ Mat(A, A), � ∈ Mat(A, = − A), � ∈
Mat(? − A, A) and � ∈ Mat(? − A, = − A). Choose a neighbourhood * of � by
assuming that � ∈ * is sufficiently small that �A + � is invertible. We now apply
row operations on �′, to show

A′ ∼
[
�A (�A + �)−1�
� �

]
∼

[
�A (�A + �)−1�
0 � − � (�A + �)−1�

]
.

This last matrix is of rank A if and only if � = � (�A + �)−1�. That is, in the
neighbourhood *, the set ΔA can be expressed as a graph of � as a function of
�,�, �, and so (by Proposition B.20) ΔA is indeed a submanifold of dimension
dim Mat(A, A)+dim Mat(A, =−A)+dim Mat(?−A, A), which is equal to A (=+ ?−A).
✔

Notice in the proof that the rank A condition is written as a condition on � ,
which can be interpreted as saying that ΔA has codimension (= − A) (? − A) (equal
to the number of entries in �). See Problems B.19 and B.20 for information about
the tangent space to ΔA .

B.6 Maps of constant rank

Let 5 : R= R? be a smooth map. Since the entries of the matrix d 5G depend
continuously on the point G ∈ dom( 5 ), it follows that for each A ∈ N the set

(A ( 5 ) := {G ∈ dom( 5 ) | rkG ( 5 ) ≤ A}

is a closed subset of dom( 5 ). Equivalently, the rank function G rkG ( 5 ) is upper
semicontinuous, meaning that if G 9 is a sequence of points in dom( 5 ) converging
to G0, then

lim
9→∞

rkG 9 ( 5 ) ≥ rkG0 ( 5 ),

if the limit exists.
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In all the theorems above, the rank of the map is maximal, and it follows
therefore that it is constant in a neighbourhood of the point in question. There is a
more general theorem which extends all the previous ones.

Theorem B.26 (Constant rank theorem). Let 5 : R= R? be a smooth map of
constant rank :, and let G0 ∈ dom( 5 ). Then there is a neighbourhood of G0 and
coordinates G1, . . . , G= about G0 and H1, . . . , H? around 5 (G0) such that in these
coordinates 5 is given by

5 (G1, . . . , G=) = (G1, . . . , G: , 0, . . . , 0).

Notice that one consequence is that image( 5 ) is a :–dimensional immersed
submanifold of R? and each level set 5 −1 (H) is a submanifold of R= of dimension
= − :.

This theorem contains the previous three as special cases (although its proof
uses the implicit function theorem, which in turn relies on the inverse function
theorem). We will prove this using ‘linearly adapted coordinates’ later in this
chapter (see p. 354).

It is worth emphasizing one distinction between the four local theorems. In
the inverse function theorem one can specify coordinates in the source or in the
target, and deduce coordinates in the other so that the map has the special form
(namely, the identity). In the local immersion theorem, one needs to choose (or
change) the coordinates in the target, in the regular value theorem one needs to
choose coordinates in the source, while in the constant rank theorem, one needs to
choose coordinates in both in order to write 5 in the form given by the theorem.

B.7 Transversality

Two submanifolds - and . of R= are transverse at G ∈ R=, written - −⋔G . , if either
G ∉ - ∩ . or their tangent spaces satisfy

)G- + )G. = R=.

A map 5 : R: R= is transverse to a submanifold - ⊂ R= at G ∈ - , written
5 −⋔G - if

im d5@ + )G- = R=,

for all @ ∈ 5 −1 (G). Two maps 5 : R: R= and 6 : Rℓ R= are transverse at
G ∈ R= (written 5 −⋔G6) if

im d5@ + im d6? = R=,
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for all @ and ? satisfying 5 (@) = 6(?) = G. Finally, two such objects are simply
transverse if they are transverse at G for all G ∈ R=.

The principal use of transversality is the following.

Theorem B.27. Suppose -,. are two submanifolds of R=.

(i). If - and . are transverse then their intersection - ∩. is also a submanifold.
Moreover

codim(- ∩. ) = codim(-) + codim(. ).

(ii). Let 5 : R: R= be transverse to - . Then 5 −1 (-) is a submanifold of R: ,
with

codim( 5 −1 (-)) = codim(-),
where the first codimension is in R: and the second in R=.

Proof: We will prove (ii) and leave (i) to the reader. Suppose - is of dimension
<. Let @ ∈ 5 −1 (-) and let * be a neighbourhood of 5 (@) on which there is a
straightening map for -: that is a diffeomorphism Φ : * R= with Φ(* ∩ -)
an open subset of R< × {0}. We now proceed with the ‘straightened version’ of
-; that is, we write

R= = R< × R=−<

with - ∩ * ⊂ R< × {0}. Accordingly, write 5 as 5 (G) = ( 51 (G), 52(G)) with
51 : R: R< and 52 : R: R=−<.

Now ) 5 (@)- = R< × {0}, and hence 5 is transverse to - if and only if d52
has rank = − < at ?; that is, 52 is a submersion there. Moreover, for G ∈ 5 −1(*),
5 (G) ∈ - if and only if 52 (G) = 0. Equivalently, 5 −1 (*∩-) = 5 −1

2 (0). The local
result (in a neighbourhood of @) then follows from the local submersion theorem
(Theorem B.13), including the statement about the codimension of 5 −1(* ∩ -).
Since this holds for all @ ∈ 5 −1 (-), the result follows. ✔

B.8 Linearly adapted coordinates

Recall that the rank of a map 5 at G is the rank of the Jacobian matrix d5G . Both
words ‘singular’ and ‘regular’ have different meanings in mathematics depending
on context. We use the following definition.
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Definition B.28. A singular point or singularity of a smooth map 5 : R= R? is
a point G0 ∈ dom( 5 ) where the rank rkG ( 5 ) < ?. If rkG ( 5 ) = ? then G is a regular
point of 5 . ✯

Note that if ? > = then every point in the source is singular. However, if
? > = and rk( 5 ) = = then one talks of 5 being a regular parametrization of its
image (which by the local immersion theorem is a submanifold of R?, at least in a
neighbourhood of G).

Note that if ? = 1 (scalar-valued functions), a singular point is a point where
all partial derivatives vanish, so a singular point is the same as a critical point.

A first step in the study of singularities is to introduce coordinates adapted to
the situation. For non-singular points, the appropriate coordinates are the ones of
the inverse, implicit, local immersion or constant rank theorems described above.
Extending these to the case where the map is singular is the subject of the following
theorem.

Theorem B.29 (Linearly adapted coordinates). Let 5 : R= R? be a smooth
map with 5 (0) = 0, and rk0 ( 5 ) = :. Then there is a neighbourhood * of 0 in R=
and coordinates D1, . . . , D: , G1, . . . , G=−: on * and (E1, . . . , E: , H1, . . . , H?−:) in a
neighbourhood of 0 in R?, and a smooth map 6 : * R?−: with 6(D, 0) = 0 and
d60 = 0, such that 5 takes the form,

5 (D, G) = (D, 6(D, G)).
That is, in a neighbourhood of 0, 5 is given by{

E8 = D8 (8 = 1, . . . , :),
H 9 = 6 9 (D, G) ( 9 = 1, . . . , ? − :).

Proof: Since rk(d50) = : we can choose bases in R= and R? so that

d50 =

(
�: 0
0 0

)
. (B.2)

Writing the target accordingly as R? = R: × R?−: we write

5 (D, G) = ( 51(D, G), 52(D, G)),
where 51 : R= R: . Now 51 has rank : so it follows from the local submersion
theorem that there are coordinates for which 51 (D, G) = D. In these coordinates,
we have

5 (D, G) = (D, 52 (D, G)).
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Now make a further change of coordinates in the target by

(E, F) (E, F − 52 (E, 0)).

Then in these coordinates, 5 becomes

5 (D, G) = (D, 52 (D, G) − 52(D, 0)),

so putting 6(D, G) = 52 (D, G)− 52 (D, 0) we get the desired property that 6(D, 0) = 0.
✔

Definition B.30. Let 5 : R= R? be a smooth map of rank : at the origin. Using
linearly adapted coordinates we write 5 (D, G) = (D, 6(D, G)) as in the theorem
above. The map 60 : R=−: R?−: defined by 60(G) = 6(0, G) (which has rank 0
at the origin) is called the core of 5 (at the origin). ✯

The core of a map is important in the study of bifurcations: this is because the
set of solutions of 5 = 0 is essentially the same as the set of solutions of 60 = 0. As
an expression in its coordinates, the core is not uniquely defined because linearly
adapted coordinates are not unique. However, any two cores of a given map are
‘contact equivalent’ (in the sense of Chapter 11).

Example B.31. Consider the map 5 : R3 R2 given by 5 (G, H, I) = (G + H, G2 +
H2 − I2). The differential of 5 at the origin is

d50 =

(
1 1 0
0 0 0

)
.

This has rank 1, so we change basis so that d5 is in the required form (B.2). So
let e1 = 1

2 (1, 1, 0)) and e2 = (1,−1, 0)) and e3 = (0, 0, 1)) in the source, and
leave the basis in the target as given. Note that {e2, e3} spans ker d50. Then we
have coordinates (D, E, F), with (G, H, I) = De1 + Ee2 + Fe3 so that G = 1

2D + E and
H = 1

2D − E and I = F. In these new coordinates, 5 takes the form

5 (D, E, F) =
(
D, 1

2D
2 + 2E2 − F2

)
.

This is the expression of 5 in linearly adapted coordinates, with 6(D, E, F) =
1
2D

2 + E2 − F2, and the core is 60 (E, F) = 6(0, E, F) = E2 − 2F2. Notice that
5 (D, E, F) = 0 if and only if D = 0 and 60 (E, F) = 0. ✐
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The calculation in this example and the proof above, is formalized by a procedure
called Lyapunov–Schmidt reduction; see the section below. But first we give a proof
delayed from earlier.

Proof of the Constant Rank Theorem B.26: Let @ ∈ dom( 5 ), then rk d5@ =
:. We can use linearly adapted coordinates in a neighbourhood * of @ with
5 (D, G) = (D, 6(D, G)). Then at any point (D, G) ∈ * ⊂ dom( 5 ),

d5(D,G) =
(
�: 0

dD6 dG6

)
,

where dG6 is the Jacobian matrix of the map G 6(D, G) (consisting of partial
derivatives with respect to the G variables), and dD6 analogously. This matrix
has rank : if and only if dG6(D, G) = 0, and if this block of partial derivatives is
identically zero, then 6(D, G) must be independent of G. That is,

5 (D, G) = (D, 6(D)).

The image of 5 is thus the graph of 6, and we can change coordinates again on
R? by, k (D, H) = (D, H − 6(D)). Then

k ◦ 5 (D, G) = (D, 0)

as required. ✔

The following ‘reduction’ procedure for cores is often useful.

Proposition B.32. Let 5 : R= R0 ×R1 with 5 (G) = ( 51 (G), 52(G)) accordingly.
Suppose 5 (0) = (0, 0) and that 51 : R= R0 is a submersion at 0. Then 5 and
the restriction 52 +

have the same core at the origin, where + = 5 −1
1 (0).

Note that saying cores are ‘the same’, one means that we can choose coordinates
so that they agree. One cannot expect more than that, given that – as mentioned
above – the core is not unique.

Proof: Since 51 is a submersion there is a neighbourhood of the origin in R=
on which there are coordinates for which 51 (G, H) = G, with G ∈ R0, H ∈ R=−0.
In these coordinates, + = {(G, H) | G = 0} = R=−0. These are linearly adapted
coordinates for 5 , since 5 (G, H) = (G, 52 (G, H)). The core of 5 is the same as the
core of 52(0, H), and clearly H 52 (0, H) is the same as 52 +

. ✔
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B.9 Lyapunov–Schmidt reduction

Lyapunov–Schmidt reduction is a practical procedure for finding the core of a map,
or linearly adapted coordinates, and is a straightforward application of the implicit
function theorem. It is included here as it is often used as a first step in applications
of bifurcation theory. This procedure is also valid in an infinite–dimensional context
for bifurcation problems on Banach spaces (possibly arising from pdes), although
the required functional analysis would take us too far afield (see for example [49, 50]
for details). See also [47] for further properties of this procedure.

Let 5 : R=×R: R? be a smooth map. We are interested in studying solutions
of the ‘bifurcation equation’ 5 (G;_) = 0 (here we think of _ ∈ R: as parameters,
and G ∈ R= as state variables) in a neighbourhood of a point (G0, _0) which we take
to be the origin.

There are two steps: (i) solve the largest non-degenerate part of 5 for the
appropriate variables (using the implicit function theorem), and (ii) substitute those
values into the remainder of 5 .

We write 50(G) = 5 (G, 0). Then d( 50)0 is the Jacobian matrix of 5 with respect
to the G-variables (a ? × =matrix) at the origin. Let  = ker d50 ⊂ R= be its kernel,
' ⊂ R? its image (range) and & = R?/' its cokernel. In practice one identifies &
with a subspace of R? by writing R? = ' ⊕ &. Let Π : R? & be the Cartesian
projection with kernel '. Then (� − Π) is the projection to '.

Write
51 = (� − Π) ◦ 5 , and 52 = Π ◦ 5 . (B.3)

Then 5 (G, _) = 0 if and only if 51(G, _) = 0 and 52(G, _) = 0.
Step (i): consider 51 : R=×R: '. This is a submersion (in a neighbourhood

of 0) and with R= = . ⊕  (for any choice of complementary subspace . ) one has
dG ( 51)0 = [� 0] with � invertible. Then by the implicit function theorem there is a
neighbourhood of the origin and a map ℎ :  ×R: . such that 51 (G, _) = 0 if and
only if G ∈ Γℎ (the graph of ℎ). In other words, writing (E, _) ∈  ×R: , 51(G, _) = 0
if and only if there is a E ∈  for which (G, _) = (ℎ(E, _), E, _) ∈ . ×  × R: (all
restricted to appropriate neighbourhoods of the origin).

Step (ii): define 6 :  × R: & by

6(E, _) = 52 (ℎ(E, _), E, _).

Clearly, 5 (G, _) = 0 if and only if there exists E ∈  for which (G, _) = (ℎ(E, _), E, _)
and 6(E, _) = 0. That is, the set of zeros of 5 forms a graph over the set of zeros of
6. The map 6 is the result of Lyapunov–Schmidt reduction.
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If d( 50)0 has rank A, then  ≃ R=−A and& ≃ R?−A , so the reduction reduces the
dimension by A in both source and target. Note also that d(60)0 = 0, so no further
reduction is possible, and moreover that 60 is the core of 50.

See Problem B.18 for an example.
It should be pointed out that the resulting reduced map 6 depends on the

choices of & and . (the splittings of R= and R?). However, different choices
lead to ‘equivalent’ maps (in particular, contact equivalent, or with the parameter,
Kun-equivalent, as described in Chaps 11 and 14).

Problems

B.1 At which points is 5 : R R, 5 (G) = cos G a local diffeomorphism? (†)

B.2 Let q, k be local diffeomorphisms, q defined in a neighbourhood of 0, and
k in a neighbourhood of q(0). Show that k ◦ q is a local diffeomorphism in
a neighbourhood of 0.

B.3 Let G be the usual coordinate on R, and let G ′ = q(G) = G3. Consider
the smooth function 5 (G) = G2. Express 5 in terms of G ′, and show it is
not differentiable at G ′ = 0. [Note: this q is a homeomorphism (i.e. q is
invertible and both q and q−1 are continuous). This example demonstrates why
we need to consider changes of coordinates to be diffeomorphisms rather than just
homeomorphisms.]

B.4 Let 0 ∈ R and consider the map 50 : R R defined by 50 (G) = G + 0G2.
Use the inverse function theorem to show that 50 is a diffeomorphism on
some neighbourhood of the origin. Now by explicitly solving H = 50 (G)
find the largest open interval * containing 0 such that 5 : * 50 (*) is a
diffeomorphism (the answer will depend on 0). (†)

B.5 Consider the so-called folded handkerchief map 5 : R2 R2, 5 (G, H) =
(G2, H2). Find the singular points of 5 . Find also the image of 5 and the
image of the singular points. (†)

B.6 Show that 5 : R2 R2 defined by 5 (G, H) = (eG cos H, eG sin H) is a local
diffeomorphism at each point (G, H) ∈ R2, but that it is not a (global)
diffeomorphism.

B.7 Define 5 : R3 R by 5 (G, H, I) = G2 + H2 − I2.

(i). Show that 0 is the only singular value of 5 ,
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(ii). Show that if 0 and 1 have the same sign, then 5 −1 (0) and 5 −1 (1) are
diffeomorphic. [Hint: consider scalar multiplication by a suitable constant
on R3.]

(iii). If 0 and 1 are of opposite signs, show that 5 −1 (0) and 5 −1 (1) are not
diffeomorphic. [Hint: show for example that one is connected and the other
not.]

B.8 Let 5 : R= R? be a submersion. Show it is an open map: that is, if
* ⊂ dom( 5 ) is open then 5 (*) is open in R?. (†)

B.9 Consider the relation G2 + 1 − H4 − H = 0. Show that this can be solved for H
as a function of G in a neighbourhood of the point (1, 1). By using implicit
differentiation, find the Taylor series of this function to order 3 about G = 1.

B.10 Consider the map 5 : R3 R2, 5 (G, H, I) = (G + H2 − GI, H − I2). Define
a new map � : R3 R3 whose first two components are the same as 5
and whose third component is I (this exercise illustrates the proof of the
submersion theorem).

(i). Show that 5 is a submersion at the origin in R3.
(ii). Show that � defines a local diffeomorphism at 0.

(iii). Show that 5 ◦ �−1(-,. , /) = (-,. ) (as in the conclusion to the
submersion theorem).

B.11 Find linearly adapted coordinates for the map 5 (G, H) = (G, GH, H + G2). (†)

B.12 Prove the Lagrange multiplier theorem: Suppose 5 : R= R and 6 : R=
R: are smooth, and let ? ∈ dom( 5 )∩dom(6). Suppose 2 = 6(?) is a regular
value of 6 and let " = 6−1(2). Then ? is a critical point of the restriction
5

"
of 5 to " if and only if there are _1, . . . , _: ∈ R such that

d5? =
:∑
8=1

_8 d(68)? .

[Hint: start by applying the regular value theorem to 6.]

B.13 Prove the statement in Example B.9. Show moreover that the map defining
the graph is an embedding.

B.14 Show that (= = {G ∈ R=+1 | ∑ G2
8 = 1} is a submanifold ofR=+1 of dimension

=. It is called the =-sphere.
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B.15 Let - =
{(u, v) ∈ R3 × R3 | ‖u‖2 = ‖v‖2 = 1, u · v = 0

}
. Show that - is a

submanifold of R6 and determine its dimension. (†)

B.16 Let - be a subset of R=, and 5 : - R a function. One says 5 is smooth
if for each ? ∈ - there is a neighbourhood * of ? in R= and a smooth
function 5̄ : * R such that 5 = 5̄

-
. Show that if - is a submanifold,

this definition is equivalent to the one via straightening maps given on p. 347.

B.17 Consider the 3–dimensional vector space Sym (2) consisting of 2×2 symmet-
ric matrices. Show that the subset consisting of symmetric matrices of rank
A is a submanifold of Sym(2), for A = 0, 1, 2. What are their dimensions?

B.18 Apply Lyapunov–Schmidt reduction at the origin, to the bifurcation problem
5 : R3 × R R3 given by

5 (G, H, I, _) = (I + G2 − _H, H + I − 2_G, I − _). (†)
(This is a sufficiently simple example that everything can be done explicitly.)

B.19 Let � ∈ ΔA , the subset of Mat(?, =) consisting of those matrices of rank
A (see Section B.5). Let  ∈ Mat(=, =) be any matrix of rank = − A such
that � = 0, and let & ∈ Mat(?, ?) be any matrix of rank ? − A such that
&� = 0. Show that the tangent space to ΔA at � is given by

)�ΔA = {+ ∈ Mat(?, =) | &+ = 0}.
[Hint: choose bases so that � takes the normal form in PropositionA.2. ]

B.20 Let � ∈ ΔA ⊂ Mat(?, =). Use the previous problem to show that %� ∈ )�ΔA

for all % ∈ Mat(?, ?) and �# ∈ )�ΔA for all # ∈ Mat(=, =).
B.21 Show that the following ‘figure-8 without double

point’ is an immersion but not an embedding. The
map is 5 : (0, 2c) R2

5 (C) = (sin(C), sin(2C)).

The diagram shows the figure-8 which is the image of 5 . Note that 5 (c) =
(0, 0) so that the origin is in the image and there is no gap, and if either
endpoint of the interval [0, 2c] were included in the domain the map would
no longer be injective. The arrows are there to emphasize the behaviour
of 5 as C 0 and C 2c. [Hint: to prove that 5 is not an embedding,
consider the open set* = (c − Y, c + Y) ⊂ (0, 2c). It is enough to show there is no
neighbourhood+ of (0, 0) in the target space R2 such that 5 −1(+) = *.]
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cobasis, 43, 142, 322
codimension, 52, 170

alternative, 153
contact equivalence, 151
finite, 43, 152
left equivalence, 147
left–right equivalence, 149
of submanifold, 345
of subspace, 321
plane curve singularity, 111

coherent variety, 243, 245
cokernel, 355
complete vector field, 362, 365
complexification, 77
cone

vector fields tangent to, 236
constant rank theorem, 350, 354
constant tangent space, 159, 160, 164,

273, 276

K+ -equivalence, 249
contact, 189
contact equivalence, 129
contour, 4, 15
coordinates

about a point, 337
change of, 337
linearly adapted, see linearly

adapted coordinates
corank

of a map, 166
of a bifurcation, 284
of a critical point, 56, 81
of a map, 216

corank 1 singularity, 167
corank 2 singularity, 167
core, 166, 181, 220, 353, 355
critical point, 20, 51

degenerate, 20, 55
nondegenerate, 19, 20, 23, 52–55,

69, 78, 92, 137, 138, 393
critical values, 309
crunode, 112
cubic form, 321

binary, 84
classification, 85

elliptic, 85
hyperbolic, 85
parabolic, 85
symbolic, 85

cusp, 114
catastrophe, 26, 27, 29, 91, 98
curve, 346
family, 30, 101
map, 137, 197, 206
of Gauss map, 191
point, 6, 10, 387
singularity, 112

cuspidal edge, 107

deformation, see unfolding
degenerate critical point, 20
derivation, 231, 371
derlog, 231
diffeomorphic
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subsets, 338
diffeomorphic ideals, 132
diffeomorphism, 336
differential, 20, 322

higher, 326
notation, 326

dimension, 345
direct sum, 321
discriminant, 2, 6, 13, 14, 25, 92

of a bifurcation problem, 126
of a family of curves, 111
of a map, 128
of pencil, 173

distance squared function, 8
distance-squared function, 192
Dynkin diagram, xii

elementary catastrophes, 86
elimination, 381
embedding, 340
envelope

of a family of lines, 184, 185
equivalence

contact (K), 129
K+ , 247
left (L), 145
left–right (A), 129, 148, 211, 293
of bifurcation problems, 258
of unfoldings, 96, 176
right, (R), 49

Euler vector field, 152, 234, 380
even function, 119–121
evolute, 9, 10, 15, 15, 103, 193, 387
exceptional singularity, 87

Faà di Bruno’s formula, 327
family

of functions, 23, 25, 92
of maps, 125

field, 368
finite codimension

germ, 52
ideal, 43

finite determinacy, 153
for K, 164

for R, 67, 75
for R1, 71

finite singularity type, 165, 171–173,
180, 291, 294, 297

flat function, 323, 323, 333
ideal of, 376, 384

flow from a vector field, 330, 362
flying saucer, 272
fold, 30, 206

family, 10, 23
fold bifurcation, see bifurcation,

saddle-node
fold catastrophe, 23
folded handkerchief, 151, 165, 356
full bifurcation set, 310
function v. map, 19

generating function, 389
generators (of an ideal), 369
genotype, see core
geometric criterion, xv, 45, 77, 148,

171, 215, 254, 382
geometric subgroup, 153
germ

equivalence, 34, 46
representative, 34

germ equivalent sets, 34
graph unfolding, 216, 292

Hadamard’s lemma, 36, 46, 58, 166
Hessian

matrix, 20, 52, 325
of a cubic, 90

homeomorphism, 336
homogeneous polynomial, 60, 379
homotopy equation, 73, 75
homotopy method, 68, 72, 147, 156, 164
hypersurface, 114, 234

ideal, 369
finitely generated, 369
Jacobian, 51, 384
maximal, 35, 370
of a map, 131
of a variety, 231, 233
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imperfect bifurcations, 12, 219
implicit function theorem, 342
index

of a critical point, 21, 55, 106, 387
of a quadratic form, 321

induced unfolding, 95, 175
initial speeds, 97, 176
integral curve, 365
invariant theory, 201, 242
inverse function theorem, 339

proof of, 72

Jacobian ideal, see ideal, Jacobian
jet, 39, 67, 84, 329, 364

Koszul vector fields, 235

Lagrange multipliers, 137, 138, 357, 402
left–right equivalence

with singular source, 296
Leibniz rule, 372
lemniscate, 400
level sets, 4
Lie algebra, xii, 245
linearly adapted coordinates, 339, 352,

357, 414
lists of bifurcations, 285–287
little-oh notation, 326
local algebra, 131, 138, 171
local group property, 361, 363
local immersion theorem, 340
local submersion theorem, 342
Lyapunov–Schmidt reduction, 354, 355,

358

Macaulay2, 238
code, 246

Martinet’s theorems, 207, 209, 216
Martinet, J., 175, 176, 205, 207, 209
Mather, J.N., xii, 129, 132, 195, 205,

207
matrix over a ring, 376
Maxwell set, 310
Milnor number, 78, 152
miniversal unfolding, 98
minors of a matrix, 318

module, 141, 373
finitely generated, 374
Jacobian, 144

modulus, 103, 207, 265, 288, 312, 413
Morse index, see index
Morse Lemma, 22, 55, 69
multigerm, 215
multiplicity, 134, 137, 171, 242, 402

Nakayama’s lemma, 41, 53, 377, 378
Newton diagram, 40, 42

for submodules, 143, 179
nice dimensions, xv, 207
Noetherian ring/module, 42, 45, 201,

231, 242, 375
nondegenerate critical point, 20, 52
normal form

critical points, 88
matrix, 317
versal unfoldings, 101

normal space, 292
nullity (of a quadratic form), 321
Nullstellensatz, 45, 77, 171, 382, 384

odd function, 119
order (of a map germ), 39, 213
organizing centre, 220

parabolic point (of a surface), 190
parameter, 1–13, 219
path

regular, 292
path equivalence, 258
pencils of binary quadratic forms, 168
pinch-point, 211, 212, 212
pitchfork bifurcation, see under

bifurcation type
polarization (of quadratic form), 320,

333
Porteous, I.R., 88, 188
potential function, 2
preparation theorem, 97, 119, 196–205,

409
probes, 89, 191
proper ideal, 369
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quadratic form, 320
index, 321
nullity, 321
pencil, 168
signature, 321

ramphoid cusp, 213, 214
rank

of a map, 335
of a matrix, 316, 348, 358

recognition problem, 88
regular

family, 126
parametrization, 352
point, 352
unfolding, see unfolding, regular
value theorem, 348

remainder function
from splitting lemma, 56, 60

restriction of a function, 46
resultant, 381
ridge point, 192
right equivalence, 49
ring, 367

homomorphism, 370
local, 35, 370
quotient, 370

saddle-node bifurcation, see under
bifurcation type

semicontinuous, 349
semicubical parabola, 27, 147, 231, 248,

261, 324
signature (of a quadratic form), 321
simple singularity, 87, 101, 211, 284

adjacencies of, 103
singular point, 20

of a curve, 324
singular set, 24

of a bifurcation problem, 126
of a map, 128
of an unfolding, 92

singularity
of a map, 352
plane curve, 110, 109–114, 212

singularity theory, xi
singularity types

I0,1, II0,1, IV0, 170
A: , 23, 83, 87, 167, 179
D: , 87, 107
E6, E7, E8, 88
folded handkerchief, 151, 165, 170
T?,@,A , 88

smooth, 322
curve, 6, 109
family, 2, 25, 63, 91, 121, 126
function, 347, 358

source, 315
span, 43
spinode, 114
splitting lemma, 55, 61, 81, 84, 87, 93,

105, 284
stability, 12, 61
stable

map, 206
map germ, 206, 209

state variable, 2, 25, 92, 126, 219, 259
straightening map, 208, 345, 345, 348,

397
submanifold, 92, 99, 345
submersion, 341
super- and sub-critical pitchfork

bifurcations, 14, 385
suspension, 180, 181, 344
swallowtail, 30, 101, 102, 104, 106, 114,

180, 275, 397
generalized, 179

symmetric bifurcations, 299
symmetric matrices, 358
symmetry, 13, 119

tacnode, 114
tangent map, 63, 333
tangent space

contact, 149
contact, extended, 150
K+ , 248
left, 146
left–right, 148
logarithmic, 254, 255
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right, 66, 145
right, extended, 140, 145
to a submanifold, 348

target, 315
Taylor series, 326
theorem

finite determinacy for K, 164
finite determinacy for R, 68
finite determinacy for K+ , 250, 253
implicit function, 342

extended, 343
inverse function, 339

proof of, 72
local immersion, 340
local submersion, 342
preparation, 196
regular value, 348
versality for K, 176
versality for R, 97
versality for K+ , 253

Thom, R., xi, 13, 86, 91, 97, 101, 207
Thom–Levine principle, 65–79,

156–162, 249, 312, 393
Tjurina number, 152
transversality, 173, 227, 254, 350
trilinear map, 321
triod singularity, 245, 255
trivial family, 64, 160

umbilic, 30, 84, 101, 192
elliptic, 104, 108
hyperbolic, 105, 108
parabolic, 86, 89

unfolding, 91, 92, 175
regular, 176, 181, 207

unimodal
path, 265, 288, 289
singularity, 103

unit (in a ring), 368

variational problems, 13, 19, 49, 103,
309–312

variety
algebraic, 229, 231–233, 240, 247,

254, 371
algebraic v. semialgebraic, 230
analytic, 371
semialgebraic, 229

vector field, 330
along a map, 64, 146, 331
tangent to a variety, 231
tangent to discriminant, 237
vertical, 154

versal unfolding
K+ -equivalence, 253
contact equivalence, 176
proofs of, 198
right equivalence, 97–104, 198

weighted homogeneous, 234, 379
Whitney umbrella, 211, 230, 230, 239
Whitney, H., xii, 119, 197, 207

Zeeman, E.C., xi, xiii
catastrophe machine, 5, 27, 104

zero-set, 112, 126, 130, 136, 175, 257,
299, 406


